
Updates based on p-stable and properties

José Luis Carballido, Claudia Zepeda, Sergio Arzola and Mario Rossainz

Benemérita Universidad Autónoma de Puebla
Facultad de Ciencias de la Computación

{jlcarballido7,czepedac, sinrotulos, mrossainzl}@gmail.com

Abstract We present an update operator and several of its properties.
The semantics of our update operator is based on a concept called minimal
generalized p-stable models which is based on a novel semantics called the
p-stable semantics.
Keywords: Logic Programming, Update semantics

1 Introduction

Update by definition means that there is new information that must be added
to the older, and some information could be changed. Intelligent agents use this,
in order to bring new knowledge to their knowledge base. But there is a main
problem that updates can present, and it is inconsistency. So, it is important to
use an approach to avoid inconsistencies in the knowledge base. For instance, it
could be that in an initial moment we can infer a from a knowledge base (KB),
and later the KB is updated with the new information −a (where − denotes
negation). It is easy to see, that if we only take the union of the initial KB and −a
we will have an inconsistency. Then it is useful to apply an update approach that
avoids the inconsistency and now allows to infer −a since the newer knowledge
has priority over the older.

Currently there are several approaches in non-monotonic reasoning dealing
with updates, such as [6,11,4]. It is important to point out that several of the
update approaches in non-monotonic reasoning are based on the stable semantics
(also called answer set semantics)1 , so their results do not agree with a classical
logic point of view. We can make this clear with the following example. Let
P1 = {a ← ¬b, a ← b} and P2 = {b ← a}. From a classical logic point of view
and considering that ¬ denotes classical negation, we would expect that {a, b}
correspond to the result of updating P1 with P2. However, when we apply the
approach in [6] based on stable semantics to update P1 with P2 there is no result.

Moreover, since classical logic identifies a class of formal logics that have been
most intensively studied and most widely used, it turns out to be very useful
to have some updates approaches that allow us to keep a compromise with such
logic. For this reason, as part of the contribution of this paper, we propose an
update semantics that allow us to keep a compromise with classical logic. Thus
the result of using our semantics to update program P1 with program P2 is {a, b}.
1 Readers interested in knowing the definition of stable semantics can see [7].

ivan
67



Our semantics is based on a concept called minimal generalized p-stable mod-
els. The definition of minimal generalized p-stable models is inspired by a concept
called minimal generalized answer sets of abductive programs [8]. The semantics
of minimal generalized answer sets is based on the stable semantics. The minimal
generalized answer sets have been used to restore consistency [8,2], to obtain the
preferred plans of planning problems [14], to get the preferred extensions of an
argument framework [14], and to define update operators [13]. Hence, we consider
that minimal generalized p-stable models can also have similar applications and
be an alternative to those applications that use minimal generalized answer sets,
however the minimal generalized p-stable models consider a classical logic point
of view.

The semantics of minimal generalized p-stable models is based on the p-stable
semantics. The p-stable semantics is based on G′3 which is a paraconsistent logic
that has recently been studied in some detail in [9,10,12]. Here, we also present
several properties for our update operator. These properties correspond to the
properties of the update operator defined and analized by Eiter et al. [5] and J.
J. Alferes et al. in [1], except for one of them called independent parts property.
This last property refers to the general principle that asserts that completely
independent parts of a program should not interfere with each other.

In section 2 we summarize some basic concepts and definitions used to under-
stand this paper. In section 3 we review the minimal generalized p-stable models.
In section 4 we present our update semantics and some formal properties. Finally,
in section 5 we present some conclusions.

2 Background

In this section we summarize some basic concepts and definitions necessary to
understand this paper.

2.1 Logic programs

We use the language of propositional logic in the usual way. We consider propo-
sitional symbols: p, q, . . . ; propositional connectives: ∧,∨,→,¬,−; and auxiliary
symbols: ‘(’,‘)’,‘.’. Well formed propositional formulas are defined as usual. We
consider two types of negation: strong or classical negation (written as −) and
negation-as-failure (written as ¬). Intuitively, ¬a is true whenever there is no
reason to believe a, whereas −a requires a proof of the negated atom. An atom
is a propositional symbol. A literal is either an atom a or the strong negation of
an atom −a.

