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Abstract. The unsupervised identification of motion primitives in sensor data is
widely seen as an important foundation of high-level activity recognition. Cur-
rently there are no clustering algorithms capable of processing massive, very high-
dimensional data sets. In this paper we present an adapted projected stream clus-
tering algorithm, which is able to efficiently detect motion primitives in subspaces
of the feature space. The algorithm was tested on > 7GB of motion capturing
data from a home care scenario. We evaluated to what extent we were able to de-
tect meaningful clusters using video annotation and real time rendering for visual
analysis.
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1. Introduction

Activity Recognition with wearable sensors has become a popular field of research dur-
ing the last years due to its usefulness for applications, e.g. in the medical area, elderly
care or ambient assisted living, and because of very promising first results, at least for
simply structured motions. An important step which usually precedes the creation and
training of classifiers or models is to look at the raw sensor data to find relevant and eas-
ily recognizable features and patterns where an algorithm can be tailored to. This is also
essential for getting an understanding of the motion sequences, the sensor behaviour and
accuracy, and for the analysis and interpretation of the final classification results. Here
identifying postures or simple movements usually proves itself indispensable.

Looking further, the recognition of complex high-level activities also often assumes
that these are compound of single postures or atomic actions. Unfortunately it is not
known in advance, which ones are relevant for the disambiguation of certain activities,
and, which is just as important, feasible to detect without unappropriate effort. This
makes the manual selection difficult or even unmanageable.

If the data is getting too complex, those postures or actions are not visible to the
naked eye anymore and data mining methods are needed for detecting them. A very spe-
cial case is motion capturing, as this is an example of very high-dimensional sensor data
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(> 500 features) at a very high rate (> 100 data points / sec). Conventional clustering
algorithms are not capable of handling such a high number of dimensions as here tradi-
tional similarity measures are not meaningful anymore. As we are not just interested in
full body postures but perhaps certain arm gestures or head directions, different subsets
of features are relevant for different postures. That makes global feature selection meth-
ods like Principal Component Analysis (PCA) unusable. Here usually projected cluster-
ing – again a relatively young field of research – can be utilized, where data points are
clustered in variable subspaces of the data. Unfortunately, most algorithms are in their
very early stages and are not able to gracefully handle this very large number of dimen-
sions and can hardly ever process the massive amount of data arising while sampling
at such a high rate as they get in trouble with performance, complexity and memory.
The latter problem is addressed by stream data clustering algorithms, which only need
a single run over the data as they are designed to work on continuously incoming data
in an online manner. But to our knowledge none of these algorithms has been applied to
motion sensor data, yet. For this reason we developed a very high performance projected
stream clustering algorithm based on a modified version of HPStream [1].

This paper structures as follows: At first we will give an insight into related work
concerning the unsupervised detection of postures or patterns in motion sensor data,
as well as a short reflection of projected and stream clustering methods. Then we will
explain our algorithm in detail. After that, the datasets used in this study will be presented
and we will evaluate to what extend we were able to detect motion primitives using
video annotation and real time rendering for visual analysis. To the end we will discuss
advantages and drawbacks and give an outlook towards future developments and our next
steps.

2. Related Work

The task of finding structures in motion sensor data without user intervention has been
addressed in multiple approaches during the last years. In 2006 Huynh [2,3] suggested a
method based on multiple eigenspaces for the unsupervised discovery of motion patterns
in data from 4 acceleration sensors. He was able to detect clusters closely correlated to
five base-level activities and combine this method with a Support Vector Machine for
recognizing 8 different example activities in a semi supervised manner. He also presented
an approach for discovering a small set of long-term activities of daily living using the
concept of the Latent Dirichlet Allocation known from Topic Models [4]. His work has
a slightly different focus than ours (at least in this paper), as he is generally interested in
longer term patterns in the user’s daily routine.

Nguyen et al. [4] used Hidden Markov Models (HMM) in combination with Gaus-
sian Mixture models to find high level long term activities like sleeping, reading, office
work, or driving based on the data of 3 acceleration sensors. He was able to recognize 12
activities and to detect unusual behaviour, both without supervision.

