
Adaptable Environmental Service Chains: The
Challenges of Distributed Execution and Information

Collection

George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas,
Michael Pantazoglou

Dept. of Informatics and Telecommunications, National and Kapodistrian University of Athens,
Greece

{gathanas, atsalga, pigikouki, jpogkas, michaelp}@di.uoa.gr

Abstract. Considering the current transformation of Environmental Information
Systems to environmental services accessible over the web, the provision of
adaptable environmental services is becoming an emerging challenge. Within
this context, solutions that support the adaptation and distributed execution of
service chains seem promising. In this paper we present a platform catering for
the provision of data-driven adaptable environmental service chains using
contextual information from external sources. Two core features of this
platform, presented in this paper, are the collection of contextual information
and the distributed execution of service chains. The provision of this platform is
one of the goals of the EU-funded project Envision

Keywords: Environmental Service Chains, Data-Driven Process Adaptation,
Distributed Process Execution

1 Introduction

The provision of adaptable service oriented processes (called service chains hereafter)
is a vision pursued by several researcher communities since the onset of the Service
Oriented Computing (SOC) paradigm. Despite the existing controversy on the
definition of service adaptation [1][2], it can be conceived as the ability of a service
chain to “adapt to changes of the process environment and/or to the modification of
end-user needs” [3]. Adaptation is a higher-level goal required in numerous
application domains, e.g. crisis management, e-Commerce, etc. In this paper, we
examine adaptation from the point of view of environmental applications and
systems.

Environmental Information Systems (EIS) are currently shifting towards the SOC
paradigm and transforming into environmental services, e.g. spatial data services.
Several initiatives and directives are pushing this transformation, e.g. INSPIRE
(DIRECTIVE 2007/2/EC), GMES (Global Monitoring for Environment and Security)
or SEIS (Shared Environmental Information System). In this framework, the need for

2 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael
Pantazoglou

adaptable environmental services is being pushed forward by the continuous
emergence of more and more environmental Service-Oriented systems.

Environmental systems normally rely upon the use of several information elements
that correspond to the parameters of the associated environmental models. The
required information elements may stem from numerous information sources
available in the web or privately managed networks, e.g. weather forecasts provided
by open sites or privately managed sensor data and historical information data
sources. Additional sources are also expected when considering the transformation of
the web to the “Internet of Things” vision [4]. Therefore, the collection of information
related to a system should be performed in an open manner, i.e. a manner where the
set of sources is not rigidly specified and controlled. Moreover, environmental
systems consist of tasks that necessitate either the use of large volumes of
computational resources or the manipulation and exchange of large sets of
information elements. Distributed execution (and parallelization whenever feasible)
has previously been identified as an appropriate means to accommodate this need.
Service orientation supports the distribution of comprising tasks, but the use of a
centralized model for managing the execution of service compositions is a bottleneck
for the exchange of large volumes of information. Therefore, the control of
environmental service chains should be performed in a decentralized manner, i.e. in a
manner where several nodes, rather than a single server coordinate the execution of a
service composition.

Existing approaches towards the provision of adaptable service processes are either
focusing on the adaptation and centralized execution of service chains, which consist
of single types of services, i.e. web services, or on the use of pre-specified and well
controlled sets of information sources. The provided mechanisms mainly facilitate the
adaptation of service chains through process reconfiguration or via the use of
additional services. Most of them are able to support neither the integration and
adaptation of service chains which comprise distinct types of service and information
sources, nor their distributed execution.

All these needs, i.e. large volume of exchanged information, decentralized control
of service compositions, integration of distinct types of service and information
sources, call for novel approaches that are able to facilitate the provision of adaptable
service chains. In this paper we outline an approach supporting the adaptation and
distributed execution of environmental service chains based on information collected
from several sources. This approach is part of the Envision project [6], which
provides an environmental services infrastructure with ontologies that aims to support
non ICT-skilled users in the process of semantic discovery and adaptive chaining and
execution of environmental services. In the following, we briefly present the approach
ensued in Envision and then we elaborate on the mechanisms used for the collection
of information from several sources, and the distributed execution of environmental
service chains. We conclude this paper with a comparison of our approach and
mechanisms against similar approaches and a summary of our work and future work
plans.