A normal clause is a clause of the form a ← b1∧ . . .∧bn∧¬bn+1∧ . . .∧¬bn+m

where a and each of the bi are atoms for 1 ≤ i ≤ n + m. In a slight abuse of
notation we will denote such a clause by the formula a ← B+∪¬B− where the set
{b1, . . . , bn} will be denoted by B+, and the set {bn+1, . . . , bn+m} will be denoted
by B−. Given a normal clause a ← B+ ∪ ¬B− we say that a is the head and
B+∪¬B− is the body of the clause. A clause with an empty body is called a fact ;

ivan
68



and a clause with an empty head is called a constraint. Facts and constraints are
also denoted as f ← and ← g respectively. We define a normal logic program
P , as a finite set of normal clauses. The signature of a normal logic program P ,
denoted as LP , is the set of atoms that occur in P . Given a set of atoms M and
a signature L, we define ¬M̃ = {¬a | a ∈ L \ M}. Since we shall restrict our
discussion to propositional programs, we take for granted that programs with
predicate symbols are only an abbreviation of the ground program. From now
on, by program we will mean a normal logic program when ambiguity does not
arise.

In our programs we will manage the strong negation − as follows: each atom
−a is replaced by a new atom symbol a′ which does not appear in the language
of the program and we add the constraint ← a ∧ a′ to the program.

Finally, we give a definition that will help us to define the p-stable semantics
for programs.

Definition 1. [12] Let P be a program and M be a set of atoms. We define
RED(P, M) = {a ← B+ ∪ ¬(B− ∩M) | a ← B+ ∪ ¬B− ∈ P} .

Example 1. [12] Let P = {b ← ¬a, a ← ¬b, p ← ¬a, p ← ¬p, c ← p}.
Given M = {a, p}, it follows that RED(P,M) = {b ← ¬a, a ←, p ← ¬a, p ←
¬p, c ← p}.

2.2 The p-stable semantics

Here, we present a fixed point characterization, using classical logic, of the p-
stable semantics for normal programs. This kind of characterization is useful for
implementations of a semantics.2 Following a similar approach to [7] for the stable
semantics, the p-stable semantics uses the RED(P, M) reduction as a fixed point
operator in terms of classical logic.

Definition 2. [9] Let P be a program and M be a set of atoms. We say that M
is a p-stable model of P if

1. M is a classical model of P (i.e. a model in classical logic), and
2. the conjunction of the atoms in M is a logical consequence in classical logic

of RED(P, M) (denoted as RED(P, M) |= M).

The following examples illustrate how to obtain the p-stable models. The first
example shows a program with a single p-stable model, which is also a classical
model. The second example shows a program which has no stable models and
whose p-stable and classical models are the same.

Example 2. Let P = {q ← ¬q}. Let us take M = {q} then RED(P, M) = {q ←
¬q}. It is clear that M models P in classical logic and RED(P,M) |= M since
(¬q → q) → q is a theorem in classical logic with the negation ¬, now interpreted
as classical negation. Therefore M is a p-stable model of P .
2 An implementation of the p-stable semantic is at
http://sites.google.com/site/computingpstablesemantics/

ivan
69



Example 3. Let P = {a ← ¬b, a ← b, b ← a}. We can verify that M = {a, b}
models the clauses of P in classical logic. We find that RED(P, M) = P . Now,
from the first and third clause, it follows that (¬b → b) where the negation ¬ is
now interpreted as classical negation. Since (¬b → b) → b is a theorem in classical
logic, it follows that RED(P, M) |= M . Therefore, M is a p-stable model of P .

Not all programs have p-stable models, that is why it is convenient to have
the next definition.

Definition 3. Let P be a program. We say that P is p-stable consistent if P
has at least one p-stable model. We say that P is p-stable inconsistent if P does
not have p-stable models.

We also remark that the authors of [9] show that the p-stable model semantics
for normal logic programs is powerful enough to express any problem that can
be expressed with the stable model semantics for disjunctive logic programs.
It is worth mentioning that there exists also a characterization of the p-stable
semantics in terms of the paraconsistent logic G′3, interested readers can see [12].

