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Abstract. In the paper by Oscar Estrada et al. it is introduced the
concept of “Possibilistic Intuitionistic Logic (PIL)”; In that paper, the
authors present results analogous to those of the well-known intuition-
istic logic, such as a Deduction Theorem, a Generalized version of the
Deduction Theorem, a Cut Rule, a weak version of a Refutation Theo-
rem, a Substitution Theorem and Glivenko’s Theorem.

The concept of Safe Beliefs was introduced in the paper “Safe Beliefs for
Propositional Theories” by Osorio et al. as an extension of the concept
of Answer Set. In this paper, we present the analogous concept to Safe
Beliefs: Possibilistic Safe Beliefs Candidate.
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1 Introduction

Uncertainty is an attribute of information. The pioneering work of Claude Shan-
non [18] on Information Theory led to the universal acceptance that information
is statistical in nature; As a consequence, dealing with uncertainty was confined
to the Theory of Probability.

Dubois et al. presented Possibilistic Logic on [3]; Possibilistic Logic enables
to handle information with uncertainty. Their logic is based on the Theory of
Possibility of Zadeh [20]; On the paper by Dubois et al. [3], it is included an
axiomatization for Possibilistic Logic and an extended resolution-based method
which is viable to be implemented on a computer.

According to Pascal Nicolas et al. [9], Possibilistic Logic provides a sound
and complete machinery for handling qualitative uncertainty with respect to a
semantics expressed by means of possibility distributions which rank order the
possible interpretations. Pascal mentions that in possibilistic logic it is dealt
with uncertainty by means of classical two-valued (true or false) interpretations
that can be more or less certain, more or less possible. Possibilistic Logic is not
concerned to deal with a vagueness representation in a multi-valued framework
but instead, it stays in the framework of classical logic to which it adds a way
to graduate the confidence one has in each proposed information [9].
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On the other hand, Intuitionistic Logic has become important to the area
of computer science since the publication of a paper by David Pearce [17], on
which it is established a link between Intuitionistic Logic (and furthermore, all
the class of intermediate logics) and Answer Set Programming (ASP) [6, 8].

Considering the importance of the ASP formalism, in combination with its
usefulness within the context of intermediate logics, and the need for a better
way of handling uncertain information, it was proposed in [10] the Possibilistic
Intuitionist Logic (PIL) formalism. It was presented only propositional calculus.

On this this paper, following the same flow of ideas, we present the concept of
Possibilistic Safe Belief, which tries to establish a link between Safe Beliefs [16]
and Possibilistic Intuitionistic Logic [10]. The concept of Safe Belief as presented
in [16] is a generalization of the concept of Answer Set. With this in mind, one
can argue in favor of developing Possibilistic Safe Beliefs in order to broaden
the scope of applications; Hence, a Possibilistic Safe Belief would allow us to an-
alyze situations involving uncertainty, for example, in decision making problems.

First, in Section 2, we present some background on Possibilistic and Intuition-
istic Logic, and we present some theorems from [10] and show some examples. In
Section 3, we introduce our main contribution for this paper, the concept of Pos-
sibilistic Safe Belief and a Lemma establishing a resemblance with some result
of Safe Belief as presented on [16]. Finally, in Section 4 we give the conclusions
and sketch some ideas for future work.

2 Background

We present the necessary background for this paper. The propositional calculus
is built as in the well-known book by Mendelson [7].

2.1 Intuitionistic Logic

Definition 1. Positive Logic is defined by the following set of axioms:
Pos 1: ϕ→ (ψ → ϕ)
Pos 2: (ϕ→ (ψ → σ)) → ((ϕ→ ψ) → (ϕ→ σ))
Pos 3: ϕ ∧ ψ → ϕ
Pos 4: ϕ ∧ ψ → ψ
Pos 5: ϕ→ (ψ → (ϕ ∧ ψ))
Pos 6: ϕ→ (ϕ ∨ ψ)
Pos 7: ψ → (ϕ ∨ ψ)
Pos 8: (ϕ→ σ) → ((ψ → σ) → (ϕ ∨ ψ → σ)).