Adaptable Environmental Service Chains: The Challenges of Distributed Execution and
Information Collection 3

2 Data-Driven Service Chain Adaptation

The prime assumption of our work is based on the observation that a service chain,
comprising heterogeneous services, should be able to utilize the information available
within its environment and adapt its execution accordingly. To facilitate the provision
of such adaptable processes we propose an approach that leverages information
contained within a specific ‘space’ in order to adapt a service process using
appropriate adaptation algorithms. Information, in the context of this paper, refers to
structured data that have associated meta-information elements; the latter attribute
meaning to collected data as well as temporal properties, e.g. validity time, which is
dictated by the information providers. A space is considered to be the process
environment, which is open to other processes and systems, e.g. agent based systems
and sensor networks, for information exchange.

Fig. 1 graphically illustrates the proposed platform with the comprising
components which are:

• A Semantic Context Space Engine (SCS Engine) responsible for the collection
and handling of contextual information.

• A Service Orchestration Engine (SO Engine) responsible for the distributed
execution of service processes.

The above two components constitute the Execution Infrastructure and are
described in the following section.

The third important component of the proposed platform is:

• A Process Optimizer (PO) responsible for the adaptation of service processes
based on the collected information. The Process Optimizer component implements
an AI planner that facilitates the discovery of process plans, which control the
execution and adaptation of service processes. Additional details on the theoretical
basis of the process adaptation mechanism are provided in [7].

Both the approach and the illustrated mechanism (see Fig. 1) are rather generic and
applicable to several application domains. In the case of EIS additional requirements
related to information collection and exchange need to be addressed. Specifically,
further to semantic properties, information manipulated in an EIS is inherently
associated to spatial and temporal characteristics. Another important aspect is that of
the volume of the manipulated information. EISs usually comprise activities that
handle information, which may range from simple text messages measurable into few
bytes to vector or raster images measurable into several gigabytes.

In this context, the presented approach has two main advantages. The data-driven
adaptation aims to reduce the number of tasks, hence also the number of message
exchanges, performed in a service chain, provided that the information produced by
these tasks is available at execution. Similarly, the distributed execution of service
chains can alleviate the delays caused by the transfer of large volumes of information
from their original place to the execution engine, and can reduce the processing time
of heavy tasks by using untapped resources residing at under-utilized nodes.

4 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael
Pantazoglou

Fig. 1. High level architecture

In the following we present additional details on the two prime components
catering for the collection of information elements and the distributed execution of
service chains.

3 Execution Infrastructure

As we have stated before, the SCS Engine and the SO Engine constitute the execution
infrastructure of our approach and are responsible for information collection and
distributed execution respectively.

Issues related to providing an open platform for the collection of information from
several sources and accommodating spatial and temporal characteristics are highly
important for the accurate selection of information relevant to a specific
environmental service chain. Along the same lines, supporting the distributed
execution of service chains is important for overcoming potential bottleneck problems
emerging from the exchange of large volumes of information and for enhancing the
throughput of the execution infrastructure. Therefore, by addressing these challenges
we are facilitating the performance and precision characteristics of the provided
mechanism.

The prime design decisions used for addressing these requirements include the use
of the Tuplespace paradigm[8] [9] for building the SCS Engine and the use of a Peer-
to-Peer (P2P) architecture for the SO Engine. In the following we provide additional
details on the properties of these two components.

3.1 Semantic Context Space (SCS) Engine

The main goal of the SCS Engine is the provision of an open platform for data
acquisition, supporting the collection and sharing of information elements; the latter
refer to semantically annotated structured data. From a functional point of view, the
SCS Engine leverages clients to write, retrieve and to logically group information.
The JavaSpace service of the Jini Framework [10] is serving as the underlying
implementation basis. Extensions to JavaSpace are needed to satisfy requirements
related to annotation with meta-information, as well as for supporting the logical
grouping of information into “information scopes” of similar elements and for
specifying affiliations among related information scopes.