Now, we present two notions of equivalence for programs.

Definition 4. [3] Two programs P1 and P2 are equivalent, denoted by P1 ≡ P2,
if P1 and P2 have the same p-stable models. Two programs P1 and P2 are strongly
equivalent, denoted by P1 ≡SE P2, if (P1 ∪ P ) ≡ (P2 ∪ P ) for every program P .

The following lemma3 indicates that given a program P and an atom x that
does not occur in P , we can define a new program P ′ such that P and P ′ are
equivalent and LP ′ = LP ∪ {x}. The two programs must have the same clauses
except for one of them. One of the clauses in P ′ corresponds to one of the clauses
in P after adding ¬x to its body. This way, P and P ′ have the same p-stable
models since x does not appear as the head of any clause in P ′.

Lemma 1. Let P be a program and x be an atom, x 6∈ LP . Let r be any clause
a ← B+ ∪ ¬B− in P . Then M is a p-stable model of P iff M is a p-stable model
of (P \ {r}) ∪ {a ← B+ ∪ ¬(B− ∪ {x})}.

3 Minimal generalized p-stable models

The definition of our update semantics is based on Minimal Generalized (MG)
p-stable models. The intuition behind the MG p-stable models is simple. Given
a logic program P and a set of atoms A, the MG p-stable models of P are the
p-stable models of P ∪∆ that are obtained by adding the minimal subset ∆ ⊆ A
to P for which P∪∆ has p-stable models.4 For instance, let us consider a program
P = {−a, a ← ¬b} that does not have p-stable models and let A = {b, c} then,

3 Its proof is straightforward.
4 By “adding the minimal subset ∆ ⊆ A to P”, we mean that ∆ is interpreted as a set

of facts defined by its elements.

ivan
70



the MG p-stable model is {b,−a} where the minimal subset of A added to P is
{b}.

Next, we present the definition of abductive logic programs and their seman-
tics in terms of the minimal explicit generalized p-stable models. Then, we define
the MG p-stable models based on the minimal explicit generalized p-stable mod-
els. These definitions are similar to the definitions of syntax and semantics of
abductive logic programs as presented in the context of the stable semantics in
[2].

Definition 5. An abductive logic program is a pair 〈P,A〉 where P is a program
and A is a set of atoms, called abducibles. 〈M, ∆〉 is an explicit generalized (EG)
p-stable model of the abductive logic program 〈P, A〉 iff ∆ ⊆ A and M is a p-stable
model of P ∪∆.

We give an ordering among EG p-stable models in order to get the minimal
of them.

Definition 6. Let T = 〈P,A〉 be an abductive logic program. Let 〈M1,∆1〉 and
〈M2,∆2〉 be two EG p-stable models of T , we define 〈M1,∆1〉 < 〈M2,∆2〉 if
∆1 ⊂ ∆2; this order is called inclusion order. 〈M, ∆〉 is a Minimal Explicit
Generalized (MEG) p-stable model of T iff 〈M, ∆〉 is an EG p-stable model of T
and it is minimal w.r.t. inclusion order.

For practical purposes, given a MEG p-stable model, 〈M, ∆〉, we are only
interested in its first entry, namely M , and we call it a Minimal Generalized
(MG) p-stable model of an abductive logic program.

Example 4. Let 〈P, A〉 be the abductive logic program where the set of abductive
atoms is A = {x1, x2} and P = {b ← ¬x1, a ← b ∧ ¬x2, −a}. There are three
EG p-stable models of 〈P, A〉 which are: 〈{−a, x1}, {x1}〉, 〈{−a, b, x2}, {x2}〉, and
〈{−a, x1, x2}, {x1, x2}〉. We can see that for ∆ = ∅ there is no EG p-stable models.
Therefore, the MEG p-stable models are 〈{−a, x1}, {x1}〉 and 〈{−a, b, x2}, {x2}〉,
and the MG p-stable models are {−a, x1} and {−a, b, x2}.

The following lemma presents some results about MEG p-stable models that
will be useful in a later section to show the properties of our update operator.
The proof of this lemma is straightforward.

