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Abstract. In query-by-example approach, a user can only provide a
small number of example shots to represent a query. In contrast, de-
pending on camera techniques and setting, relevant shots to the query
are characterized by significantly different features. Thus, we develop
a video retrieval method which can retrieve a large variety of relevant
shots only from a small number of example shots. But, it is difficult to
build an accurate retrieval model only from a small number of example
shots. Consequently, the retrieval result includes many shots which are
clearly irrelevant to the query. So, we construct an ontology as a knowl-
edge base for incorporating object recognition results into our method.
Our ontology is used to select concepts related to the query. By referring
to recognition results of objects corresponding to selected concepts, we
filter out clearly irrelevant shots. In addition, we estimate a parameter of
a retrieval model based on the correlation between selected concepts and
shots retrieved by the model. Furthermore, to retrieve a variety relevant
shots characterized by different features, we use “rough set theory” to ex-
tract multiple classification rules for identifying example shots. That is,
each rule is specialized to retrieve relevant shots characterized by certain
features. Experimental results on TRECVID 2009 video data validate
the effectiveness of our method.

1 Introduction

Recently, there is a great demand to develop a video retrieval method, which can
efficiently retrieve interesting shots from a large amount of videos. In this paper,
we develop a method based on “Query-By-Example (QBE)” approach, where a
user represents a query by providing example shots. Then, QBE retrieves shots
similar to example shots in terms of color, edge, motion, and so on. We consider
QBE as very effective, because a query is represented by features in example
shots without the ambiguity of semantic contents. In addition, QBE can retrieve
any interesting shots as long as users can provide example shots.

However, QBE is challenging because in shots with similar features, semantic
contents are not necessarily similar to each other. For example, when Ex. 1 in
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People
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Fig. 1. Example of QBE using an ontology for the query “people walk in a street”.

Fig. 1 is provided as an example shot for the query “people walk in a street”,
in addition to Shot 1, Shot 2 is wrongly retrieved. The reason is that both of
Ex. 1 and Shot 2 have red-colored and ocher-colored regions. Also, instead of
rectangular buildings and windows in Ex. 1, rectangular posters are put up on
the wall in Shot 2. Like this, one drawback of QBE is that it ignores semantic
contents. Thus, we incorporate an ontology as a knowledge base into QBE.

We consider that an ontology is especially important for alleviating a lack
of example shots in QBE. Usually, a user can only provide a small number of
example shots (at most 10). In contrast, we represent each shot by using very
high-dimensional features. For example, a popular SIFT feature leads to a shot
representation with more than 1000 dimensions, where each dimension represents
the frequency of a local edge shape (i.e. visual word). Generally, as the number of
feature dimensions increases, the number of example shots needed to construct
a well generalized retrieval model exponentially increases [1]. This means that
the statistical information of features in a small number of example shots is not
reliable. So, a retrieval model tends to be overfit to feature dimensions which are
very specific to example shots but ineffective for characterizing relevant shots.
For example, in Fig. 2, if Ex. 1, Ex. 2 and Ex. 3 are provided as example shots,
the retrieval model is overfit to feature dimensions which characterize a small
number of edges in the upper part (i.e. sky regions). As a result, it retrieves Shot
1, Shot 2 and Shot 3 which are clearly irrelevant to the query.

In order to filter out clearly irrelevant shots, we develop an ontology for
utilizing object recognition results. Fig. 2 shows recognition results for three
objects, Building, Cityspace and Person. Here, one shot is represented as a vector
of recognition scores, each of which represents the presence of an object. In Fig. 2,
we can see that Building and Cityspace are likely to appear in example shots while
they are unlikely to appear in the other shots. Recently, researchers use object
recognition results in video retrieval 1. For example, research groups in City

1 Objects are frequently called “concepts” in the filed of video retrieval. But, some
readers may confuse them with concepts which are hierarchically organized in an
ontology. So, we use the term “concept” only when it constitutes an ontology.
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Ex. 1 Ex. 2 Shot 1 Shot 3

Building: 2.5 2.2
Cityspace: 1.1 2.6
Person: -1.0 -0.5

Ex. 3 Shot 2

1.2
1.5
0.2

-0.3
-0.5
2.0

-1.0
-1.5
-1.3

-2.3
-1.2
-0.8

Overfitting!          Filtered by ontology

Fig. 2. An example of an overfit retrieval result for the event “tall buildings are shown”.