In our own approach [5] we combined a simple clustering algorithm (k-Means) with
a Hidden Markov Model for detecting high-level care activities. We derived 562 features
from 3 motion sensors, applied the pre-trained clusterer and used the cluster affiliations
as observations for the generative model. The results showed the superiority of this un-
supervised approach over classical discriminative classifiers (even when using the same
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model). Nevertheless, the clusters were defined globally using all dimensions and were
impossible to interpret manually.

Clarkson et al. [6] used a hierarchy of HMMs to detect so called events (passing
through doors etc.) and clustering them to scenes (like visiting the supermarket). Al-
though their method works on audio and video data their modelling approaches are still
interesting in the context of sensor data.

Finding patterns in time series data is often referred to as motif detection. As motion
sensor data is a sort of multi dimensional time series data, these methods have also been
applied in the past.

Hamid et al. [7] used n-grams for representing everyday activity classes and a graph
based algorithm for finding recurrent activity patterns. They recorded over 5 months
of indoor location data in a work and home scenario. However, their results are not
intuitively understandable and difficult to interpret.

Minnen et al. [8,9] used one sensor for recording mock exercises and developed an
iterative algorithm for finding motifs in that data. After initial results, they refined their
algorithm and evaluated it on very short term actions in a 27 min data set. They later
extended this approach to find motifs which only appear in subsets of the dimensions
[10]. An approach where the elements of multi dimensional motifs may have temporal,
length, and frequency variations has been proposed by Vahdatpour et al. [11] last year.
They showed acceptable results both with synthetic and real world data.

Unsupervised learning for activity recognition has also been applied to other than
motion sensors. Wyatt et al. [12] and Wang et al. [13], both from the same research group,
use RFID object sightings for recognizing high level activities of daily living. HMMs
and Dynamic Bayesian Models (DBN) are constructed and trained in an unsupervised
fashion. They use common sense mined from the web for replacing explicit knowledge
about the activity structures. These approaches are not suitable for finding short term
patterns in motion sensor data.

All these approaches have some problems in common: Most of them are only able
to detect coarse structures, and are working globally on all dimensions at the same time.
Also most of them have been developed for low-dimensional data at a low datarate. As
the majority of the algorithms is rather complex and mostly not linear with respect to
dimensions, number of data points and number of clusters they are not applicable to our
task.

Many dimensions and many data points are not just a performance problem: This is
because the data in the high-dimensional case is very sparse, known as the curse of di-
mensionality. All data points tend to be almost equidistant from each other. In particular,
traditional distance measures are not meaningful in the high-dimensional case. A recent
technique is the projected clustering approach, which can determine clusters in a subset
of the original dimensions. Each cluster has its specific particular group of dimensions,
which reduces the sparsity problem to some extent. Even though a cluster may not be
meaningful globally, subsets of dimensions can be found on which data points can form
well-defined clusters. Generally said, projected clustering algorithms try to find the pro-
jection where the currently considered set of points clusters best. Each point is assigned
to exactly one subspace cluster or is considered as noise. As said in the introduction,
in our application different subsets of features are relevant for different postures. So the
projected approach above seems more than appropriate. A good overview on clustering
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high-dimensional data is given in Kriegel et al. [14], where they discuss many projected,
soft projected, subspace and hybrid clustering methods under various aspects.

The algorithm PROCLUS by Aggarwal et al. [15] despite beeing one of the first
representatives of its class meets the requirements of our recognition task surprisingly
well. The only problem seems to be that it needs multiple iterations over the data which
may cause performance issues. Other projected, subspace and hybrid clustering methods
described in [14] like PreDeCon (which is density based), CLIQUE and SUBCLU seem
nearly optimally suitable, but their complexity grows with the dimensionality. Another
major problem is, that these algorithms require the whole data set for random access in
the memory. For many of those algorithms free implementations are available, so we
tested them on our dataset1. We tried Open Subspace [16] in combination with Weka
[17] and the ELKI framework [18] on a double Quad-Core Intel Xeon @ 2.26 GHz with
12 GB of RAM. Unfortunately we found that most algorithms either need a computation
time of multiple days or simply abort with memory errors – or both.