Adaptable Environmental Service Chains: The Challenges of Distributed Execution and
Information Collection 5

Fig. 2. Core Elements of the Information Model of the SCS Engine

Regarding the external sources these may range and can be data providing services,
databases, and/or user’s input. For the semantic description of the inserted data we use
WSML-based annotations [11]. GML[12] primitives such as spatial and temporal
properties are used for inserting spatial meta-information to the collected information.
Fig. 2 graphically illustrates the form of a typical information entity stored in the SCS
Engine. The main attributes are: the unique identifier of each information element; a
class named Lease which adds temporal properties, as it represents a fixed period of
time in which the information element is considered to be valid; and a class called
MetaInformation that is responsible for keeping all the semantic information related
to the information element. The MetaInformation is annotated with semantic
attributes, e.g. WSML-based attributes, and comprises Features. These Features are
irrelevant to the feature elements of GML, and provide a generic container for holding
implementation related properties.

Fig. 3. SCS Engine architecture

Fig. 3 depicts the plug-in based architecture of SCS Engine. The comprising
components include:

The Data Manager consists of the Scope Manager, the Meta-Info Based Index
Tree, and the Type-based Index Tree. This component is responsible for the storing,

+id
Information Element

MetaInformation
Lease

Feature

+Specifier
WSML MetaInformation

6 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael
Pantazoglou

maintaining, and indexing of the provided information. As it can be seen in Fig. 3 a
spatiotemporal database is used to manipulate spatial and/or temporal extensions.

The Query Processor is responsible for the discovery of information within a
space. It does so by relying on a WSML-based search engine and an appropriate
WSML-based matchmaker.

The Meta-Information based Interface implements all interaction points of the
SCS Engine with its environment. The accommodated API is accessible through a
Java or a Web based interface and provides for executing two types of operations, i.e.
content related and scope management operations.

3.2 Service Orchestration (SO) Engine

The purpose of the SO Engine is to adapt (if needed) and to execute service chains.
To do so, it accepts as input extended BPEL process specifications provided by the
PO. These specifications incorporate possible adaptation steps, which define how the
engine can adapt the execution of a service chain based on information available at
the SCS Engine. Internally, the SO Engine consists of: a) extensions to the ODE
(www.apache.org) runtime engine and b) a P2P overlay, with peers responsible for
the BPEL activities execution. The ODE engine’s compiler is used in order to parse
the BPEL process specification and to extract an execution plan, consisting of tasks
that correspond to BPEL activities. These tasks are assigned into fine-grained agents,
which are responsible for the particular BPEL activities. Our implementation uses
JXTA (www.jxta.org) P2P technologies as the implementation basis. Each node of
the p2p infrastructure corresponds to an agent for the execution of BPEL activities.

The P2P overlay of the SO Engine is organized into peer groups where each group
is responsible for a BPEL activity. The group members must have efficient
computation and network capacity in order to execute the assigned activities, but there
is no need to have high uptime. In our implementation, every resource is described
with an appropriate JXTA advertisement and the peers communicate by exchanging
messages using JXTA services. Every group has a group organizer that handles the
load balancing, network congestion, and peer availability problems by selecting the
peer member that will execute a particular BPEL activity. A group organizer must
have certain qualities such as high availability and uptime, efficient network capacity
and computational resources. If a group member is not responding or if it declares
lack of ability to handle a request, the group organizer starts a re-deployment phase
and selects another member of the group to handle that request. In case of a group
organizer fault, another node is picked up to become the next group organizer, using a
leader selection algorithm [12].

A typical execution example of the specified orchestration engine is presented
next.

3.2.1 Execution Case Study

Our case study implements an oil spill scenario that is concerned about the impact of
oil spills on cod populations. It consists of two models [14]: a) the Predict Oil Drift

Adaptable Environmental Service Chains: The Challenges of Distributed Execution and
Information Collection 7

model, which models the oil distribution in a three-dimensional water body, to assess
when the oil reaches the coastline and protected areas; and, b) the Predict Cod Effects
model, which estimates the toxicity on cod populations. The Predict Oil Drift model
uses input from several services, such as a weathering model to assess the impact of
current weather and sea conditions on the oil’s chemical composition, and
accordingly its behavior in seawater. Additional information related to the coastline
model and the sea level, are provided by corresponding services. The results of the oil
drift prediction serve as input to modeling the uptake of oil components by cod eggs
and larvae. Fig. 4 depicts the BPEL process for this scenario and available services
(Weather and Sea Observations, Coastline, Bathymetry, etc); as it can be seen, the
process consists of a receive activity, a reply activity, and a sequence activity with
one assign and two invoke sub-activities.

