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Abstract. Considering the current transformation of Environmental Information 
Systems to environmental services accessible over the web, the provision of 
adaptable environmental services is becoming an emerging challenge. Within 
this context, solutions that support the adaptation and distributed execution of 
service chains seem promising. In this paper we present a platform catering for 
the provision of data-driven adaptable environmental service chains using 
contextual information from external sources. Two core features of this 
platform, presented in this paper, are the collection of contextual information 
and the distributed execution of service chains. The provision of this platform is 
one of the goals of the EU-funded project Envision 
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1 Introduction 

The provision of adaptable service oriented processes (called service chains hereafter) 
is a vision pursued by several researcher communities since the onset of the Service 
Oriented Computing (SOC) paradigm. Despite the existing controversy on the 
definition of service adaptation [1][2], it can be conceived as the ability of a service 
chain to “adapt to changes of the process environment and/or to the modification of 
end-user needs” [3]. Adaptation is a higher-level goal required in numerous 
application domains, e.g. crisis management, e-Commerce, etc. In this paper, we 
examine adaptation from the point of view of environmental applications and 
systems. 

Environmental Information Systems (EIS) are currently shifting towards the SOC 
paradigm and transforming into environmental services, e.g. spatial data services. 
Several initiatives and directives are pushing this transformation, e.g. INSPIRE 
(DIRECTIVE 2007/2/EC), GMES (Global Monitoring for Environment and Security) 
or SEIS (Shared Environmental Information System). In this framework, the need for 



2 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael 
Pantazoglou 

adaptable environmental services is being pushed forward by the continuous 
emergence of more and more environmental Service-Oriented systems.  

Environmental systems normally rely upon the use of several information elements 
that correspond to the parameters of the associated environmental models. The 
required information elements may stem from numerous information sources 
available in the web or privately managed networks, e.g. weather forecasts provided 
by open sites or privately managed sensor data and historical information data 
sources. Additional sources are also expected when considering the transformation of 
the web to the “Internet of Things” vision [4]. Therefore, the collection of information 
related to a system should be performed in an open manner, i.e. a manner where the 
set of sources is not rigidly specified and controlled. Moreover, environmental 
systems consist of tasks that necessitate either the use of large volumes of 
computational resources or the manipulation and exchange of large sets of 
information elements. Distributed execution (and parallelization whenever feasible) 
has previously been identified as an appropriate means to accommodate this need. 
Service orientation supports the distribution of comprising tasks, but the use of a 
centralized model for managing the execution of service compositions is a bottleneck 
for the exchange of large volumes of information. Therefore, the control of 
environmental service chains should be performed in a decentralized manner, i.e. in a 
manner where several nodes, rather than a single server coordinate the execution of a 
service composition. 

Existing approaches towards the provision of adaptable service processes are either 
focusing on the adaptation and centralized execution of service chains, which consist 
of single types of services, i.e. web services, or on the use of pre-specified and well 
controlled sets of information sources. The provided mechanisms mainly facilitate the 
adaptation of service chains through process reconfiguration or via the use of 
additional services. Most of them are able to support neither the integration and 
adaptation of service chains which comprise distinct types of service and information 
sources, nor their distributed execution. 

All these needs, i.e. large volume of exchanged information, decentralized control 
of service compositions, integration of distinct types of service and information 
sources, call for novel approaches that are able to facilitate the provision of adaptable 
service chains. In this paper we outline an approach supporting the adaptation and 
distributed execution of environmental service chains based on information collected 
from several sources. This approach is part of the Envision project [6], which 
provides an environmental services infrastructure with ontologies that aims to support 
non ICT-skilled users in the process of semantic discovery and adaptive chaining and 
execution of environmental services. In the following, we briefly present the approach 
ensued in Envision and then we elaborate on the mechanisms used for the collection 
of information from several sources, and the distributed execution of environmental 
service chains. We conclude this paper with a comparison of our approach and 
mechanisms against similar approaches and a summary of our work and future work 
plans.  
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2 Data-Driven Service Chain Adaptation 

The prime assumption of our work is based on the observation that a service chain, 
comprising heterogeneous services, should be able to utilize the information available 
within its environment and adapt its execution accordingly. To facilitate the provision 
of such adaptable processes we propose an approach that leverages information 
contained within a specific ‘space’ in order to adapt a service process using 
appropriate adaptation algorithms. Information, in the context of this paper, refers to 
structured data that have associated meta-information elements; the latter attribute 
meaning to collected data as well as temporal properties, e.g. validity time, which is 
dictated by the information providers. A space is considered to be the process 
environment, which is open to other processes and systems, e.g. agent based systems 
and sensor networks, for information exchange.  

Fig. 1 graphically illustrates the proposed platform with the comprising 
components which are: 

• A Semantic Context Space Engine (SCS Engine) responsible for the collection 
and handling of contextual information.  

• A Service Orchestration Engine (SO Engine) responsible for the distributed 
execution of service processes. 

The above two components constitute the Execution Infrastructure and are 
described in the following section.  

The third important component of the proposed platform is: 

• A Process Optimizer (PO) responsible for the adaptation of service processes 
based on the collected information. The Process Optimizer component implements 
an AI planner that facilitates the discovery of process plans, which control the 
execution and adaptation of service processes. Additional details on the theoretical 
basis of the process adaptation mechanism are provided in [7]. 

Both the approach and the illustrated mechanism (see Fig. 1) are rather generic and 
applicable to several application domains. In the case of EIS additional requirements 
related to information collection and exchange need to be addressed. Specifically, 
further to semantic properties, information manipulated in an EIS is inherently 
associated to spatial and temporal characteristics. Another important aspect is that of 
the volume of the manipulated information. EISs usually comprise activities that 
handle information, which may range from simple text messages measurable into few 
bytes to vector or raster images measurable into several gigabytes.  

In this context, the presented approach has two main advantages. The data-driven 
adaptation aims to reduce the number of tasks, hence also the number of message 
exchanges, performed in a service chain, provided that the information produced by 
these tasks is available at execution. Similarly, the distributed execution of service 
chains can alleviate the delays caused by the transfer of large volumes of information 
from their original place to the execution engine, and can reduce the processing time 
of heavy tasks by using untapped resources residing at under-utilized nodes. 
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Fig. 1. High level architecture 

In the following we present additional details on the two prime components 
catering for the collection of information elements and the distributed execution of 
service chains. 

3 Execution Infrastructure  

As we have stated before, the SCS Engine and the SO Engine constitute the execution 
infrastructure of our approach and are responsible for information collection and 
distributed execution respectively. 

Issues related to providing an open platform for the collection of information from 
several sources and accommodating spatial and temporal characteristics are highly 
important for the accurate selection of information relevant to a specific 
environmental service chain. Along the same lines, supporting the distributed 
execution of service chains is important for overcoming potential bottleneck problems 
emerging from the exchange of large volumes of information and for enhancing the 
throughput of the execution infrastructure. Therefore, by addressing these challenges 
we are facilitating the performance and precision characteristics of the provided 
mechanism.  

The prime design decisions used for addressing these requirements include the use 
of the Tuplespace paradigm[8] [9] for building the SCS Engine and the use of a Peer-
to-Peer (P2P) architecture for the SO Engine. In the following we provide additional 
details on the properties of these two components.  

3.1 Semantic Context Space (SCS) Engine 

The main goal of the SCS Engine is the provision of an open platform for data 
acquisition, supporting the collection and sharing of information elements; the latter 
refer to semantically annotated structured data. From a functional point of view, the 
SCS Engine leverages clients to write, retrieve and to logically group information. 
The JavaSpace service of the Jini Framework [10] is serving as the underlying 
implementation basis. Extensions to JavaSpace are needed to satisfy requirements 
related to annotation with meta-information, as well as for supporting the logical 
grouping of information into “information scopes” of similar elements and for 
specifying affiliations among related information scopes. 
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Fig. 2. Core Elements of the Information Model of the SCS Engine 

Regarding the external sources these may range and can be data providing services, 
databases, and/or user’s input. For the semantic description of the inserted data we use 
WSML-based annotations [11]. GML[12] primitives such as spatial and temporal 
properties are used for inserting spatial meta-information to the collected information. 
Fig. 2 graphically illustrates the form of a typical information entity stored in the SCS 
Engine. The main attributes are: the unique identifier of each information element; a 
class named Lease which adds temporal properties, as it represents a fixed period of 
time in which the information element is considered to be valid; and a class called 
MetaInformation that is responsible for keeping all the semantic information related 
to the information element. The MetaInformation is annotated with semantic 
attributes, e.g. WSML-based attributes, and comprises Features. These Features are 
irrelevant to the feature elements of GML, and provide a generic container for holding 
implementation related properties.  