Definition 2. Intuitionistic Logic I is defined as positive logic plus the fol-
lowing two axioms:
Int1: (ϕ→ ψ) → [(ϕ→ ¬ψ) → ¬ϕ]
Int2: ¬ϕ→ (ϕ→ ψ).
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Recall that the following are valid meta-theorems of Intuitionism:

1. If �C ϕ then, �I ¬¬ϕ
2. If ϕ is a tautology (in the classical sense) then, �I ¬¬ϕ
3. If �C ¬ϕ then �I ¬ϕ
4. If ¬ϕ is a tautology (in the classical sense) then, �I ¬¬ϕ
5. If ϕ ∈ 〈¬,∧〉 then, �I ϕ if and only if, ϕ is a tautology.

Theorem 1 (Deduction Theorem [19] ). If Γ is a set of formulas, ψ and σ
are well-formed formulas and Γ, ψ �I σ, then Γ �I ψ → σ.

Lemma 1 ([19]).

a) �I (ϕ→ (ψ ↔ σ)) ∧ (ϕ→ (ξ ↔ χ)) → (ϕ→ ((ψ → ξ) ↔ (σ → χ)))
b) �I (ϕ→ ψ) → (¬ψ → ¬ϕ)
c) �I (σ → (ϕ↔ ψ)) → (σ → (¬ϕ↔ ¬ψ)).

2.2 Possibilistic Logic

The following definitions can be found in [3], to which the reader is referred for
further details.

A necessity-valued formula is a pair (ϕ α), where ϕ is a classical propositional
formula and α ∈ (0, 1]. (ϕ α) expresses that ϕ is certain to the extent α, that is,
N(ϕ) ≥ α, where N is a necessity measure which models our state of knowledge.
The constant α is known as the valuation of the formula and is represented as
val(ϕ).

On [3], it is proposed an axiom system for Possibilistic Logic:

(A1) (ϕ→ (ψ → ϕ) 1)
(A2) ((ϕ→ (ψ → ξ)) → ((ϕ→ ψ) → (ϕ→ ξ)) 1)
(A3) ((¬ϕ→ ¬ψ) → ((¬ϕ→ ψ) → ϕ) 1)

with the inference rules,
(GMP) (ϕ α), (ϕ→ ψ β) � (ψ min(α, β)).
(S) (ϕ α) � (ϕ β) if α ≥ β.

2.3 Possibilistic Intuitionistic Logic (PIL)

We now present the axioms for Possibilistic Intuitionistic Logic (PIL) [10].

Definition 3. Possibilistic Intuitionistic Logic (PIL) is defined by means of the
axioms Pos1-Pos8, Int1, Int2 where all of them weighted by 1, that is:
PIL-1: (ϕ→ (ψ → ϕ) 1),
PIL-2: ((ϕ→ (ψ → σ)) → ((ϕ→ ψ) → (ϕ→ σ)) 1), etc.

Together with the following rules of inference:
(GMP) (ϕ α), (ϕ→ ψ β) �PIL (ψ min {α, β})
(S) (ϕ α) �PIL (ϕ β) if α ≥ β
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Lemma 2. �PIL (ϕ→ ϕ 1)

A Deduction Theorem is given on [3] for Standard Possibilistic Logic, which
is based on Classical Logic. However, the Deduction Theorem we present here is
taken from [10], which is given in the context of PIL.

Theorem 2 (Deduction Theorem [10]). Let Γ ∪{ϕ, ψ} be a set of formulas
in PIL, and α ∈ (0, 1]. Then we have that

Γ ∪ {(ϕ 1)} �PIL (ψ α) if and only if Γ �PIL (ϕ→ ψ α)

Furthermore, on [10] it is proven the following result.

Theorem 3 (Generalized Deduction Theorem [10]). Let Γ ∪ {ϕ, ψ} be a
set of PIL formulas and α, β ∈ (0, 1]. Then we have that

1. Γ ∪ {(ϕ β)} �PIL (ψ α) implies Γ �PIL (ϕ→ ψ α)
2. If, furthermore, β ≥ α, then we have the equivalence:

Γ ∪ {(ϕ β)} �PIL (ψ α) if and only if Γ �PIL (ϕ→ ψ α)

The proof given for the previous theorem on [10] uses theorems also valid on
classical logic, so this theorem also holds in Standard Possibilistic Logic. Besides,
observe that as a consequence of the previous result, if we fix β = 1 on Theorem
3(2), then we obtain Theorem 2 as a corollary.

We now define the concept of “dependence” on a formula [10]. Let (ϕ α)
be a formula in a set Γ of formulas, and assume that we are given a deduction
D1,D2, . . . ,Dn from Γ , together with justification for each step in the deduction.
We shall say that Di depends on (ϕ α) in this proof if and only if:

1. Di is (ϕ α) and the justification for Di is that it belongs to Γ , or
2. Di is justified as a direct consequence by GMP or by the Rule (S) of some

previous formulas of the sequence, where at least one of these preceding
formulas depends on (ϕ α).

