Conversion of the YDP Learning Content to
Common Cartridge Package

Jaroslaw Dziedzic

Young Digital Planet S.A. Educational ePublishing, Content and Technology,
Ul. Slowackiego 175, 80-298 Gdansk, Poland
jaroslaw.dziedzic@ydp.com.pl
http://wuw.ydp.eu

Abstract. This paper describes experiences earned during the devel-
opment of a software application that could convert some YDP specific
learning content into Common Cartridge.

1 Introduction

Young Digital Planet has almost twenty years of experience in digital learning
content creation. We have created several generations of applications and con-
tent. The experience and ideas have accumulated over years, resulting in broad
range of top-quality educational content, advanced applications and tools, as
well as effective and flexible data formats for storing and processing the digital
content.

We observe emerging standards in the field of digital learning content data
formats with interest, and we keep evaluating them and assessing their usefulness
for the packaging and distribution of our content. The ASPECT project gives us
the opportunity to take a look at the new Common Cartridge emerging standard,
analyse it thoroughly and decide, if we can implement it in our products, and
how to do it.

It would not be possible to reach a deep understanding of any new concept
just by reading the documentation. Therefore, in order to gain some knowledge
and experience, we decided to produce a tool that will try to convert our existing
content to the CC format. Our goal was to have our content with all, or most of
its features, packed into the Common Cartridge and running in the CC player.

2 YDP Content Concept vs. Common Cartridge Concept

Right from the start of reading the CC specification it became obvious, that the
CC concept differs in many ways from our existing content. These differences
could break the project just at the beginning, but fortunately we found some
methods of changing our content to suit the Common Cartridge way. Let’s look
first at the key concepts for YDP content and CC.

61



2.1 YDP Content

Our content is usually organised in lessons that consist of several pages. Each
page contains some educational content (text, pictures, slideshows, video, sound
clips, interactive animations etc.) and exercises related to this content. The stu-
dent learns not only by reading/viewing the static or interactive content, but
also by solving exercises and observing the feedback from the computer. The
process is interactive, exercises are tightly integrated with the learning content
and it is impossible to separate them from the material presented on the page.
The scoring of all the exercises in the lesson is usually presented and summed up
on the last page of the lesson, and the student has the possibility to return back
to any exercise, read the lesson again, sort out his answers and see the result.

We use several different kinds of interactive exercises in addition to typi-
cal multiple choice and fill-in-blanks. Pages can have sub-pages (using tab-sheet
controls), buttons that launch some actions or just open popup pages with ad-
ditional content etc. Everything is laid out by our graphic designers to form
harmonious and attractive environment for learning content and exercises.

Our entire content is presented to the student by means of a dedicated player
written in Adobe Flash. We have no concept of static content displayed outside
of the player — for instance as a PDF or HTML page. Everything is played by
our flash application. The player must always accompany the XML and data
files.

2.2 Common Cartridge

As we understand from the specification, the Common Cartridge is based on
the concept of the complete separation of a learning content and exercises. The
only reason the exercises are included — is to test the student’s knowledge,
acquired while reading/viewing the static resources. Exercises cannot be mixed
with the learning content and do not participate in student’s interactive learning
experience. They simply serve as an assessment tool or they form a pool of
exercise resources (Object Banks) aimed for a teacher, who wants to use them
in his custom-made lessons and examinations.

While there is really great freedom about the way the static content can
be built (HTML, PDF, flash objects etc.), this is not the case with interactive
exercises. They can be described only by means of the old QTT 1.2.1 data format
(constrained even further by the CC profile), and played back by the player
integrated with the server software. There is no place for the dedicated player
here, so the content producer has really limited possibilities with regard to choice
of exercises and the way they are presented to the student. In fact — even though
the CC specification claims that it can handle 6 exercise types — there are just
two distinct exercise types to choose: multiple choice (in 3 simple variants) and
fill-in-blanks. And even these two types have important limitations that allow
for their use in really simple cases only.