The scope of stream clustering is finding structures in streaming data. Key require-
ments in this field, besides the classical criteria, are therefor linear computational com-
plexity with growing number of incoming data points, memory efficiency and a high
overall performance. Stream clustering is a very young field of research. A first survey
from 2009 [19] covers only 5 algorithms. At the time of writing the only approach ca-
pable of clustering high-dimensional data is HPStream [1] by Aggarwal et al. which is a
projected clustering algorithm. It combines the key ideas of PROCLUS with the require-
ments of clustering stream data. HPStream only needs one pass over the data, has a very
memory efficient way for representing clusters and is able to adjust itself to long term
changes in time in the data stream.

3. The Projected Stream Clustering Algorithm

The clustering method described in this section is a modified version of the HP-
Stream algorithm [1] introduced by Aggarwal et al. in 2004. HPStream stands for High-
dimensional Projected Stream clustering method and is distantly related to k-Means like
approaches. Projected clustering lies within the paradigm of subspace clustering where
each cluster has its own distinctive subset of dimensions which also may vary over time.
HPStream is the first algorithm to introduce the concept of projected clustering to data
streams and, at the time of writing, to the best of our knowledge the only stream clus-
tering algorithm able to handle very high dimensional data gracefully. Additionally it
pursues a linear update philosophy and only needs a single scan of each datapoint while
still achieving a high clustering quality.

Key advantage of HPStream is its linear scalability in terms of dimensions, number
of data points, and number of clusters. This is achieved by utilizing a very condensed
cluster representation. Instead of saving every data point, it only keeps a few statistical
attributes per cluster. These statistics are chosen in such a way, that updates can be done
very efficiently even in fast data streams, while beeing still sufficient for quickly com-
puting important measures about the cluster in each given projection. Further advantages
of the algorithm are, that it can automatically determine the number of relevant clusters
by itself and an implicitly integrated detection of outliers.

1For a detailed description see section 4
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Another very important feature for stream data clustering that we won’t use in this
context is the algorithms ability to fade out the level of importance of old data and clusters
over time and in this way to adapt to more recent trends. Therefor they introduced the
Fading Cluster Structure using a special weight function. Here, we will introduce the
cluster structure in a strongly modified way as we are working with static data, where
fading out older clusters would lead to fatal misinterpretations.

Other modifications involve the way irrelevant clusters (and as we will see outliers)
are beeing detected and removed as we had to adapt the algorithm to the activity recog-
nition domain, the normalization preprocess (as we know all measurement ranges in ad-
vance), and the way the relevant number of projected dimensions per cluster is computed.
Here, instead of picking a predefined number of dimensions with the least intra cluster
variability, we are choosing a dynamic set using an ε threshold.

Cluster Structures

The data consists of a set of multidimensional data points X1 . . . Xk. Each data point is
a record containing d dimensions denoted by Xi = (x1

i . . . x
d
i ). Now we will define the

cluster structure used in our paper while trying to stay as close as possible to the original
definition. Notice that we don’t make use of a temporal fading function as the original
paper does as explained before. The cluster structure aims at capturing a sufficient num-
ber of underlying statistics (first and second moments) so that it is possible to compute
important characteristics of the particular clusters.

Definition 1. A cluster structure for a set of d-dimensional points C = {Xi1 . . . Xin}
is defined as the (2 · d + 1) tuple FC(C) = (FC2x(C), FC1x(C),W ). The vectors
FC2x(C) and FC1x(C) each contain d entries. Each of these sets of entries will be
explained now:

1. For each dimension j, the jth entry of FC2x(C) is given by the sum of the
squares of the corresponding data values in that dimension. Thus, FC2x(C)
contains d values. The jth entry of FC2x(C) is equal to

∑n
k=1(x

j
ik

)2.
2. For each dimension j, the jth entry of FC1x(C) is given by the sum of the

corresponding data values in that dimension. Thus, FC2x(C) contains d values.
The jth entry of FC2x(C) is equal to

∑n
k=1 x

j
ik

.
3. We also maintain a single entry W containing the number of data points2. Thus,

this entry is equal to W = n.