Theorem 4 (Generalized Deduction Theorem (2nd version) [10]). Let
Γ ∪ {ϕ, ψ} be PIL formulas and α, β ∈ (0, 1]. Assume that Γ ∪ {(ϕ β)} �PIL

(ψ α), and let Γ ′ = {(φ1 ρ1), (φ2 ρ2), . . . , (φp ρp)} ⊆ Γ be the set of formulas
on which the proof of (ψ α) from Γ ∪ {(ϕ β)} depends on; Then,

Γ �PIL (ϕ→ ψ min {ρ1, ρ2, . . . , ρp})

Example 1. Observe that if in the previous result we let Γ = ∅, then the theorem
states that if (ϕ β) �PIL (ψ α), then �PIL (ϕ→ ψ min {∅}), that is, �PIL (ϕ→
ψ 1), which is what one would expect; For instance, is clear that (ϕ 0.3) �PIL

(ϕ 0.3), so when applying this version of the Generalized Deduction Theorem
we obtain �PIL (ϕ→ ϕ 1) which is what is expected , since �Int ϕ→ ϕ.

As a consequence of Theorem 3 one obtains the following results.
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Theorem 5 (Weak Refutation Theorem [10] ). Let Γ be a set of PIL
formulas, and let ϕ be an intuitionistic propositional formula, and α, β ∈ (0, 1].
If β ≥ α, then we have

Γ ∪ {(¬¬ϕ β)} �PIL (⊥ α) if and only if Γ �PIL (¬ϕ α)

Theorem 6 (Cut Rule [10]). Let Γ be a set of PIL formulas, let ϕ, ψ two
intuitionistic propositional formulas and α, β ∈ (0, 1]. Then we have that

If Γ �PIL (ϕ β) and Γ ∪ {(ϕ β)} �PIL (ψ α) then Γ �PIL (ψ min {α, β})

Consider the set of PIL formulas Γ = {(ϕ→ ψ 0.2), (ϕ→ ¬ψ 0.7), (σ → ϕ 0.3)}.
It it easy to see that Γ �PIL (¬ϕ 0.2), and also that Γ ∪ {(¬ϕ 0.2)} �PIL (¬ψ 0.2).
So, by the previous theorem, we have that Γ �PIL (¬ψ 0.2).

Now it is presented a version of the Substitution Theorem and a version
of Glivenko’s Theorem for Possibilistic Intuitionistic Logic; The proofs of this
results can be found in [10].

Theorem 7 (Substitution Theorem [10]). Let ϕ be a classical propositional
formula and let ψ be a subformula of ϕ; Let ϕ′ be the formula which results by
substituting some, or none, occurrences of ψ in ϕ by a formula σ.

1. �PIL ((ψ ↔ σ) → (ϕ↔ ϕ′) 1)
2. If Γ �PIL (ψ ↔ σ α), then Γ �PIL (ϕ↔ ϕ′ α)

Example 2. Consider the set of PIL formulas Γ = {(¬¬ϕ→ ϕ 0.3)}. Since �PIL

(ϕ → ¬¬ϕ 1), it is easy to show that Γ �PIL (ϕ ↔ ¬¬ϕ 0.3). Now, by the
previous theorem we have that Γ �PIL ((ϕ→ ψ) ↔ (¬¬ϕ→ ψ) 0.3)

Theorem 8 (PIL Glivenko’s Theorem [10]). Let Γ∪{(ϕ α)} be PIL formu-
las, and assume that Γ �Pos (ϕ α); Let Γ

∗ = {(γ1 α1), (γ2 α2), . . . , (γn αn)} ⊆ Γ
be such that the proof of (ϕ α) from Γ depends on the formulas on Γ ∗, then we
have that

Γ �PIL (¬¬ϕ min {α1, α2, . . . , αn})

Example 3. Consider the set of PIL formulas Γ = {(¬α→ ϕ 0.8), (α→ ϕ 0.7)}.
Since: �Pos ((¬α→ ϕ) → ((α→ ϕ) → ((¬α∨α) → ϕ))) 1), and �Pos (¬α∨α 1)
it is easy to show that Γ �Pos (ϕ 0.7). Now, by Glivenko’s Theorem we have
that Γ �PIL (¬¬ϕ 0.7) .