University of Hong Kong [3] and University of Amsterdam [2] build classifiers
for recognizing 374 and 64 objects, respectively. In particular, such classifiers
are built by using a large amount of training data (e.g. 61, 901 shots in [3] and
more than 10, 000 shots in [2]). Thereby, objects can be robustly recognized
independently of sizes, positions and directions on the screen. The effectiveness
of using object recognition results is proved in TRECVID, which is a famous
annual international workshop on video retrieval [4].

To utilize object recognition results, we port objects into concepts in an on-
tology. Specifically, we define a hierarchical structure of concepts and concept
properties. Thereby, we can select concepts related to the query, and examine
recognition scores of objects corresponding to selected concepts. For example, in
Fig. 2, if Building and Cityspace are selected, Shot 1, Shot 2 and Shot 3 can be
filtered out due to low recognition scores for Building and Cityspace. Also, filter-
ing irrelevant shots reduces the computation time. Furthermore, we introduce
a method for building an accurate retrieval model based on the correlation be-
tween concepts selected for a query and shots retrieved by the model. Note that
we are not given the label of a shot (i.e. relevant or irrelevant), but given object
recognition scores. Thus, we assume that an accurate retrieval model preferen-
tially retrieves shots which have high recognition scores of objects, corresponding
to concepts related to the query.

We address another important problem in QBE, where even for the same
query, relevant shots are taken in many different shooting environments. As can
be seen from example shots in Fig. 2, shapes of buildings and regions where they
are shown are significantly different from each other. Additionally, in each of Ex.
2 and Ex. 3, a road is shown while it is not shown in Ex. 1. So, shots relevant
to the query are characterized by significantly different features. Regarding this,
typical QBE methods only use one example and retrieve shots similar to it [5, 6].
As a result, many relevant shots are inevitably missed. Compared to this, we use
multiple example shots and “Rough Set Theory (RST)” which is a set-theoretic
classification method for extracting rough descriptions of a class from imprecise
(or noisy) data [7]. By using RST, we can extract multiple classification rules
which can correctly identify different subsets of example shots. Thereby, we can
retrieve a variety of relevant shots where each classification rule is specialized to
retrieve a portion of relevant shots characterized by certain features.
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2 Related Works

2.1 Concept selection for Video Retrieval

The most popular ontology for video retrieval is “Large-Scale Concept Ontology
for Multimedia (LSCOM) [8]”. It targets at broadcast news videos and defines a
standardized set of 1, 000 concepts. But, LSCOM just provides a list of concepts
where no concept relation or structure is defined. So, many researchers explore
how to appropriately select LSCOM concepts for a query.

Existing concept selection approaches can be roughly classified into three
types, manual, text-based and visual-based selections. In manual concept selec-
tion, users manually select concepts related to a query [9]. But, different users
select significantly different concepts for the same query. Specifically, [9] con-
ducted an experiment where 12 subjects are asked to judge whether a concept
is related to a query. As a result, only 13% of total 7, 656 judgements are the
same among all subjects. In text-based concept selection, WordNet is frequently
used where words in the text description of a query are expanded based on
synonyms, hypernyms and hyponyms [2, 3]. Then, concepts corresponding to ex-
panded words are selected. But, WordNet only defines lexical relations among
concepts, and does not define spatial and temporal relations among concepts. For
example, from WordNet, we cannot know that Building and Road are frequently
shown in the same shots. Finally, in visual-based concept selection, concepts are
selected as objects which are recognized in example shots with high recogni-
tion scores [2, 3]. But, this approach relies on accuracies of object recognition.
LSCOM includes concepts corresponding to objects, which are difficult to be
recognized, such as Dogs, Telephone, Supermarket, and so on. So, visual-based
concept selection may wrongly select concepts which are unrelated to the query.

To overcome the above problems, we manually organize LSCOM concepts
into an ontology, which can capture both lexical relations among concepts and
their spatial and temporal relations. To do so, we define several new concepts
which are missed in LSCOM. For example, we define a new concept Air Vehicle
as a superconcept of Airplane and Helicopter, in order to explicitly represent
that both of Airplane and Helicopter fly in the air or move in airports. Also, we
introduce a method which can appropriately estimate parameters of a retrieval
model based on concepts selected by our ontology. To our best knowledge, there
are no existing parameter estimation methods based on ontologies.