An important property can be derived from the clustering structure described in
Definition 1, which is referred to as additivity. It is defined as follows:

Observation 1. Let C1 and C2 be two clusters with cluster structures FC(C1) and
FC(C2) respectively. Then, the cluster structure of C1∪C2 is given by FC(C1∪C2) =
FC(C1) + FC(C2).

This additivity property follows from the fact that each cluster can be expressed as a
sum of its individual components and facilitates adding new data points (= clusters with
one element) to an existing cluster.

2We chose to keep W as the notation for this number for compatibility reasons, although W does not
describe a weighting function anymore as in the original algorithm.
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As we aim at doing projected clustering, we associate an individual set of dimen-
sions with each cluster. Like the original paper, with each cluster C, we associate a d-
dimensional bit vector B(C), which corresponds to the relevant dimensions in C. Each
element in this vector has the value 1 or 0, whether the corresponding dimension in this
cluster is included or not. This vector is needed for the assignment of new data points to
the appropriate cluster. As the algorithm progresses, this vector changes, reflecting the
varying set of dimensions.

Algorithmic Details

Next we want to introduce the clustering algorithm built upon this structure with its cor-
responding procedures. The algorithm itself is an iterative process, continuously adding
incoming data points to existing cluster structures, adding new structures, and re-defining
the set of relevant features in each cluster. Again, I will try to stay as close as possible to
the original explanation.

Before this iterative process can start, a normalization step is needed to weight dif-
ferent dimensions correctly. As the algorithm is choosing the relevant dimensions of each
cluster by comparing the radii (standard deviations along each dimension) along different
dimensions, normalization is crucial, as all dimensions represent different measurements
with different ranges and variances. We know all measurement ranges in advance, so we
could modify this process to our needs. For each Xi = (x1

i . . . x
d
i ) and for every dimen-

sion d we can compute the normalized value xd′

i , as we know the absolute measurement
range of each feature.

Algorithm 1 illustrates the basic iterative clustering process which is executed once
for every data point. The parameters of the algorithm are the incoming data point X , the
current cluster structures FCS, the corresponding set of d-dimensional bitvectors BS
(keeping 1 bit for every dimension included in clusterCi), and a dimensionality threshold
constant ε and a boundary scaling factor τ which will be explained later.

Algorithm 1 Basic Clustering Algorithm

Require: Data Stream Point: X , Cluster Structures: FCS, Dimensionality Vector Sets:
BS, Dimensionality Threshold ε, Boundary Scaling Factor τ
{receive next data point X from stream}
BS ⇐ ComputeDimensions(FCS, ε,X)
for r = 1 to |FCS| do
ds(r)⇐ FindProjectedDistance(FCx(Cr), B(Cr, X))

end for
index⇐ argmini{ds(i)}
s⇐ FindLimitingRadius(FCx(Cindex), B(Cindex)) · τ
if ds(index) > s then

add new cluster structure C|FCS|+1 with a solitary data point to FCS
else

add X to FCx(Cindex)
end if
remove clusters with zero dimensions from FCS
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Algorithm 2 ComputeDimensions

Require: Cluster Structures: FCS, Dimensionality Threshold ε, Data Stream Point: X
create |FCS| (tentative) cluster structures by addingX to each of the existing clusters
compute the |FCS| ∗ d radii of each of the |FCS| (tentative) clusters along each of
the d dimensions
pick all dimensions with a radius < ε
create a bitvector B(Cr) for each cluster Cr reflecting its projected dimensions

Algorithm 3 FindProjectedDistance

Require: Cluster Structure: FCx(Cr), Bitvector: B(Cr), Data Stream Point: X
{This Procedure finds Manhattan Segmental Distance along the projected dimensions}
for all dimensions with bit value of 1 in B(Cr) do

find the distance between X and the centroid of Cr

end for
return arithmetic average distance along the included dimensions

Algorithm 4 FindLimitingRadius
Require: Cluster Structure: FCx(Cindex), Bitvector: B(Cindex)

{Find the radius r′ of the cluster only along the projected dimensions}
r2j = FC2x(Cindex)j/W − FC1x(Cindex)j