3 Contribution

We now present our main results.
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3.1 Possibilistic Safe Beliefs

Here, we define the concepts of classical projection of a possibilistic theory, the
Inconsistency Degree and Possibilistic Safe Beliefs Candidate.

Definition 4. 1. A possibilistic theory T is any finite set of possibilistic for-
mulas.

2. Given a possibilistic theory T , we denote by T ∗ the set of classical formulas
obtained from T by ignoring the weights of the formulas, that is, if T =
{(ϕi αi) : i = 1, . . . , n} then, T ∗ = {ϕi : i = 1, . . . , n}. We call T ∗ the
classical projection of T .

3. We will denote by LT∗ the set of classical atoms that appear in the formulas
in T , and by LT the set of possibilistic atoms whose classical projection is
equal to LT∗ .

Example 4. Given a possibilistic theory:
T = {(a 0.9), (b→ c 0.7), (a→ d 0.8), (d 0.1)} then T ∗ = {a, b→ c, a→ d, d},
so LT∗ = {a, b, c, d}. Note that LT = {(a α), (b β), (c γ), (d ε)} with α, β, γ, ε ∈
(0, 1].

Definition 5. Given a possibilistic theory Γ we define the inconsistency degree
of Γ by Incon(Γ )= max {α : Γ ` (⊥ α)}, where ⊥ is the logical constant bottom.
When Incon(Γ ) = 0 we say that Γ is consistent.

Remark: If A is a set of classical atoms, we write Ã to denote the complement
of A, and define ¬A = {¬a | a ∈ A}, also Γ 
PIL (ϕ α) denotes Γ is consistent
and Γ `PIL (ϕ α).

Definition 6. Given a possibilistic theory T and a subset M of LT , we say that
M is a possibilistic safe belief candidate if:

1. Incons(T ∪ (¬M̃∗ 1) ∪ (¬¬M∗ 1)) = 0,
2. T ∪ (¬M̃∗ 1) ∪ (¬¬M∗ 1) `PIL M

Example 5. Consider the theory T = {(¬a ∨ a 1), (a→ b 0.7), (¬b→ b 0.3)},
where LT∗ = {a, b}We have that M = {(a 1), (b 0.3)} is the unique possibilistic
safe belief candidate of T .

Example 6. Let be the theory T = {(¬a 1), (a 1)}, by axiom PIL-5, Incons(T ∪
(¬M̃∗ 1) ∪ (¬¬M∗ 1)) = 1, we have that T does not satifies 2 of previous
definition.

Example 7. T = {(a 0.9), (b→ c 0.7), (a→ d 0.8), (d 0.1)}, so LT∗ = {a, b, c, d},
then M = {(a 0.9), (d 0.8)} is a possibilistic safe belief candidate of T .

Lemma 3. For a given theory T , let M be a subset of LT∗ , then

T ∪ (¬M̃ 1) 
PIL (M 1) implies T ∪ (¬M̃ 1) ≡PIL T ∪ (¬M̃ 1) ∪ (¬¬M 1).
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Proof. Since T ∪ (¬M̃ 1) �PIL (M 1) then T ∪ (¬M̃ 1) �PIL (¬¬M 1) (recall

that �PIL (ϕ −→ ¬¬ϕ 1)). By Monotony we have that T ∪ (¬M̃ 1) �PIL

T ∪ (¬M̃ 1) ∪ (¬¬M 1).

Conversely, we obtain immediately that T ∪(¬M̃ 1)∪(¬¬M 1) �PIL T ∪(¬M̃ 1).

Note that the Lemma 3 has resemblance with some result of Safe Belief as
presented on [16].

4 Conclusion

On this brief note we presented Possibilistic Intuitionistic Logic in a purely ax-
iomatic way. This allowed us to state some basic, but relevant results. These are
partial results, but as a first attempt, they pave the way for results on reduc-
tion of theories. For future work, we leave the task of finding a suitable semantics.

Also, we presented a definition for Possibilistic Safe Beliefs candidate. We
have several questions, for example: Is there an equivalence between Safe Beliefs
[16] and our Possibilistic Safe Beliefs Candidate?, that is, is it true that M is a
possibilistic safe belief candidate of a theory T if and only if M∗ is a safe belief
of the theory T ∗?. Such result would allow us to establish a relation between
Safe Beliefs as presented on [16] and Possibilistic Intuitionistic Logic (PIL) [10].
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