2.2 Rough Set Theory

One of the biggest advantages of RST is that it can extract multiple classifi-
cation rules without any assumption or parameter. Specifically, by combining
features characterizing example shots based on the set theory, RST extracts
classification rules as minimal sets of features, needed to correctly identify sub-
sets of example shots. Compared to this, although a “Gaussian Mixture Model
(GMM)” can extract multiple feature distributions of example shots, these shots
are not necessarily distributed based on Gaussian distributions [18]. Also, the
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“Genetic Algorithm” (GA) can be used to extract multiple classification rules,
where sets of features useful for identifying example shots are searched based
on the principles of biological evolution [21]. But, parameters in the GA, such
as the number of chromosomes, the probability of crossover and the probability
of mutation, cannot effectively determined with no a priori knowledge. Further-
more, decision tree learning methods and sequential covering methods can be
used extract multiple rules, but several useful rules are not detected as these
methods depend on the order of extracting rule [19].

In RST, it is very important to determine which features characterize exam-
ple shots. In other words, we need to define the indiscernibility relation between
two example shots with respect to features. A traditional RST can deal only with
categorical features, where the indiscernibility relation can be easily determined
by examining whether two example shots have the same value or not [7]. But,
in our case, example shots are represented by non-categorical high-dimensional
features. To apply RST to such features, we built a classifier on each feature,
and define the indiscernibility relation by examining whether two examples are
classified into the same class or not. Although this kind of classifier-based RST
is proposed in [11], the high-dimensionality of features is not considered. Specif-
ically, although [11] uses probabilistic classifiers such as naive bayes and maxi-
mum entropy, it is difficult to appropriately estimate probabilistic distributions
only from a small number of example shots. Compared to this, we use Support
Vector Machines (SVMs) which are known as effective for high-dimensional fea-
tures [20]. [20] provides the theory that if the number of feature dimensions is
large, SVM’s generalization error is independent of the number of feature dimen-
sions. In addition, even when only a small number of examples are available, the
margin maximization needs no probability distribution estimation. Therefore,
we develop a classifier-based RST using SVMs.

3 Video Retrieval Method

First of all, we set the condition where our QBE method is developed. We use
large-scale video data provided by TRECVID [4]. This data consists of 219 de-
velopment and 619 test videos in various genres, like cultural, news magazine,
documentary and education programming. Each video is already divided into
shots by using an automatic shot boundary detection method, where develop-
ment and test videos include 36, 106 and 97, 150 shots, respectively. Like this,
TRECVID video data is sufficient for evaluating the effectiveness of our QBE
method on large-scale video data.

In order to filtering out clearly irrelevant shots to a query, we borrow recog-
nition results of 374 objects, provided by the research group in City University
of Hong Kong [3]. That is, recognition scores of 374 objects are associated with
all shots in development and test videos. To utilize the above recognition results,
we develop an ontology where LSCOM concepts corresponding to 374 objects
are organized. Also, to extract features used in RST, we use the color descriptor
software [13]. Specifically, we extract the following 6 different types of features
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from the middle video frame in each shot: 1. SIFT, 2. Opponent SIFT, 3. RBG
SIFT, 4. Hue SIFT, 5. Color histogram and 6. Dense SIFT (see [13] in more
detail). For each type of feature, we extract 1, 000 visual words by clustering
200, 000 features sampled from development videos. That is, we represent a shot
as a total 6, 000-dimensional vector, where each type of feature is represented
as a 1, 000-dimensional vector. Finally, for a query, we manually collect example
shots from development videos, and retrieve relevant shots in test videos.

3.1 Building Ontology for Concept Selection

Fig. 3 shows a part of our ontology. LSCOM concepts are represented by captital
letters followed by lower-case letters, while concepts that we define are repre-
sented only by capital letters. Also, we represent properties by starting their
names with lower-case letters. Our ontology is developed by considering the
“disjoint partition” requirement. This is a well-known ontology design pattern
for making our ontology easily interpretable by both human and machine [14].
The disjoint partition means that a concept C1 should be decomposed into dis-
joint subconcepts C2, C3, · · ·. That is, for i, j ≥ 2 and i ̸= j, Ci ∩Cj = φ. So, an
instance of C1 cannot be an instance of more than one subconcept C2, C3, · · ·. For
example, we should not place Vehicle and Car in the same level of the concept
hierarchy, because an instance of Car is an instance of Vehicle. Thus, we have
to carefully examine whether a concept is a generalization (or specialization) of
another concept.

hasGender

hasNumberOfPersons

Weather

time

Building

takeAction
Outdoor

WITH_PERSON NOT-WITH_PERSON

hasPartOf2

hasPartOf1

locatedAt

Construction_Site

CONSTRUCTION_SITE_BUILDING

Shot 1
2.4

Shot 2
3.2

Shot 3
1.3

Shot N
-1.6

ANY

ROLE LOCATION

#TIME

INDOOR

GROUND_SPACE

Construction_Site

#WEATHER

Person

POSI_NUM

GENDER

#ACTION

NON-PERSON OBJECT

Explosion_Fire Vehicle

GROUND_VEHICLE
Window

Anntena

Recognition scores

Fig. 3. A part of our ontology.