On the other side — the lack of a dedicated player can be an advantage
for some content producers that are interested in simplicity. Creating only the

62



authoring software for QTT 1.2.1 could be — in theory — simpler than creating
both authoring software and a dedicated player. It would be true — if the QTI
1.2.1 was straightforward and easy to implement. Unfortunately — it is not the
case, and I will explain it in details later in this document.

One advantage of a CC approach without the dedicated player can be easily
seen. The CC package doesn’t have to care about communication with the LMS
server, there is no need to think about the exercise status, scoring etc. — because
all these issues are handled by the standard player integrated with the server.
The content producer simply has to describe exercises using some standard data
format. It is a really great idea. But the choice of QTT 1.2.1 as the data format for
interactive exercise representation, and restricting this format in the CC profile,
makes it difficult to create anything except some really simple content.

2.3 Key Differences

The main difference between the YDP and CC content is the existence of the
dedicated player for the YDP content. It doesn’t exist in Common Cartridge and
all interactive content for CC must be described by means of QTI 1.2.1 files.

Another important difference is the complete separation of learning and ex-
amination in CC — while in YDP content most exercises are alternated with
static content on lesson pages, and they together form an interactive learning
experience. Obviously, we also make use of the ”examination” concept (just like
in CC) and the series of exercises that form an assignment also exists in our
content — but they are not dominant. We believe, that solving exercises is a
part of a learning process and exercises should not be limited to examine the
students only.

The really limited number of exercise types available for CC is another prob-
lem for implementing a conversion of our content. It is not possible to use connec-
tion exercises, word jigsaw, sentence jigsaw, element grouping, text item identi-
fication, crosswords, marking elements, colouring pictures, solving mathematical
equations and many more It makes the straight conversion impossible.

And last, but not least — the visual appearance. We put much effort in
graphic design of our lessons. Pages are beautifully laid out by graphic designers
to satisfy both the aesthetics and the ergonomics. As this would not be a problem
to obtain the same level of aesthetics on the Common Cartridge static pages —
it is impossible to achieve it with assignments. Using the old QTI 1.2.1 there is
no way to express the layout and graphical appearance of the page. We must
reconcile ourselves to simple text exercises laid out one per page. We are aware of
the fact that some aspects of visual appearance can be defined using ”text /html”
instead of plain text. But this potentially powerful feature is not well explained
in the specification — so we don’t know, what is the intended scope of the HTML
that can be used in QTI <mattext> elements. It would be rather unrealistic to
believe, that one can put a complicated HTML there — with pictures, tables or
JavaScript for example. So we believe, that ”text/html” means just some text
attributes — like bold, italic or font colour and size. While it is useful to have

63



such possibilities, they would not allow us to design the layout and create a
visually stunning page.

2.4 The Solution

As described before, it is impossible to make a straight conversion of our content
into CC, because of the limited number of exercise types available, and because
of the strict separation of lessons and exercises in CC. However, we’ve invented
a workaround for this problem.

The CC specification allows us to put any ”"web content” into the package,
so we can also include our player — which is, in fact, just a big SWF file that
can be run in a flash plug-in in a HTML browser. The player will not be able
to communicate with the LMS server (because it is not the CC way of doing
things), but it will be able to play our content without any problems, with all
kinds of exercises and multimedia files, with attractive appearance and with the
pages layout that we designed. But from the CC server’s point of view — it will
be just the static content and the exercise results and state will not be reported
to the server. From the student’s perspective, however, lessons with educational
content alternated with exercises still form a very valuable learning experience:
interactive exercises can check student’s answers, show hints, display feedbacks
and show results. The results and exercise state are transient and will not survive
when the student closes his session with the system, but they assist the student
during the course of learning.

And then it comes to the examination. We have to stick with the CC con-
vention and try to represent some exercises in QTT 1.2.1. We decided that for
each lesson we will prepare some additional pages with simple exercises that can
be converted to QTI, and they will form an examination after the lesson.

So each of our packages will consist of an interactive lesson with exercises
that do not report results to the LMS, and the assignment with some exercises
related to that lesson — prepared in QTT 1.2.1.