Lemma 2. Let T = 〈P,A〉 be an abductive logic program such that P is p-stable
consistent. Then, M is a p-stable model of P iff M is a MG p-stable model of T ;
and if 〈M,∆〉 is a MEG p-stable model of T then ∆ = ∅.

4 Updates semantics and formal properties

In this section, we define the semantics of our update operator based on the
concept of MG p-stable models, and we study some of its properties. We use ¯ to
represent the update operator. In order to obtain the ¯-update p-stable models of

ivan
71



a pair of logic programs P = (P1, P2), we define an update logic program, denoted
as P¯. The update logic program is obtained by joining P ′1 to P2, where P ′1 is the
resulting program from transforming P1 as follows: at the end of each clause of P1

which is not a constraint we add the negation-as-failure of an abducible (a new
atom). The intuition behind the transformation applied to a program P1 consists
in weakening the knowledge in P1 when giving more relevance to the knowledge
contained in P2 whose rules are not modified.

Definition 7. Let P = (P1, P2) be a pair of logic programs over LP such that the
number of clauses in P1 that are not constraints is n. Let L∗P = LP∪A where A is
a set of n new abducible atoms, namely A = {ai, 1 ≤ i ≤ n | ai is an atom, ai 6∈
LP and ai 6= aj if i 6= j}. We define the update logic program P¯ = P1 ¯ P2

over L∗P, as the program consisting of the following clauses:

1. all constraints in P1,
2. we add the clause a ← B+ ∪ ¬(B− ∪ {ai}) if ri = a ← B+ ∪ ¬B− ∈ P ,

1 ≤ i ≤ n and ai ∈ A,
3. all clauses r ∈ P2.

We define the abductive logic program of P as follows: T¯ = 〈P¯, A〉.
In this way, the intended ¯-update p-stable models of a pair of logic programs

P = (P1, P2) are obtained by removing the abducible atoms from the MG p-stable
models of T¯. Finally, the ¯-update p-stable models are chosen as those that
contain more information, i.e. maximal in the sense of inclusion of sets, from the
intended ¯-update p-stable models.

Definition 8. Let P = (P1, P2) be an update pair over LP and T¯ its abductive
logic program. Then, M ⊆ LP is an intended ¯-update p-stable model of P if
and only if M = M ′ ∩ LP for some MG p-stable model M ′ of T¯. In case M is
an intended ¯-update p-stable model of P and is maximal among all intended ¯-
update p-stable model of P w.r.t. inclusion order, then M is an ¯-update p-stable
model of P.

We can illustrate our semantics with the following example.

Example 5. Let P = (P1, P2) be an update pair over LP = {a, b} where, P1 and
P2 are the following logic programs, P1 = {b ←, a ← b} and P2 = {−a ←}.
We can see that the update logic program P¯ = P1 ¯ P2 over L∗P corresponds to
the program P of Example 4 where the xi are the abducible ai. The intended
¯-update p-stable models of P are {−a} and {−a, b}; and its only ¯-update
p-stable model is {−a, b}.

Now, we show that our update operator (¯) satisfies several formal properties.
These properties have been deeply analyzed, in the context of stable semantics,
by several authors such as J. J. Alferes et al. in [1] or T. Eiter in [6], except for
the last property. We will see that all the properties are expressed in terms of
equivalence, hence it is useful to recall the two notions of equivalence for logic

ivan
72



programs given in Definition 4. Since the p-stable models of a logic program are
sets of literals, we can see easily that ≡ represents an equivalence relations, and
the logic programs P1 and P2 can be of any kind defined in this paper.

The following two definitions are used to define the last of our properties.
Given A = {A1 . . . An} where the Ai, 1 ≤ i ≤ n are sets, and B = {B1 . . . Bm}
where the Bj , 1 ≤ j ≤ m are sets, we define A]B = {Ai∪Bj | Ai ∈ A and Bj ∈
B}.

Definition 9. Let P = (P1, P2) be a pair of logic programs over LP. We define
the update semantic function of P as follows:

SEM¯(P)5 = {M | M is an ¯-update p-stable model of P}.

Now we define the properties. Since the intuition behind the first six properties
is easy, hence we only give a deeper explanation about the last property below.