Furthremore, we consider visual characteristics to define our concept hier-
archy. For example, as can be seen from Fig. 3, we define two subconcepts of
GROUND VEHICLE, WITH PERSON and NOT-WITH PERSON. We can in-
duce that Person probably appears in shots containing subconcepts of WITH
PERSON, such as Bicycle and Motorcycle. On the other hand, it is uncertain
that Person appears in shots containing subconcepts of NOT-WITH PERSON.
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Now, we explain how to select concepts related to a query. Basically, we firstly
select concepts which match with words in the text description of the query.
Then, for each selected concept, we select its subconcepts and concepts which
are specified as properties. For example, for the query “buildings are shown”,
Buildings and all of its subcocepts (e.g. Office Buildings, Hotel, Power Plant
etc.) are firstly selected. Then, as shown in Fig. 3, Windows and Antenna are
selected from hasPartOf1 and hasPartOf2 properties of Building. After that,
from locatedAt property of CONSTRUCTION SITE BUILDING (a subconcept
of Building), we select Construction Site and all of its subconcepts (e.g. City-
space, Urban, Suburban etc.). At this point, by tracing concept properties many
times, we may select concepts which are unrelated to the query. For example,
from the above Construction Site, we can trace ARTIFICIAL ROAD, Sidewalk
and Person. But, these concepts are not related to the query. To avoid select-
ing unrelated concepts, we restrict the number of tracing concept properties to
only one time. That is, for the above example, we finish concept selection after
selecting Construction Site and all of its subconcepts.

In Fig. 3, some concept properties are characterized by slots where # pre-
cedes concept names. We call such an operator “# operator” which represents
a concept property, used only when it is specified in the textual description of a
query. Let us consider the query “people are indoors”. For this query, we select
Person and all of its subconcepts, and trace Person’s concept properties. But,
for “takeAction” property, the current LSCOM only defines 12 concepts, such as
Singing, People Crying, Talking and so on. If these concepts are selected, shots
containing them may be preferred. As a result, we may miss many shots where
people take many other actions in indoor situations, such as eating and watch-
ing TV. Thus, only for queries like “people talking indoor”, we use the concept
property “takeAction” to select concepts.

Since the textual description of a query is usually simple, we cannot se-
lect concepts which are definitely related to the query. For example, for the
query “buildings are shown”, we select 55 concepts including White House, Mili-
tary Base, Ruins, and so on. But, only a part of these concepts are truly related to
the query. So, we validate selected concepts using example shots. Recall that all
shots are associated with recognition scores of objects corresponding to LSCOM
concepts, as shown in Building in Fig. 3. Based on such recognition scores in
example shots, we validate concepts selected by our ontology. Specifically, for
each object corresponding to a concept, we compute the average recognition
score among example shots. Then, we rank concepts in the descending order.
After that, we select concepts which are not only selected by our ontology, but
also ranked in top T positions (we use T = 20). Like this, selected concepts are
validated from both semantic and statistical perspectives.

Finally, we explain how to estimate classifier’s parameter based on object
recognition scores. Note that this classifier is an SVM used to define indiscerni-
bility relations among example shots in RST. Suppose that for a query, we have a
set of selected concepts C, where each concept is represented as ci (1 ≤ i ≤ |C|).
Also, we have P parameter candidates for an SVM M , where the j-th parameter
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is pj and the SVM with pj is Mpj
(1 ≤ j ≤ P ). To estimate the best parameter,

we temporarily retrieve S shots by using Mpj (we use S = 1, 000). Then, we
compute the correlation between C and Mpj

as follows:

Correlation(C,Mpj ) =
C∑

i=1

γ(rank(Mpj ), rank(ci)) (1)

where rank(Mpj ) represents a ranking list of S shots according to their evalu-
ation values by Mpj . We obtain these evaluation values as SVM’s probabilistic
outputs [17]. rank(ci) represents a ranking list of S shots according to recognition
scores of the object corresponding to ci. We compute γ(rank(Mpj ), rank(ci)) as
the Spearman’s rank correlation coefficient [15]. It represents the correlation be-
tween two ranking lists. If these are highly correlated, γ(rank(Mpj ), rank(ci))
is close to 1, otherwise close to −1. So, a larger γ(Mpj , ci) indicates that Mpj

is more correlated with ci. Correlation(C,Mpj ) represents the overall corre-
lation over all concepts in C. Thus, we select the best parameter p∗j where
Correlation(C,Mpj ) is the largest among P parameters. In this way, we can
estimate an SVM parameter which is semantically validated based on selected
concepts.