3 Implementation of the YDP — CC Converter

We have designed and implemented the application that takes a number of
lessons from our existing content and includes them in the Common Cartridge
package. The application is written in Java, and it has the user interface that
makes it possible to select lessons for conversion and specify the conversion type.
The lesson data can be interpreted in two different ways, depending on the type
selection made. It can be either ”lesson” or ”test”.

3.1 Lesson Conversion

If a "lesson” conversion type is selected, all the data files (various XML and
media files) are copied into the package directory structure and appropriate
entries for each file are added in imsmanifest.xml file. The directory containing

64



all the files looks almost identical, like in our original content; the location of files
in relation to each other is preserved. The only change to the original content
was the necessity to change filenames of most xml files — I will explain it in
details later.

For each directory that contains the data for a single lesson, a HTML file
is generated during the conversion. This HT'ML contains a Flash Player applet,
that loads our dedicated player (in SWF file), and this player loads end executes
the lesson content described in XML files.

The dedicated player is also copied to the package into a separate directory,
and is referenced from each generated HTML file. All the files described above
are registered in imsmanifest.xml file as a "webcontent” data type. From the
server’s point of view, they just form a HTML page with the embedded SWF
file.

Everything should run on the CC server as a static content — i.e. without the
possibility to report the exercise results to the server, and without the persistent
storage of exercise state. However, the content in the cartridge should look and
behave identically to our existing applications.

We validated generated packages using the Cartridge Validator application
(Common Cartridge Test Tool). This application proved really useful and helped
to find some bugs in the package structure. Finally, we had the validated package
that truly conformed to the CC specification.

The final step for static content conversion was to run it in some reference
Common Cartridge player and verify that it works just like expected. The prob-
lem was the apparent lack of the reference CC player on the IMS Global site. We
couldn’t find this important resource, so the only option was to use the player
from Icodeon for testing purposes. Thankfully, we had no difficulties getting the
access to Icodeon site to try their player.

We had only one problem during this stage of implementation. The package
generated just like described above didn’t seem to work It seemed strange, be-
cause we expected that the package that validates correctly will, at least, show
some signs of working But we had just a grey rectangle. After some debugging
we found that most of our XML files looks like they did not exist on the server
(we got error 404 for them), while some others XML files and all media files
(JPG, SWF, MP3 etc) were okay. All the missing files had something in com-
mon: they were XML files, but their filename extension was different: .page or
Mo for example. The possible explanation of the problem could be the MIME-
type settings on the server (ignoring all unknown file types), or the package
import algorithm, that rejects unknown file types. Anyway — we had to rename
all the files to XML. It was not that easy, because there was the need to find
all internal references to renamed files in XML and change them. Of course, we
finally succeeded and we’ve got our content perfectly running on the Common
Cartridge server!!!

65



3.2 Exercise Conversion

If a "test” conversion type is selected, the YDP content is treated in a different
way. It has to be converted to QTT file. Since this conversion is impossible for
our stock content, we use the content created especially for this purpose. It
contains only two exercise types (single/multiple choice and fill-in-blanks), and
text modules for presentation of questions. We tried to get the most out of
the QTT specification and used advanced features, like feedbacks. However, the
results were mixed, some features that we wanted to implement were acceptable
in the CC specification, some were not. The specification is not clear in many
places, and it was an additional difficulty. We were also surprised with the fact,
that even these simple exercise types allowed in the ”CC profile” do not always
work as expected: we couldn’t convert our fill-in-blanks exercises to CC, because
they usually (in fact — almost always) contain many blanks in a text. And it
looks that ”CC profile” restriction to the QTI doesn’t allow us to have more
than one gap in a single exercise, and this single gap must be at the beginning
or at the end of a sentence...