2
/W 2

R =
∑

j∈B(Cindex) r
2
j

Let d′ be the number of bits in B(Cindex) with value 1
R =

√
R/d′

return R

The clustering algorithm tries to assign each data point to the closest cluster struc-
ture at each step of the iterative process. Therefor it utilizes a projected distance mea-
sure, which only includes the relevant dimensions of each cluster into the distance com-
putation. Parallely, we have to continuously re-define the set of projected dimensions for
each cluster in order to keep the radii of the clusters over the projected dimensions as low
as possible. Because of this, the clustering process has to maintain not only the clusters
FCS, but also the set of dimensions associated with each cluster BS. Now we will go
through the pseudo-code in Alg. 1 step by step.

• The set of dimensions assiciated with each cluster is updated using the procedure
ComputeDimensions (Alg. 2) which determines the dimensions in such a way that
the spread along the chosen dimensions is as small as possible. As clusters may
only contain few or one point the computation of the cluster’s radii is unstable
or even impossible. Thus, the incoming data point X is temporally added to each
possible cluster during the determination of dimensions3. ComputeDimensions
determins the |FCS| ∗ d radii (standard deviations) along all dimensions of each
cluster in FCS. Now all dimensions with radii < ε are selected. This allows the
number of projected dimensions to vary between clusters and during the progress

3For a detailed explanation see [1]
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of the algorithm. The intuition behind this is, that clusters represent areas in the
subdimensional space with very low variability compared to the noise in other
dimensions. After choosing the dimensions for each cluster the values are stored
in the set of bitvectors BS.

• Next, the closest cluster to the incoming data pointX is determined by computing
the pairwise projected distances using the procedure FindProjectedDistance (Alg.
3) and choosing the minimum value. FindProjectedDistance calculates the Man-
hattan Segmental Distance between X and the centroid of the cluster Cr along
each dimension with bit value 1 in B(Cr). It is not necessary to normalize the
distance measurements in this point, since the entire data set has been normalized
in the preprocess.

• As we now selected the cluster Cindex which X should be assigned to, we cal-
culate its limiting radius as the natural boundary of the cluster. This is done by
the procedure FindLimitingRadius (Alg. 4). This radius can be computed using
the statistics in the cluster structure. As we are storing the first and second order
moments of all included datapoints in each cluster structure, for every dimension
j we can calculate the average square radius r2j :

r2j = FC2x(Cindex)j/W (t)− FC1x(Cindex)j
2
/W (t)2

The square root of the sum of the radii along the projected dimensions given by
B(Cindex) is the limiting radius R and is calculated as R =

∑
j∈B(Cindex) r

2
j .

This value is scaled by a boundary factor τ in order to decide the final value of
the limiting radius of the cluster. Data points lying outside this boundary are not
added to the cluster. Instead these points create new clusters of their own.

• If a new cluster is created, the total number of clusters in FCS increases. If the
new data point X is an outlier, the newly created cluster will subsequently have
few points added to it and be deleted ultimately.

• Whenever a data point is added to the statistics of the corresponding cluster, the
additivity property ensures that the updated cluster is represented by these statis-
tics.

As you may have noticed, it is necessary to perform an additional initialization step,
since it is not possible to start the iterative process with an empty set of cluster structures
FCS. In this step the original clusters are created using a certain initial number of data
points with a conventional clustering algorithm. So first, a full dimensional k-Means al-
gorithm is applied to the data points to create inital clusters. Then the procedure Com-
puteDimensions is applied in order to determine the most relevant dimensions for each
cluster. After that, we start assigning each data point to the closest centroid according to
the selected dimensions. Now a new set of k centroids is calculated and the process is
repeated until it converges to a final number of clusters. These are used as the initial set
of clusters for the projected stream clustering algorithm.

4. Dataset

Our algorithm was evaluated on motion capturing data recorded for the MARIKA
project. Aim of this project is to support nurses in the elderly care with a mobile assis-
tance system, among others by the online documentation of their care activities. This
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Figure 1. Left: The Nurse equipped with the full body motion capturing suit and RFID-readers on both hands.
Right: The motion capturing software showing the rendered equivalent of the nurse during recording. An
assistant is filming every activity on video for later manual annotation.

closed world scenario can be seen as an exercise example for detecting arbitrary activi-
ties of daily living. We equipped two professional nurses with a full body motion captur-
ing suit, which, because of its inertial sensor technology, could be operated wirelessly in
any environment and be worn under the normal clothing (see Fig. 1). We recorded three
days of their usual care tour (one nurse at a time), where they did house calls at three
different patients’ homes. They were also wearing RFID-readers on both of their wrists,
but we won’t pay attention on these in this paper. Besides the nurse, two helpers were
monitoring the recording and surveilling each activity by video for later annotation.

As sensor hardware we used an Xsens MVN2 inertial full body motion capturing
suit4. As mentioned above, this suit is unique: Because of its motion tracking method
using inertial measurement units, it does not depend on a camera infrastructure, can op-
erate wirelessly and under clothes and is able to deliver highly sophisticated sensor data
in realtime at a very high rate. It is equipped with 17 MTx 6DOF orientation trackers
containing a 3d accelerometer, 3d gyroscopes, and 3d magnetometer each. The data was
transmitted to a notebook pc carried in a backpack via 3 bluetooth channels, synchro-
nized with the RFID sightings, and logged to disc.

We were able to collect 5 full house calls with a total length of 2 hours and 1 minute
which makes 7.1 GB (!) of raw sensor data. Each dataset was recorded at a rate of 120
Hz with 793 features for each data point. These features consist of acceleration, angular
velocity, magnetic field and orientation for each of the 17 sensors; orientation, position,
velocity, acceleration, angular velocity and angular acceleration for 23 body segments;
two angles for 22 joints, and the position of the center of mass. All these values either
consist of 3 dimensional double vectors or quaternions. Low-level features are either
directly measured or computed on the sensor boards with extended kalman filters, the
derived features are calculated by the MVN biomechanical model.

Video footage and sensor data have been synchronized afterwards and manually an-
notated using ELAN5, an open source tool for video annotation developed by the Max

4http://www.xsens.com/en/general/mvn
5http://www.lat-mpi.eu/tools/elan/
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Planck Institute for Psycholinguistics in Nijmegen, the Netherlands. In ELAN it is pos-
sible to maintain multiple annotation tracks. We use one track for the manual labelling
of the high-level care activities, two tracks for the RFID object sightings at both hands
(automatically generated from our recording), and one track for the cluster memberships
computed by our projected stream clustering algorithm. All care activities were taken
from the service accounting catalogue of the health insurances. As we are only inter-
ested in the unsupervised detection of motion primitives in this paper, we will ignore the
annotations hereafter.

5. Detection of Motion Primitives

We evaluated the projected stream clustering algorithm using the whole care dataset with
full dimensionality. We only removed the absolute position data (mass point x, y, and z),
as we did not want to learn locations, which would impair the robustness of the trained
clusterer.

As described in the section above, the data set consists of 5 single large recordings.
The clusterer was trained and evaluated via leave one out: We trained the algorithm on
4 of the full data sets and applied it on the remaining one. This procedure was repeated
4 times with rotating data sets. The leave one out strategy ensures realistic clustering
results regarding the accuracy and robustness against unseen data. When the clusterer
was applied, it assigned every single data point to the closest cluster (with respect to the
clusters’ dimensionalities). After preliminary experiments, the algorithm was parameter-
ized as follows: We used n = 2000 data points for the initialization process as recom-
mended by the original paper. The number of seed clusters for the init procedure was
set to k = 35 following our own findings from [5]. We defined a minimal cluster size
of 120 datapoints =̂ 1s. That means each cluster must overall represent at least 1s (not
obligatory connected) of the training data set. The parameters ε = 0.001 and τ = 3 were
determined experimentally.

For all five test runs, Table 1 shows the number of data points, the number of de-
tected clusters, the average number of data points per cluster during training, the aver-
age number of dimensions per cluster, and the average duration of the assignments per
cluster. The last column shows the corresponding means over all test runs.

data set 1 2 3 4 5 avg
data points 148326 201499 115532 122386 286704
clusters 54 60 36 100 99 69.8
avg data points per cluster 274 250 333 251 252 272
avg dimension per cluster 540 508 501 521 518 517.6
avg duration per cluster 2.34s 1.75s 3.17s 1.74s 1.78s 2.16s

Table 1. Number of data points, the number of detected clusters, the average number of data points per cluster
during training, the average number of dimensions per cluster, and the average duration of the assignments per
cluster for all five test runs. The last column shows the corresponding means.

For the detailed evaluation of the clustering process and results we picked a small
example data set taken from the original recordings (2 minutes from set 1). Again, we
trained the clusterer on the data set, saved the cluster affiliations, and exported cluster
statistics.
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To get a feeling for the raw data, a small random bit from the example data set is
shown in Fig. 2. The vertical axis represents 100 dimensions, the horizontal axis 240
data points, which corrensponds to 2s. All values have been normalized and visualized
as a greyscale bitmap. The data is vertically grouped by segments, sensors and joints. In
the upper right corner we can see static areas with nearly constant values, some patterns
look random, others cyclic. There is some noticeable action in the upper left corner of
the image. The data set was recorded while the nurse was putting on her rubber gloves.
The Original image for the example data set has a size of 793× 14400 pixels and would
appear as grey rectangle in this print. As one can imagine, its is nearly impossible to
interpret even such a short timeframe of the data, the visual analysis is very inconclusive.

Figure 2. Excerpt from the raw data visualized as a greyscale bitmap. This figure shows 2 seconds of the
example data set (horizontal) along 100 dimensions (vertical).

The clustering algorithm was trained and applied the same way as above, using the
same parameters, except the training and test sets were the same. This is reasonable in
this case as we are not interested in robustness but in the algorithm’s behaviour and
results in detail. The clusterer found 21 different clusters representing motion primitives.
In average they were trained using 203.8 data points, contain 539 dimensions, and the
cluster assignments have an average duration of 1.3s. The label assignments over time
are plotted in Fig. 3. The vertical axis shows the cluster label (the labels of the clusters are
not ordered, they only represent when the specific cluster was created during training).
A data point is always assigned to the closest cluster (with respect to the dimensions the
cluster contains). There are very few different, very constant clusters on the left, in the
middle there are rapidly changing clusters followed by a constant increase. Then again a
rapid fluctuation appears, followed by continuously evolving clusters. It is not possible
to get any further insights from this view except making higly speculative hypotheses.
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Figure 3. Cluster label assignments of the example data set over time.

Detailed statistics for each cluster are shown in Fig. 4. The plot shows the number of
data points used during training, the dimensionality, and the average duration of cluster
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assingments. Especially clusters 3 and 4 seem to be very popular, while other clusters
partially have very short assignments. If we compare this with Fig. 3, we see that these
big accumulations correspond to the stable clusters in the beginning, the others occur
in the middle and the end of the plot. Some assignments < 1s are very short but often
repeated. These seem to represent seldom but significant events.

The dimensionality always lies above> 300. This implied that most clusters are rep-
resenting multiple (not mandantory connected) body segments doing a special motion.
The first 3 clusters are full dimensional (this originates from the k-means initialization
step starting with all dimensions) representing crisp full body postures. When configur-
ing the algorithm, the overall dimensionality can be reduced by decreasing parameter ε.
Again, further interpretation is difficult and mostly speculative.
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Figure 4. Cluster properties of the example data set. From top to down: Cluster size in number of overall
assigned data points, number of dimensions and average duration of cluster assignments.

As the cluster names are not meaningful, the plots require much imagination and
guessing. It is helpful to bring clusters in relation to the real story line. Hence we under-
layed the clusters with our video footage and synchronized the time offsets. Therefore
we exported the cluster label assignments over time to the ELAN annotation file format
as a track of annotation using the cluster labels as single annotations. A screenshot is
shown in Fig. 5. The video can be played in real time, slow motion or frame by frame and
the clusters are following on a timeline, facilitating the navigation. The current position
is indicated by a cursor. Cluster labels can also be viewed as subtitles. These features
extremely simplify the interpretation of the motion primitives.

Looking back at Fig. 3 the plot becomes much clearer. In the beginning the nurse is
standing nearly still listening to instructions (very few, very constant clusters on the left),
in the middle she takes the gloves from a box (full body motion at around 60s, rapid
changing of clusters) and puts the first one on her right hand (takes longer than usual,
only fore arm/hand/head movement, clusters evolving continuously). Then she is taking
the second glove (coarser motion/rapid changing of clusters again) and puts it on her left
hand until the end and beyond (clusters evolving continuously).

Although navigating the video along cluster labels facilitates the interpretation, it
does not show the cluster structure itself. A 793 dimensional cluster centroid is not in-
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Figure 5. Screenshots of the ELAN annotation software showing the example data set. Cluster labels are
synchronized with video footage .

terpretable by hand. Generally speaking, one single centroid represents averaged motion
capturing data which could still be used for visualization. We implemented a MVN file
format exporter for the cluster data. For each data point the cluster membership is calcu-
lated as described above and the corresponding centroid is written into the motion cap-
turing file instead of the original values. That file can be opened in the motion capturing
software and viewed like real recorded data (Fig. 6).

Figure 6. Screenshots of the motion capturing software showing the example data set at the same time stamp.
Left: the originally recorded data. Right: data generated from the clusterer.

The left picture shows the originally recorded example data set at the same time
stamp shown in ELAN (Fig. 5). The right side shows the same datapoint in the motion
capturing file generated by the clusterer. Now it is possible to take a detailed look at
single measurements: The plots in the screenshots show the acceleration of the fore arm
segments. Notice the difference between the continuous values on the left and the right
side, showing the same descrete segmentation from Fig. 3). Cluster centroids are visible
as static postures in the MVN software. There is a slight difference between left and right
picture although they show same frame. This is because the data in right image has been
averaged over 169 data points during training.
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When this fake recording is played in realtime, it looks like a coarse stop motion
animation. Thus, the first impression is, that the clusterer detects static postures, but
that appears to be wrong as most values do not represent static position, orientation,
and angles but mostly acceleration, velocity, angular acceleration and angular velocity,
which can not be visualized by the software. A surprising result is, that, already without
temporal smoothing, the cluster affiliations are considerably stable over time and do not
tend to flicker.

For this paper we did not evaluate the algorithm on artificial data using clustering
quality measures. For a detailed discussion of the general behaviour and inherent limita-
tions of the algorithm we refer to the original publication [1].

6. Conclusion

We modified an algorithm for clustering high-dimensional streams and adapted it for the
unsupervised detection of motion primitives in very massive motion sensor data. The ap-
proach is following both, projected and stream clustering paradigms. As we found in our
visual analysis, the algorithm seems to be able to find relevant clusters and dimensions
autonomously. It is able to detect outliers and (if needed) able to operate online, so that
old clusters can be adjusted to changes over time or get dropped, and novelties can be
detected as new clusters. All these adaptions can be made with minimal changes to the
algorithm. We evaluated the approach on real world motion capturing data taken from a
high-level activity recognition experimental setting. It was able to identify stable motion
primitives (postures and base level motion) without any user interaction. These can be
used for the visual analysis of motion sensor data (in our example with video footage
and 3d body animation). Furthermore, this method represents an intuitive way for dimen-
sionality reduction, feature selection, and the selection of feasible sensor positions. For
this task relevant dimensions or sensors can be simply selected according to the number
of occurrences in the clusters. The unsupervised detection of motion primitives is widely
seen as a major prerequisite for high level activity recognition. Probabilistic state-space
models for instance, can adopt cluster affiliations as observation probabilities (we already
demonstrated this in earlier work). Such a hybrid approach forms an effective generative
method for detecting abstract activities. Our next steps would be to allow more complex
shaped cluster representation, and not only hyperspheres as in the original algorithm. As
seen in Fig. 2 besides static postures and short term motion primitives, the data contains
temporal patterns of varying length, often referred to as motifs, which we also would like
to detect with our approach. Simultaneously we are planning to combine the projected
stream clustering algorithms with our models for high-level activity recognition.
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