3.2 Video Retrieval Using Rough Set Theory

We use rough set theory (RST) to extract classification rules, called “decision
rules”, for discriminating relevant shots to a query from all irrelevant shots. To
this end, we need two types of example shots. The first type of example shots are
provided by a user and serve as representatives of relevant shots (“positive exam-
ples (p-examples)”). The second type of example shots serve as representatives
of irrelevant shots (“negative examples (n-examples)”), but are not provided by
the user. To overcome this, we have already developed a method which collects n-
examples from shots other than p-examples [10]. Roughly speaking, our method
iteratively enlarges n-examples by selecting shots which are more similar to al-
ready selected n-examples than p-examples. Thereby, our method can collect a
variety of n-examples without wrongly selecting relevant shots as n-examples.

We discuss how to extract decision rules which can retrieve a large variety of
relevant shots, only from a small number of p-examples. Note that decision rules
are extracted by combining indiscernibility relations among examples, which are
defined by SVMs. So, we need to build SVMs which can define various indis-
cernibility relations. To this end, we use “bagging” where SVMs are built on
different sets of randomly sampled examples [16]. As described in [16], when
only a small number of examples are available, SVMs’ classification results are
significantly different depending on examples. Thus, we can define various indis-
cernibility relations by building SVMs based on bagging. However, due to the
high-dimensionality of features, SVMs may be overfit and may not appropriately
define indiscernibility relations. To alleviate this, we use the “random subspace
method” where SVMs are built on different sets of randomly sampled feature
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dimensions [12]. That is, the original high-dimensional feature is transformed
into lower-dimensional features, so that we can alleviate to build overfit SVMs.

We regard SVM classification results as categorical features in RST, and
extract decision rules for predicting the class of an unseen example. Let pi and
nj be i-th p-example (1 ≤ i ≤ M) and j-th n-example (1 ≤ j ≤ N), respectively.
ak indicates the classification result by k-th SVM (1 ≤ k ≤ K). Here, ak(pi)
and ak(nj) respectively represent class labels of pi and nj predicted by k-th
SVM. That is, these are categorical features of pi and nj for ak. In order to
define the indiscernibility relation between each pair of pi and nj , RST extracts
“discriminative features” which are useful for discriminating them. The set of
discriminative features fi,j between pi and nj can be represented as follows:

fi,j = {ak|ak(pi) ̸= ak(nj)} (2)

That is, fi,j means that when at least one feature in fi,j is used, pi can be
discriminated from nj .

Next, in order to discriminate pi from all n-examples, we combine pi’s dis-
criminative features. This is achieved by using at least one discriminative feature
in fi,j for all n-examples. That is, we compute the following “discernibility func-
tion dfi” which takes a conjunction of ∨fi,j :

dfi = ∧{∨fi,j | 1 ≤ j ≤ N} (3)

Let us consider the discernibility function df1 for one p-example p1 and two n-
examples n1 and n2. Suppose that the set of discriminative features between p1

and n1 and the one between p1 and n2 are f1,1 = {a1, a3, a5} and f1,2 = {a1, a2},
respectively. Under this condition, df1 is computed as (a1 ∨ a3 ∨ a5) ∧ (a1 ∨ a2).
This is simplified as df∗

1 = (a1) ∨ (a2 ∧ a3) ∨ (a2 ∧ a5) 2. That is, p1 can be
discriminated from n1 and n2, by using a1, the set of a2 and a3 or the set of a2

and a5. Like this, each conjunction term in df∗
i represents a “reduct” which is a

minimal set of features needed to discriminate pi from all n-examples
From each reduct, we can construct a decision rule in the form of IF-THEN

rule. Since each feature in our RST is defined by an SVM, a decision rule repre-
sents a combination of SVMs. For example, the decision rule constructed from
the reduct (a2∧a3) is “IF a shot s is classified as positive by both 2-nd and 3-rd
SVMs, THEN its class label is positive”. That is, to match a decision rule with
s, we examine whether s is classified as positive by all SVMs in the decision rule.
In this way, we count how many decision rules match with s. Finally, we rank
all shots in the descending order, and retrieve shots within top T positions (we
use T = 1, 000).