P1. Initialisation: If P is a logic program then ∅ ¯ P ≡ P .
P2. Strong consistency: Let P1 and P2 be logic programs. Suppose P1 ∪ P2 has

at least one p-stable model. Then P1 ¯ P2 ≡ P1 ∪ P2.
P3. Idempotence: If P is a logic program then P ¯ P ≡ P .
P4. Weak noninterference: If P1 and P2 are logic programs defined over disjoint

alphabets, and both of them have p-stable models or do not, then P1¯P2 ≡
P2 ¯ P1.

P5. Weak irrelevance of syntax: Let P , P1 and P2 be logic programs under LP.
If P1 ≡SE P2 then P ¯ P1 ≡ P ¯ P2.

P6. Augmented update: Let P1 and P2 be logic programs such that P1 ⊆ P2.
Then P1 ¯ P2 ≡ P2.

P7. Independent parts property. Let P1 = (P1, P
′
1) and P2 = (P2, P

′
2) such that

(LP1∩LP2) = ∅. Then SEM¯((P1∪P2), (P ′1∪P ′2)) = SEM¯(P1)]SEM¯(P2).

Property P7 indicates that our update operator does not violates the general
principle that completely independent parts of a logic program should not inter-
fere with each other. Hence the property P7 of operator ¯ indicates that if we
update the union of a pair of logic programs (P1 ∪P2) by the union of a different
pair of logic programs (P ′1∪P ′2) such that P1 and P ′1 are defined under a different
language from the language of logic programs P2 and P ′2 then, the result can be
also obtained from a particular union of the update of P1 by P ′1 and the update
of P2 by P ′2. This particular union of updates corresponds to our Definition 9.

Example 6. [11]

Let P1 be: Let P ′1 be:
openSchool ← . −openSchool ← holiday.
holiday ← ¬workday. workday ← ¬holiday.

Let P2 be: Let P ′2 be:
seeStars ← . −seeStars ← .

5 Let us notice that SEM¯(P) is a set of sets.

ivan
73



Let P1 = (P1, P
′
1), P2 = (P2, P

′
2), and P = ((P1 ∪ P2), (P ′1 ∪ P ′2)). We can see

that (LP1 ∩ LP2) = ∅. According to independent parts property we have that,
SEM¯((P1 ∪ P2), (P ′1 ∪ P ′2)) = SEM¯(P1) ] SEM¯(P2) since SEM¯((P1 ∪
P2), (P ′1∪P ′2)) = {{openSchool, workday,−seeStars}} = {{openSchool, workday}}]
{{−seeStars}} = SEM¯(P1) ] SEM¯(P2).

Theorem 1. The update operator (¯) satisfies properties, P1, P2, P3, P4, P5,
P6, and P7.

Proof. First, it is straightforward to verify that given a p-stable consistent pro-
gram P , if M is p-stable model of P then there is not another p-stable model
M ′ of P such that M ′ ⊂ M . So, by this last fact and by Lemma 2, it is also
straightforward to verify that given an abductive logic program 〈P, A〉, where P
is p-stable consistent, then if M is a MG p-stable model of 〈P, A〉 then there is
not another MG p-stable model M ′ of 〈P, A〉 such that M ′ ⊂ M .
(P1. Initialisation): ∅ ¯ P = P by construction. Hence ∅ ¯ P ≡ P .
(P2. Strong consistency): Let Q = (P1∪P2) such that Q is p-stable consistent.
Let P be the update (P1, P2). We must prove that M is an ¯-update p-stable
model of P iff M is a p-stable model of Q.
Let us notice that programs Q and P¯ have the same clauses except for some
of them, namely in P¯ there are some clauses that have an abducible atom (a
new atom) in their body and these atoms do not occur in Q. So when we apply
iteratively Lemma 1, two things are certain:

(1) S is a p-stable model of Q, iff S is also a p-stable model of P¯, and
(2) if Q is p-stable consistent, then P¯ is p-stable consistent too.

(⇒) By hypothesis M is an ¯-update p-stable model of P, then by Definition 8,
there exists a MG p-stable model M ′ of the abductive logic program of P, 〈P¯, A〉,
such that M = M ′ ∩ LP. Then by Definition 6, there exists ∆, ∆ ⊆ A such that
〈M ′,∆〉 is a MG p-stable model of 〈P¯, A〉, where M = M ′ ∩ LP.
By hypothesis, Q is p-stable consistent then, by (2) P¯ is p-stable consistent
too. Hence applying Lemma 2, it is possible to verify that ∆ = ∅ and M ′ = M .
So 〈M, ∅〉 is a MEG p-stable model of 〈P¯, A〉. Finally by Definition 5, M is a
p-stable model of P¯. Thus by (1) we have that M is a p-stable model of Q.
(⇐) Let M be a p-stable model of Q. By (1), M is a p-stable model of P¯.
By Lemma 2, M is a MG p-stable model of the abductive logic program of P,
〈P¯, A〉. By Lemma 2, M ∩ A = ∅. Hence by Definition 8, M is an ¯-update
p-stable model of P.
(P3. Idempotence): If P does not have p-stable models, then neither does
P ¯ P . If P has p-stable models, then P ∪ P does, hence by Strong Consistency,
P ∪ P ≡ P ¯ P . Hence in each case P ¯ P ≡ P .
(P4. Weak noninterference): If each of P1 and P2 lacks of p-stable models
then the update (in any order) lacks of p-stable models. If P1 and P2 have p-
stable models, then P1 ∪ P2 does too — because they are defined over disjoint
alphabets. By Strong Consistency, P1 ∪ P2 ≡ P1 ¯ P2. Also P2 ∪ P1 ≡ P2 ¯ P1.
Hence, P1 ¯ P2 ≡ P2 ¯ P1.
(P5. Weak irrelevance of syntax): Let P , P1, and P2 be logic programs

ivan
74



under the same language L. Since P1 ≡SE P2, then for every program P , P ∪P1

is strongly equivalent to P ∪P2. Thus, (P ∪A)∪P1 and (P ∪A)∪P2 have exactly
the same p-stable models. Thus, P ¯ P1 and P ¯ P2 have exactly the same EG
p-stable models. Therefore, P¯P1 and P¯P2 have exactly the same MG p-stable
models. Hence, P ¯ P1 ≡ P ¯ P2.
(P6. Augmented update): If P2 does not have p-stable models, neither does
P1 ¯ P2. If P2 has at least one p-stable model and P1 ⊆ P2 then, (P1 ∪ P2) has
at least one p-stable model too. By strong consistency P1 ¯P2 ≡ P1 ∪P2. Hence
in each case P1 ¯ P2 ≡ P2.
(P7. Independent parts): Let P1 = (P1, P

′
1), P2 = (P2, P

′
2) such that (LP1 ∩

LP2) = ∅, and P = ((P1 ∪P2), (P ′1 ∪P ′2)). Let M1 and M2 be a ¯-update p-stable
model of P1 and a ¯-update p-stable model of P2 respectively. It is clear that
M1 and M2 are disjoint, since (LP1 ∩ LP2) = ∅. We have to prove that M is a
¯-update p-stable model of P iff M = M1 ∪M2.
(⇒) By Definition 8, if M is a ¯-update p-stable model of P, then there exists M ′,
a MG p-stable model of 〈P¯, B〉, such that M = M ′ ∩LP. Then by Definition 6,
there exists ∆, ∆ ⊂ B such that 〈M ′,∆〉 is a EG p-stable model of 〈P¯, B〉 and
it is minimal. By Definition 5, M ′ is a p-stable model of P¯ ∪∆.
Moreover, since (LP1 ∩ LP2) = ∅, we can verify the following:

(1) P¯ = P1¯ ∪ P2¯6,
(2)∆ = ∆1 ∪∆2 such that ∆1 = ∆ ∩ LP1 , ∆2 = ∆ ∩ LP2 and ∆1 ∩∆2 = ∅,
(3)M ′ = M ′