Fig. 3. SCS Engine architecture 

Fig. 3 depicts the plug-in based architecture of SCS Engine. The comprising 
components include: 

The Data Manager consists of the Scope Manager, the Meta-Info Based Index 
Tree, and the Type-based Index Tree. This component is responsible for the storing, 

+id
Information Element

MetaInformation
Lease

Feature

+Specifier
WSML MetaInformation
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maintaining, and indexing of the provided information. As it can be seen in Fig. 3 a 
spatiotemporal database is used to manipulate spatial and/or temporal extensions. 

The Query Processor is responsible for the discovery of information within a 
space. It does so by relying on a WSML-based search engine and an appropriate 
WSML-based matchmaker.  

The Meta-Information based Interface implements all interaction points of the 
SCS Engine with its environment. The accommodated API is accessible through a 
Java or a Web based interface and provides for executing two types of operations, i.e. 
content related and scope management operations.  

3.2 Service Orchestration (SO) Engine  

The purpose of the SO Engine is to adapt (if needed) and to execute service chains. 
To do so, it accepts as input extended BPEL process specifications provided by the 
PO. These specifications incorporate possible adaptation steps, which define how the 
engine can adapt the execution of a service chain based on information available at 
the SCS Engine. Internally, the SO Engine consists of: a) extensions to the ODE 
(www.apache.org) runtime engine and b) a P2P overlay, with peers responsible for 
the BPEL activities execution. The ODE engine’s compiler is used in order to parse 
the BPEL process specification and to extract an execution plan, consisting of tasks 
that correspond to BPEL activities. These tasks are assigned into fine-grained agents, 
which are responsible for the particular BPEL activities. Our implementation uses 
JXTA (www.jxta.org) P2P technologies as the implementation basis. Each node of 
the p2p infrastructure corresponds to an agent for the execution of BPEL activities.  

The P2P overlay of the SO Engine is organized into peer groups where each group 
is responsible for a BPEL activity. The group members must have efficient 
computation and network capacity in order to execute the assigned activities, but there 
is no need to have high uptime. In our implementation, every resource is described 
with an appropriate JXTA advertisement and the peers communicate by exchanging 
messages using JXTA services. Every group has a group organizer that handles the 
load balancing, network congestion, and peer availability problems by selecting the 
peer member that will execute a particular BPEL activity. A group organizer must 
have certain qualities such as high availability and uptime, efficient network capacity 
and computational resources. If a group member is not responding or if it declares 
lack of ability to handle a request, the group organizer starts a re-deployment phase 
and selects another member of the group to handle that request. In case of a group 
organizer fault, another node is picked up to become the next group organizer, using a 
leader selection algorithm [12]. 

A typical execution example of the specified orchestration engine is presented 
next. 

3.2.1 Execution Case Study 

Our case study implements an oil spill scenario that is concerned about the impact of 
oil spills on cod populations. It consists of two models [14]: a) the Predict Oil Drift 
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model, which models the oil distribution in a three-dimensional water body, to assess 
when the oil reaches the coastline and protected areas; and, b) the Predict Cod Effects 
model, which estimates the toxicity on cod populations. The Predict Oil Drift model 
uses input from several services, such as a weathering model to assess the impact of 
current weather and sea conditions on the oil’s chemical composition, and 
accordingly its behavior in seawater. Additional information related to the coastline 
model and the sea level, are provided by corresponding services. The results of the oil 
drift prediction serve as input to modeling the uptake of oil components by cod eggs 
and larvae. Fig. 4 depicts the BPEL process for this scenario and available services 
(Weather and Sea Observations, Coastline, Bathymetry, etc); as it can be seen, the 
process consists of a receive activity, a reply activity, and a sequence activity with 
one assign and two invoke sub-activities.  

Fig. 4. BPEL process 

The execution of this process is illustrated in Fig. 5. As we see in this figure, the 
execution plan is sent to peer R1 that is capable of handling the receive activity. R1 
handles the incoming message and writes the output to the variable OilSpillModel via 
its resource handler using an advertisement. Afterwards, it propagates the execution 
plan with the remaining operations to node S, which is responsible for the sequence 
activity. Node S creates a number of subtasks. The first subtask is the invocation of 
PredictOilDrift activity. For this reason, node S propagates the execution plan to the 
node I1, which invokes the above service, writes the service output to variable out1, 
and propagates the execution plan further to node A1. Node A1 finds the 
advertisement for the variable out1, reads the value of variable out1, and assigns its 
value to variable OilDriftPrediction by publishing an updated advertisement. A 
similar process continues until the execution plan returns back to node S. At the final 
step, the execution plan is propagated one more time from node S to node R2, which 
is responsible for the reply activity. Node R2, using its resource handler, reads out2 
variable, constructs a reply message, and returns the result to the ODE runtime. 
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Fig. 5. Execution example 

4 Related Work 

The research fields that are inherently associated to the work presented in this paper 
are those related to service process orchestration and semantic-based tuplespace 
computing.  