4 Experimental Results

We evaluate our method on the following 4 queries, Query 1: A view of one or
more tall buildings and the top story visible, Query 2: Something burning with
2 This simplification is achieved by using the distributive law A∧ (B∨C) = (A∧B)∨

(A ∧ C) and the absorption law A ∨ (A ∧ B) = A.
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flames visible, Query 3: One or more people, each at a table or desk with a com-
puter visible, Query 4: One or more people, each sitting in a chair, talking. For
each query, we run our method 9 times by using different sets of 10 p-examples.
We evaluate the retrieval performance as the average number of relevant shots
within 1, 000 retrieved shots.

In Fig. 4 (a), we compare the following three types of retrieval, in order
to evaluate the effectiveness of our ontology for filtering out irrelevant shots
and estimating an SVM parameter. The first one is Baseline without using our
ontology. The second type of retrieval is Ontology1 which uses our ontology
only for filtering out irrelevant shots. The final type of retireval is Ontology2
which uses our ontology for both irrelevant shot filtering and SVM parameter
estimation. For each topic, performances of Baseline, Ontology1 and Ontology2
are represented by the leftmost red bar, the middle green bar and the rightmost
blue bar, respectively.

a)

Example
shot

Irrelevant
shot

Query 3 Query 4b)

Fig. 4. (a) Performance comparison among Baseline, Ontology1 and Ontology2, (b)
Examples of shots filtered by our ontology.

As can be seen from Fig. 4 (a), except for Query 2, it is very effective to
filter out irrelevant shots based on concepts selected by our ontology. The re-
trieval performance is further improved by estimating SVM parameters based
on selected concepts. The reason for the low performance for Query 2 is that, in
each of 9 times retrieval, we can only select one or two concepts, that is, Explo-
sion Fire and Earthquake. What is worse, these concepts are not so effective for
characterizing relevant shots. For example, 1, 000 shots with highest recognition
scores of Explosion Fire and those of Earthquake, only characterize 37 and 12
relevant shots, respectively. As a result, we cannot appropriately filter out ir-
relevant shots and cannot appropriately estimate SVM parameters. To improve
the performance for Query 2, other than Explosion Fire, we need to recognize
objects such as candle flame, bonfire, fire blasted from rockets, and so on.

In Fig. 4 (b), for each of Query 3 and Query 4, we show two example shots and
two clearly irrelevant shots which are filtered out by our ontology (for Query 1,
see Fig. 2). For Query 3, Baseline without using our ontology wrongly retrieves
shots where people just appear and shots which contains straight lines corre-
sponding to computer shapes, and shapes of pillars and blinds in a background.
For Query 4, Baseline wrongly retrieves shots which contain straight lines cor-
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responding to shapes of background objects. By filtering out the above kind of
shots, Ontology1 and Ontology2 can significantly outperform Baseline.

Finally, we examine whether filtering out irrelevant shots based ontology can
reduce computation times. In Fig. 5, we show the average computation time
of Baseline (left red bar) and Ontology1 (right green bar) among of 9 times
retrieval. As can be seen from this figure, filtering of irrelevant shots is useful for
reducing computation times. Nonetheless, our method currently takes about 500
seconds, because it requires building of multiple SVMs and matching of many
decision rules. So, from the perspective of computation cost, our method need
to be improved. To this end, we are currently parallelizing processes of SVM
building and decision rule matching by using multiple processors.

Fig. 5. Comparison between the computation time of Baseline and that of Ontology1.

5 Conclusion and Future Works

In this paper, we proposed a video retrieval method based on QBE approach.
We construct an ontology to incorporate object recognition results into QBE.
Specifically, our ontology is used to select concepts related to a query. By re-
ferring to recognition results of objects corresponding to selected concepts, we
filter out clearly irrelevant shots. In addition, we estimate an SVM parameter
based on the correlation between selected concepts and shots retrieved by the
SVM. Also, to retrieve a large variety of relevant shots, we use RST for extract-
ing multiple classification rules which characterize different subsets of example
shots. Experimental results on TRECVID 2009 video data show that the retrieval
performance can be significantly improved by using our ontology. Besides, our
ontology is useful for reducing the computation time. Finally, by using RST, we
can successfully cover a large variety of relevant shots.
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