1 ∪M ′
2 such that M ′

1 is a p-stable model of P1¯ ∪∆1 and M ′
2 is a

p-stable model of P2¯ ∪∆2.
Now by Definition 5, 〈M ′

1,∆1〉 is a MEG p-stable model of 〈P1¯, B1〉 and 〈M ′
2,∆2〉

is a MGE p-stable model of 〈P2¯, B2〉 where B1 is the set of abducible atoms of
P1¯ and B2 is the set of abducible atoms of P2¯.
Finally by Definition 8, M1 = M ′

1∩LP1 and M2 = M ′
2∩LP2 are ¯-update p-stable

models of P1 and P2 respectively.
(⇐) This proof is similar to the proof of the first part above. Taking into account
that P¯ = P1¯ ∪ P2¯; and if ∆ = ∆1 ∪ ∆2 then there exists a p-stable model
M ′ = M ′

1 ∪M ′
2 of P¯ ∪∆ such that M ′

1 as a p-stable model of P1¯ ∪∆1 and M ′
2

as a p-stable model of P2¯ ∪∆2. ut

5 Conclusions

Our approach for update logic program is based on the concept of Minimal gen-
eralized p-stable models, and we also present properties that our update operator
satisfies. A comparative study of our semantics and other updates semantics will
be realized as future work.

6 This is possible if we select the appropriate abducibles from P¯ to define P1¯ and
P2¯ (see Definition 7).

ivan
75



Acknowledgement

This research has been supported by the Fondo Sectorial SEP-CONACyT,
Ciencia Básica Project (Register 101581).

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. The refined extension principle
for semantics of dynamic logic programming. Studia Logica, 79(1):7–32, 2005.

2. M. Balduccini and M. Gelfond. Logic Programs with Consistency-Restoring Rules.
In P. Doherty, J. McCarthy, and M.-A. Williams, editors, International Symposium
on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Sympo-
sium Series, Mar 2003.

3. J. L. Carballido, M. Osorio, and J. Arrazola. Equivalence for the G’3-stable models
semantics. J. Applied Logic, 8(1):82–96, 2010.

4. J. Delgrande, T. Schaub, and H. Tompits. A preference-based framework for up-
dating logic programs. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings
of the Ninth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), volume 4483 of Lecture Notes in Artificial Intelligence,
pages 71–83. Springer-Verlag, 2007.

5. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. Considerations on updates of
logic programs. In JELIA ’00: Proceedings of the European Workshop on Logics in
Artificial Intelligence, pages 2–20, London, UK, 2000. Springer-Verlag.

6. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of update sequences
based on causal rejection. Theory and Practice of Logic Programming, 2(6):711–767,
2002.

7. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In R. Kowalski and K. Bowen, editors, 5th Conference on Logic Programming, pages
1070–1080. MIT Press, 1988.

8. A. C. Kakas and P. Mancarella. Generalized stable models: a semantics for abduc-
tion. In Proceedings of ECAI-90, pages 385–391. IOS Press, 1990.

9. M. Osorio, J. Arrazola, and J. L. Carballido. Logical weak completions of para-
consistent logics. Journal of Logic and Computation, Published on line on May 9,
2008.

10. M. Osorio and J. L. Carballido. Brief study of G’3 logic. Journal of Applied Non-
Classical Logic, 18(4):79–103, 2009.

11. M. Osorio and V. Cuevas. Updates in answer set programming: An approach
based on basic structural properties. Theory and Practice of Logic Programming,
7(04):451–479, July 2007.

12. M. Osorio, J. A. Navarro, J. Arrazola, and V. Borja. Logics with common weak
completions. Journal of Logic and Computation, 16(6):867–890, 2006.

13. F. Zacarias, M. O. Galindo, J. C. A. Guadarrama, and J. Dix. Updates in Answer
Set Programming based on structural properties. In Proceedings of the 7th Interna-
tional Symposium on Logical Formalizations of Commonsense Reasoning. Dresden
University Technical Report, pages 213–219, Corfu, Greece, May 2005. TU-Dresden,
Fakultt Informatik.

14. C. Zepeda, M. Osorio, J. C. Nieves, C. Solnon, and D. Sol. Applications of pref-
erences using answer set programming. In Answer Set Programming: Advances in
Theory and Implementation (ASP 2005), pages 318–332, University of Bath, UK,
July 2005.

76