Process execution is normally supported via the deployment of a process 
specification on a single centralized orchestration engine, while scalability is achieved 
by replicating the engine and using load balancing algorithms. This approach is 
currently followed by most engines like Apache ODE (www.apache.org), JBOSS 
jBPM (www.jboss.org), IBM WebSphere (www.ibm.com/software/ websphere) and 
Microsoft BizTalk server (www.microsoft.com/biztalk). In this paper we present a 
different approach where individual activities within a process are distributed among 
the available computing resources, thus allowing the activities to be placed near the 
data they operate. An approach similar to ours is the one in NINOS [15]. The 
differences between our approach and the latter are as follows: a) NINOS requires the 
use of additional brokers to be deployed to handle the publish subscribe operations 
while we use the mechanism provided by JXTA, b) our orchestration engine is able to 
adapt executing processes, while NINOS doesn’t and c) our engine follows a more 
fine-grained approach for assigning resources, i.e. tasks and shared variables, to 
agents. To the best of our knowledge there exists no other similar approach catering 
for the execution and adaptation of service processes in such a distributed manner. 

With regards to contemporary semantically enhanced Tuplespaces, most of them 
(e.g. sTuples, Conceptual Spaces, and Triple Space Computing [16]) can be 
considered as knowledge bases that utilize RDF for the representation of semantic 
information. Contrary to those, the SCS Engine provides an extendable Meta-
Information model that can support various meta-information schemes for the 
annotation of Information Entities. Further to that, the SCS Engine accommodates a 

http://www.apache.org/�
http://www.jboss.org/�
http://www.ibm.com/software/%20websphere�
http://www.microsoft.com/biztalk�
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mechanism for the logical grouping of information, i.e. scopes, that differs from the 
scoping mechanism specified by Merrick [17] or the one used by the Semantic Web 
Spaces [18], in the use of a flexible affiliation mechanism that can support the 
expression of various types of relationships among scopes. 

5 Conclusions  

The provision of adaptable environmental service chains is emerging as an important 
challenge in the field of EIS. This field poses significant additional concerns to the 
respective approaches applied in the SOC domain (e.g. to adaptable service 
processes). Two aspects of significant importance are the collection of information 
that has semantic, spatial and temporal annotations, from several external sources, and 
the distributed execution of environmental service chains, which comprise the 
exchange of large volumes of information.  

These two aspects have been taken into consideration for the design of the service 
chain execution infrastructure presented in this paper. Despite the constraints of our 
approach in terms of semantic annotations needed for the description of information 
elements and the required capabilities of the peers of the orchestration engine’s p2p 
overlay, we can claim that it can satisfy the requirements imposed by the EIS domain, 
i.e. collection of information that is semantically, spatially and temporally annotated 
from several sources and the exchange of large volumes of information. Moreover, 
the provided mechanisms have been designed in an open and extendable manner so as 
to support their extension with additional features. For example, the SCS Engine can 
be enhanced with a higher level logic-based reasoner catering for the extraction of 
knowledge out of collected information. 

Additional issues that have been also considered include security and deployment 
concerns. With respect to security, issues related to accessing of available information 
and functionality this can be handled through the assignment of appropriate roles and 
credentials. Additional issues such as the collection of erroneous information from 
malevolent sources should be further investigated. Similarly, regarding the 
deployment of the whole infrastructure, all components have been designed in a 
stand-alone manner catering for their distribution over distinct network nodes. Their 
interactions are supported through the use of appropriate web based protocols and 
standards, e.g. web services and http based connections, so as to avoid network 
hindrances, such as firewalls and NATs. 

We need to state here again that the implementation of the presented approach and 
of the comprising components is still not completed. Therefore, our future work plans 
include the finalization of the component implementations and the introduction of 
additional features and properties to them, e.g. the use of other languages and 
mechanisms for the description of semantic, temporal and spatial annotations. Last 
but not least, one of our future objectives is to provide measurable evaluations for the 
infrastructure as a whole as well as for each of the comprising components. 
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