Fig. 4. BPEL process

The execution of this process is illustrated in Fig. 5. As we see in this figure, the
execution plan is sent to peer R1 that is capable of handling the receive activity. R1
handles the incoming message and writes the output to the variable OilSpillModel via
its resource handler using an advertisement. Afterwards, it propagates the execution
plan with the remaining operations to node S, which is responsible for the sequence
activity. Node S creates a number of subtasks. The first subtask is the invocation of
PredictOilDrift activity. For this reason, node S propagates the execution plan to the
node I1, which invokes the above service, writes the service output to variable out1,
and propagates the execution plan further to node A1. Node A1 finds the
advertisement for the variable out1, reads the value of variable out1, and assigns its
value to variable OilDriftPrediction by publishing an updated advertisement. A
similar process continues until the execution plan returns back to node S. At the final
step, the execution plan is propagated one more time from node S to node R2, which
is responsible for the reply activity. Node R2, using its resource handler, reads out2
variable, constructs a reply message, and returns the result to the ODE runtime.

8 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael
Pantazoglou

Fig. 5. Execution example

4 Related Work

The research fields that are inherently associated to the work presented in this paper
are those related to service process orchestration and semantic-based tuplespace
computing.

Process execution is normally supported via the deployment of a process
specification on a single centralized orchestration engine, while scalability is achieved
by replicating the engine and using load balancing algorithms. This approach is
currently followed by most engines like Apache ODE (www.apache.org), JBOSS
jBPM (www.jboss.org), IBM WebSphere (www.ibm.com/software/ websphere) and
Microsoft BizTalk server (www.microsoft.com/biztalk). In this paper we present a
different approach where individual activities within a process are distributed among
the available computing resources, thus allowing the activities to be placed near the
data they operate. An approach similar to ours is the one in NINOS [15]. The
differences between our approach and the latter are as follows: a) NINOS requires the
use of additional brokers to be deployed to handle the publish subscribe operations
while we use the mechanism provided by JXTA, b) our orchestration engine is able to
adapt executing processes, while NINOS doesn’t and c) our engine follows a more
fine-grained approach for assigning resources, i.e. tasks and shared variables, to
agents. To the best of our knowledge there exists no other similar approach catering
for the execution and adaptation of service processes in such a distributed manner.

With regards to contemporary semantically enhanced Tuplespaces, most of them
(e.g. sTuples, Conceptual Spaces, and Triple Space Computing [16]) can be
considered as knowledge bases that utilize RDF for the representation of semantic
information. Contrary to those, the SCS Engine provides an extendable Meta-
Information model that can support various meta-information schemes for the
annotation of Information Entities. Further to that, the SCS Engine accommodates a

http://www.apache.org/�
http://www.jboss.org/�
http://www.ibm.com/software/%20websphere�
http://www.microsoft.com/biztalk�

Adaptable Environmental Service Chains: The Challenges of Distributed Execution and
Information Collection 9

mechanism for the logical grouping of information, i.e. scopes, that differs from the
scoping mechanism specified by Merrick [17] or the one used by the Semantic Web
Spaces [18], in the use of a flexible affiliation mechanism that can support the
expression of various types of relationships among scopes.

5 Conclusions

The provision of adaptable environmental service chains is emerging as an important
challenge in the field of EIS. This field poses significant additional concerns to the
respective approaches applied in the SOC domain (e.g. to adaptable service
processes). Two aspects of significant importance are the collection of information
that has semantic, spatial and temporal annotations, from several external sources, and
the distributed execution of environmental service chains, which comprise the
exchange of large volumes of information.

These two aspects have been taken into consideration for the design of the service
chain execution infrastructure presented in this paper. Despite the constraints of our
approach in terms of semantic annotations needed for the description of information
elements and the required capabilities of the peers of the orchestration engine’s p2p
overlay, we can claim that it can satisfy the requirements imposed by the EIS domain,
i.e. collection of information that is semantically, spatially and temporally annotated
from several sources and the exchange of large volumes of information. Moreover,
the provided mechanisms have been designed in an open and extendable manner so as
to support their extension with additional features. For example, the SCS Engine can
be enhanced with a higher level logic-based reasoner catering for the extraction of
knowledge out of collected information.