But the main problem was the exercise scoring method in QTT 1.2.1, which
is overly complicated and difficult to implement. Wouldn’t it be better to select
some simple and standard scoring methods for the exercise, instead of this big
and complicated <resprocessing> section for each item? Anyway — the problem
with <resprocessing> is much more serious: despite its complexity, its abilities
are really small. This is because of the CC Profile restrictions that force to
use the SCORE variable only in ”all or nothing” manner. It means that if we
have the multiple choice exercise with ten checkboxes, five of them being correct
answers — than we have no way to express that we want 20 points for each
correct answer. All we can do is to set 100 points if all five correct checkboxes
were selected. In case of any error, we have to set 0 points for the entire exercise.
This single deficiency makes the whole CC system useless for the representation
of any high quality content. Really, only very simple exercises, like choice with a
single correct answer (with radio buttons instead of checkboxes), or fill-in-blanks
with a single gap, can be correctly scored.

The YDP converter creates QTT files that can be positively verified by the
Common Cartridge Validator. However, when we run them in the CC player,
which is available for us, only fragments of exercises appear and they do not act
as expected. Perhaps it is because the Icodeon player is also under development
and maybe we just run into some not implemented features, or just bugs. But at
this stage of development we really need a rock-solid reference player to verify
our implementation in practice.

3.3 Problems and Suggested Solutions
The most difficult part of this project was to study the specification. The Com-

mon Cartridge Specification document [1] is not precise, not coherent and even
sometimes internally contradictory. Some simple, obvious topics are explained

66



with such a great amount of detail that makes them almost unreadable (chap-
ters 3.3 and 3.4 about file location in a package and references between them,
for instance) and difficult to understand. On the other hand, some topics that
should be explained with more details are too brief. This is the case with the QTI
description (chapter 4.9). The diagrams for QTI are helpful, but they are con-
tradictory to the description sometimes, especially when it comes to differences
between QTI 1.2.1 and QTT Common Cartridge profile. We couldn’t find definite
answers for many questions — for instance whether one can use pictures or video
in exercises. The diagram in paragraph 4.9.8 of the specification [1] suggests that
it is possible (see MaterialSelection box), the description in paragraph 4.9.1.4
and 4.9.2 says — that only text is allowed. Such inconsistencies are frequent in
this document. Writing a new version of the ”CC profile” specification, similar
in quality to the QTTI 1.2 specification document [2] (which is, in contrast, very
clear, precise and easy to read) would be very much appreciated by developers.

The Validator tool proved to be really very useful. However — it didn’t find
a problem with XML files that have the filename extension different than .xml.
We suggest updating this tool, including also filename extension validation.

There is an urgent need for the official reference Common Cartridge player,
which would be available to any developer that is interested in CC package
creation. We just can’t convert anything to CC if we can’t see the proof that
everything is working correctly. The specification, that doesn’t give clear answers
for many questions, makes the problem even bigger. Many issues just have to be
tested in a reliable player. The reference CC player is on the top of my wish list
today.

4 Conclusions

Despite the obvious limitations of the Common Cartridge, we want to continue
our efforts to familiarise ourselves with this standard and prepare some software
tools, that would allow the conversion. However, Common Cartridge has too
many limitations at the moment to be considered our main format for packaging
the content. But we acknowledge, that it has not been designed for such a task. It
was designed to make possible the creation of small exchangeable items, learning
objects that can form building blocks for a teacher, who wants to create her own
course. We would be happy to be able to create such small building blocks in the
future, based on our existing content. But for this application to be successful,
the CC standard should evolve and allow for more interesting, more complicated
content.

We would appreciate some improvements and changes — the replacement of
the "QTT 1.2.1 CC Profile” with something better would be our first postulate.
One possible solution could be a move to QTI 2.0 that solves many problems
of the old version (it has quite broad choice of exercise types, more logical and
concise syntax, support for HTML-like layout control and CSS styles). Or, as a
minimum, the new version of the CC profile still based on QTI 1.2.1, but with
less restrictions (especially in <material> sections and in the <resprocessing>

67



area). We are open to discuss these issues and exchange ideas to make this
standard better and really useful for the software industry.

References

[1] IMS Common Cartridge Profile, Version 1.0 Final Specification
(http://www.imsglobal.org/cc/ccvip0/imscc_profilevip0.html)

[2] IMS Question & Test Interoperability, Final Specification Version 1.2
(http://www.imsglobal.org/question/index.html)

68