Additional issues that have been also considered include security and deployment
concerns. With respect to security, issues related to accessing of available information
and functionality this can be handled through the assignment of appropriate roles and
credentials. Additional issues such as the collection of erroneous information from
malevolent sources should be further investigated. Similarly, regarding the
deployment of the whole infrastructure, all components have been designed in a
stand-alone manner catering for their distribution over distinct network nodes. Their
interactions are supported through the use of appropriate web based protocols and
standards, e.g. web services and http based connections, so as to avoid network
hindrances, such as firewalls and NATs.

We need to state here again that the implementation of the presented approach and
of the comprising components is still not completed. Therefore, our future work plans
include the finalization of the component implementations and the introduction of
additional features and properties to them, e.g. the use of other languages and
mechanisms for the description of semantic, temporal and spatial annotations. Last
but not least, one of our future objectives is to provide measurable evaluations for the
infrastructure as a whole as well as for each of the comprising components.

10 George Athanasopoulos, Aphrodite Tsalgatidou, Pigi Kouki, Ioannis Pogkas, Michael
Pantazoglou

Acknowledgement: This work has been partially funded by ELKE (contract
70/3/5829) and the European Commission (ICT-FP7-249120 ENVISION project)

6 References
1. Brogi, A., Popescu, R.: Service adaptation through trace inspection. Int. J. Business Process

Integration and Management 2(1), 9-16 (2007)
2. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for

WS-BPEL. In : Proceeding of the 17th international Conference on World Wide Web,
New York, pp.815-824 (2008)

3. Casati, F., Ilnicki, S., Jin, L., et al.: Adaptive and Dynamic Service Composition in eFlow.
Technical Report HPL-2000-39, Software Technology Laboratory HP Laboratories Palo
Alto,(2000)

4. Commission of the European Communities: Internet of Things — An action plan for
Europe., EU (2009)

5. ENVISION: Environmental Services Infrastructure with Ontologies. (Accessed Jan 2010)
Available at: http://www.envision-project.eu/

6. Athanasopoulos, G., Tsalgatidou, A.: An Approach to Data-Driven Adaptable Service
Processes. In : Proceedings of the 5th International Conference on Software and Data
Technologies, Athens (2010)

7. Rossi, D., Cabri, G., Denti, E.: Tuple-based technologies for coordination. In : Coordination
of Internet agents: models, technologies, and applications. Springer-Verlag, London, UK
(2001) 83--109

8. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1),
80-112 (1985)

9. Waldo, J., Team, J.: The JiniTM Specification, 2nd Edition. Addison-Wesley Professional
(2000)

10. ESSI WSML working group In: Web Service Modeling Language. Available at:
http://www.wsmo.org/wsml/index.html

11. Portele, C.: OpenGIS® Geography Markup Language (GML) Encoding Standard. OpenGIS
standard, Open Geospatial Consortium Inc. (2007)

12. Xia, S.: Optimal Leader Election Scheme for Peer-to-Peer Applications. In : International
Conference on Networking Sixth International Conference on Networking (ICN'07),
Sainte-Luce, Martinique, France, pp.29-29 (2007)

13. Reed, M.: Quantitative analysis of alternate oil spill response strategies using OSCAR. Spill
Science & Technology Bulletin 2(1), 67–74 (1995)

14. Jacobsen, G.: A distributed service-oriented architecture for business process execution.
ACM Trans. Web 4(1), 1--33 (2010)

15. Nixon, L., Simperl, E., Krummenacher, R., et al.: Tuplespace-based computing for the
semantic web: A survey of the state-of-the-art. Knowl. Eng. Rev. 23(2), 181--212 (2008)

16. Merrick, I., Wood, A.: Coordination with scopes. In : ACM Symposium on Applied
Computing, pp.210-217 (2000)

17. Tolksdorf, R., Paslaru Bontas, E., Nixon, L.: Towards a tuplespace-based middleware for
the SemanticWeb. In : IEEE/WIC/ACM International Conference on Web Intelligence
WI2005, pp.338-344 (2005)

http://www.envision-project.eu/�
http://www.wsmo.org/wsml/index.html�

