
AGILE PROCESS EXECUTION WITH KISSMIR1

1 This work has been conducted within the EU-funded Integrating Project MATURE (grant no. 216346) which investigates knowledge

maturing as new form of learning in businesses and organisations, a dynamic view one-learning and knowledge management.

Andreas Martin
Institute for Information Systems

University of Applied Sciences Northwestern
Switzerland FHNW

Riggenbachstrasse 16
CH-4600 Olten

andreas.martin@fhnw.ch

Roman Brun
Institute for Information Systems

University of Applied Sciences Northwestern
Switzerland FHNW

Riggenbachstrasse 16
CH-4600 Olten

roman.brun@fhnw.ch

ABSTRACT
In this paper, we describe an approach for agile business process
execution and its developed prototype. In a rapidly changing
environment an enterprise must be flexible and able to quickly
react. Traditional business process modelling approaches are too
rigid and inflexible. To achieve more agility, the modelling
during build-time must be less strict and more open in a way that
users are able to perform individual adaptations during run-time,
which leads to more flexibility. Being able to react fast is also
depending on the enterprise knowledge. Employees must be
aware of it and able to access it in an easy way. The approach
proposes to use ontologies to store information and appropriate
services to receive context-relevant information to tackle these
challenges.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures - Domain-specific
architectures. H.4.0 [Information Systems Applications]:
Miscellaneous.

General Terms
Management, Design.

Keywords
Agility, Knowledge-intensive Activity, Process execution,
Ontology

1. INTRODUCTION
With the accelerating innovation cycle in a globalised world,
organisations need to adapt their IT solutions to the changed
business requirements more frequently and unexpectedly. Agility
has emerged as an important common characteristic of successful
businesses. Conventional business process modelling and
execution approaches have found themselves overstretched in
such situations due to the lack of flexibility.
Therefore, business process models need to be agile and open for
changes during execution. To achieve this, the strict distinction
between build-time modelling and run-time execution is softened
and process activities are represented to the users in a way that
allows for individual adaptations. The implementation of this
approach is described in this work at hand.

1.1 Short overview of KISSmir
KISSmir is a process handling and information sharing tool. The
objective of it is to transfer and share knowledge and experience
among knowledge workers in an organisation and to
collaboratively learn and mature processes by executing them [1].
It focuses on the modelling of knowledge intensive business
processes and aims at the following goal The individual
knowledge and experience used when carrying out a process
should be shared with other employees in an organisation. In
KISSmir, the user should thus be able to add and exchange new
knowledge and experience at any time. In order to reach these
goals, business process models are made agile and open for
changes during execution. The activities of the process models are
represented in a way that allows end users to adjust them by
attaching resources and experience deemed valuable for others in
that specific context [2].
The paper is organised as follows: Section 2 describes the
application scenario within which KISSmir has been applied and
evaluated. Section 3 describes the architecture and Section 4
shows how it has been implemented. Then a scenario describes
the four main parts in more detail before concluding the work and
giving an outlook for future work.

2. Application Scenario
KISSmir is currently being applied in two scenarios –

additional scenarios have already been considered but not yet
realised. The first of these scenarios concerns the process of
selecting students for matriculation in a master’s programme at
the FHNW while the second scenario is still in an early stage and
supports the recruitment process at SAP Research. In this paper,
only the first part of the matriculation process will be shown and
explained (see Figure 1).

At the beginning of the process, a student has to send the
application to the administration office. First, all of the data
needed is entered by the administration office into KISSmir
before the process continues with the next activity. Following the
sequence flow, the sub-process 'Check Application' has to be
performed with various activities. However, the execution
sequence of these activities, and which of them is being executed
at all, depends on the specific context of each process instance.
and makes it adaptive. When finishing an activity, the user is
asked whether the requirements for the particular activity are met

36

or not. As soon as all activities have been performed the process
goes to the next activity 'Send rejection letter', 'Send acceptance
letter' or 'Check Criteria List' depending on whether the
requirements for an application are fulfilled or not. Hence context
data used and adapted in an activity by a user is relevant for the
execution of subsequent activities making a process adaptive. The
process then would continue with other activities but the
explained fragment is the most interesting part for KISSmir.

Figure 1: Matriculation process

The above application scenario has been used to evaluate the
approach of KISSmir. The evaluation consisted of a first phase
where the implemented approach had been explained to the end
users and a guided walkthrough (including subsequent interviews)
had been conducted afterwards. The results were promising and
valuable feedback could be received. Based on it, KISSmir has
been further developed and evaluated in a second phase, where
the system has been used in a productive environment during a
period of four weeks. Subsequent interviews have been conducted
in order to verify the process support of KISSmir, the practical
use of the adaptivity services, personal taks management,
knowledge maturing and sharing and to gain new cognitions. The
analysis of the interviews is currently in progress.

3. ARCHITECTURE
Figure 2 gives an overview of the architecture. The business
process serves as backbone and orchestrator of the whole
approach. The first activity represents a normal one, whereas we
call the second activity a Knowledge Intensive Activity (KIA).
KIAs can consist of sub-activities for which no sequence is
defined and the execution is optional, depending on specific
information for the certain process instance [3].
When an instance of an activity in the process is executed, it
calls various services. These can be adaptivity services which
endorse the agility of the process and also provide context
dependent relevant resources, or application partner services
which have been developed for their specific purposes. The yet
implemented adaptivity services have been developed specifically
for the application partner but it is intended to implement generic
ones reusable in other context. As a first step a study fee

calculation service has been implemented which calculates the
study fee of the applicant based on the given data and influences
the workflow. These services should not be mixed with the
reasoning services in section 5.3 - they use the ontology for
inferencing. A so called task pattern [4] is related to each
activity. It consists of additional information such as websites that
could be helpful to execute an activity, the executor of the
activity, a link to the applicants application data or documents
(e.g. templates) needed to execute an activity. The task pattern
proposes needed resources and steps to perform an activity.
However the user does not have to follow or use these
suggestions. He/she is able to adapt the task pattern to his/her
needs. These adaptations are stored locally so that the execution
of the same activity will be proposed in the adapted way.
Furthermore, the adaptations can also be shared with colleagues
working on the same activities. The utility web service is
responsible for the instance handling and also for the management
of property data. An ontology is used to store necessary and
helpful information for the task execution along with a relation to
the activity instance, e.g. websites, experts or historical cases
which might be useful in the activity execution. This information
was earlier collected by web services in step one. Also related is
its task pattern which includes the information as described in
step two. The communication web service is triggered. It is a
service that sends an e-mail to the user which has to execute the
activity. This service was developed by other partners in the
MATURE project2.

Figure 2: KISSmir Architecture overview

 As soon as the user accepts the activity by clicking on a link
provided in the e-mail, it is loaded into the GUI of KISSmir. In
the current implementation we have used the Kasimir UI [5].
There, the user finds necessary information to execute the
activity. On the one hand, information which was already defined
in the task pattern during build-time. On the other hand, this
information that has been collected from the previously
mentioned services and stored in the ontology during run-time.
From there the information is retrieved. Some queries might not
be executed until the user accepts the activity. This guarantees
that the latest information is provided, for example if it takes two
weeks until the user accepts the activity, it is useful to search for
historical cases at the time when the activity is accepted and
executed but not a priori. When the activity has been finished,

2 MATURE IP: http://www.mature-ip.eu/

37

the user terminates it by clicking the appropriate button. This
triggers a return message over the communication web service
back to the utility handling web service, which communicates
with the running process instance.

4. IMPLEMENTATION

4.1 Overview
The modelling of an adaptive business process could be
performed in a semantic modelling environment like ATHENE
[6]. The activities of the processes are linked to the related task
patterns and resources (files, roles, etc.) which are stored in
semantic repositories (see Figure 3). Further on, the process
model can be enhanced by adaptivity services . After modelling
the process in ATHENE, it could be transferred to the execution
framework and stored in a semantic repository . In the case of
an automatic transformation, the model represented in a
knowledge representation language like RDF/S3 or OWL4 could
be transformed by a transformation service into a process
execution language like BPEL5 or XPDL6.

GUI

Modelling Environment

Execution Framework
Transformation

B
ui

ld
 ti

m
e

R
un

 ti
m

e

Per-
sistence

WS

Per-
sistence

WS

App.
Partner

WS

App.
Partner

WS

Adap-
tivity
WS

Adap-
tivity
WS

Utility
WS

Utility
WS

Commu-
nication.

WS

Commu-
nication.

WS

Semantic
Repository

Figure 3: Architecture
The transformed process can be executed in the execution
framework (e.g. BPEL workflow engine) . The process can
access the linked resources which are stored in the semantic
repositories and invokes the defined adaptivity services during
run-time. The communication web service, which handles the
whole instance management and communication, invokes the task
GUI (graphical user interface) . The utility web service is used
to define and access any kind of settings, options and preferences.

4.2 Execution framework technology stack
The KISSmir approach is implemented as follows (see Figure 4):

3 RDFS: http://www.w3.org/TR/rdf-schema/
4 OWL: http://www.w3.org/TR/owl-features/
5 WS-BPEL: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-

v2.0-OS.html
6 XPDL: http://www.wfmc.org/xpdl.html

Data storage: KISSmir uses the open source framework Sesame7
as semantic repository for the storage and querying of ontological
data. The Sesame framework consists of a server container that
runs on an Apache Tomcat8 web server. For internal configuration
and logging data, the open source database MySQL9 is used.

Process Layer:
GlassFish ESB

Data Access Layer:
Apache Tomcat Server

Business Layer:
Apache Tomcat Server

Per-
sistence

WS

Per-
sistence

WS

App.
Partner

WS

App.
Partner

WS

Adap-
tivity
WS

Adap-
tivity
WS

Utility
WS

Utility
WS

Commu-
nication.

WS

Commu-
nication.

WS

Presentation Layer:
Adobe Flash Player / AIR

Apache CXF

Adobe Flex

Spring

BlazeDS

Sesame

Sesame

Hibernate

GUIGUI
BPEL

MySQL

Webservice or Java Remoting

Webservice or RMI

W
eb

se
rv

ic
e

HTTP / JDBC

Spring

Figure 4: KISSmir technology stack
Data access layer: The data access layer is represented by the
persistence web service. This service contains the data access
procedures to access the KISSmir ontology using the OpenRDF
Sesame Framework written in Java. There exist generic and
application partner specific data access implementations. Apart
from the ontological services, the logging and configuration
services are implemented using the object-relational mapping
features of the Hibernate10 framework.
Business layer: The business layer contains several KISSmir web
services that are explained in Section 3. These services are
exposed as Enterprise Java Beans using the Spring11 framework.
The beans are deployed as JAX-WS12 web services using the
Apache CXF13 framework. For fast and lightweight Java/Flex

7 Open RDF Sesame: http://www.openrdf.org/
8 Apache Tomcat: http://tomcat.apache.org/
9 MySQL: http://dev.mysql.com/
10 Hibernate: http://www.hibernate.org/
11 Spring: http://www.springsource.org/
12 JAX-WS: http://www.jcp.org/en/jsr/detail?id=224
13 Apache CXF: http://cxf.apache.org/

38

remoting and messaging the open source framework BlazeDS14 is
used.
Presentation layer: The graphical user interface is implemented by
using the Adobe Flex15 rich internet application platform. This
enables a fast and easy to use approach for creating application
partner specific forms (see 5.1 Application handling GUI)
Process layer: The KISSmir process is described in the execution
language BPEL, running on the Sun GlassFish ESB server,
invoking several KISSmir web services.
We strongly focus on the ability to use the KISSmir approach in a
real world scenario using existing and state of the art
technologies. The mentioned technology stack gives the
possibility to adapt this approach in an existing environment. The
only requirement is the possibility to work with webservices.

5. SCENARIO
In this chapter the four main components of KISSmir (the
application handling GUI, the BPEL process, the ontologies and
the web services) are described in more detail on the basis of the
implemented application scenario. For the time being the business
process itself has been modelled in PROMOTE [7] using the
graphical modelling tool Adonis16, but any other business process
modelling tool and notation could have been used as well. It is
then transferred into a BPEL process. The Kasimir UI has been
used to manage activities [5].
The sequence of the description follows the typical flow of
working with KISSmir. However, the development process for an
application scenario would be different sequence. After modelling
the business process with the end users, the ontologies that cover
the shared view of the scenario have to be defined. Next,
(reasoning) web services that interact with the ontology and are
used during process execution need to be implemented. Then the
BPEL process has to be developed following the business process
from the application scenario. The business processes often
include some human activities. Therefore a GUI has to be created
in order to facilitate the communication among the process
instance and the user.

5.1 Application handling GUI
To serve the purpose of the application case, an Adobe Flex form
has been developed which triggers the BPEL process. In the
second activity of the process in Figure 1, the administrative
office receives the application and needs to enter the data into
KISSmir. The secretary enters all necessary data into a Flex form
and attaches certificates and the letter of motivation. This
information is available during the whole process execution to
any user that is working on the case.

5.2 BPEL Process
There exist different approaches for business process execution,
e.g. BPEL [8], XPDL [9] or YAWL [10]. For KISSmir the
OpenESB17 including NetBeans18 IDE and GlassFish ESB server

14 BlazeDS: http://opensource.adobe.com/blazeds/
15 Adobe Flex: http://opensource.adobe.com/flex/
16 Adonis: http://www.adonis-community.com/
17 OpenESB: http://open-esb.dev.java.net/

has been chosen, which includes a design and run-time
environment for BPEL processes.
As aforementioned, the business process modelled in Adonis
needs to be transferred into a BPEL process according to the
application scenario. At the beginning of the process, necessary
variables that build the context of the current instance are set. The
process can be seen as a backbone from which various web
services (WS) that are needed for each activity are called. For
example, the activity 'Check completeness of certificates' first
calls a WS to get an ID that is unique for this activity instance.
Then a WS is called to receive experts according to the context
(e.g. the applicant's country) and another WS is called to get
historical cases (i.e. instances of the process which have already
been executed and have similarities to the current instance) -
again regarding the context. All the gathered information is stored
in an ontology, using another WS. Then an e-mail is sent using a
WS to notify the users about an activity that needs to be handled.
Afterwards, the process waits for a callback (which is equivalent
to the termination of an activity) and then chooses the next
activity to be executed. Most of the web services call other web
services, e.g. because of persistence issues or to access the
ontology or property data.
In the BPEL process the instances also need to be managed.
Again, web services are used to register the instances and handle
the callbacks.

5.3 Reasoning Services
Having the data stored in an ontology offers many advantages.
They can be listed according to the definition of Studer and
colleagues [11]: A formal specification is machine readable (not
just machine processable), can be validated, and there is no room
for interpretation. Explicit means that concepts, functions and
axioms are explicitly defined. Shared conceptualization indicates
a common understanding about the concept, the modelled world
and, last but not least, reasoning can be applied. In this section the
two services for which reasoning mechanisms have been used are
explained.

5.3.1 Expert Service
When a secretary is working on the application of someone
coming from China, there might be some certificates attached
which he/she is not able to understand as they are not (fully)
translated. However, in the university there are also lecturers from
China that are able to read the written Chinese language. As
described in Section 5.4, the ontology also describes skills of
persons. By searching in the ontology, it can be reasoned that the
Chinese professor might be able to help the secretary although
these two people haven't been aware of each other before. In such
a way, the awareness and of usage organizational knowledge and
skills can be increased.

5.3.2 Historical Case Service
It might be helpful to get information about historical cases when
working on specific activities. The historical cases give
information about how the activities and processes have been
performed in the past and also offer an additional basis for
decision making. A historical case represents a finished

18 NetBeans IDE: http://netbeans.org/

39

instantiation of a process. The service looks for a historical case
that is similar to the given case. There can be a similitude
regarding the applicant's university or country of origin -
searching for more analogies is conceivable. The service returns
the historical case with all information as applicant data,
attachments, decisions made, notes made on it, etc. which can be
viewed by the users.

5.4 Ontologies
The entire ontology used in KISSmir can be divided into various
namespaces or ontologies respectively (see Figure 5). The arrows
indicate the relation from the dependent to the independent
ontology. It was the objective to integrate already existing
ontologies as far as possible in order not to reinvent the wheel.
Therefore the ISO 316619 ontology has been built according to the
existing standard of country names and their alpha codes. From
the Dublin Core Metadata Initiative20, the fifteen core elements
(dcelements), such as title, language, creator etc. and the
refinements (dcterms) as license, rightsHolder, modified, etc.
have been integrated into the ontology.

Figure 5: Ontologies and their dependencies

Next, ontologies from the OntoGov project [12] have been
chosen. They are used to structure elements from the
organisational domain, the process and activity domain, type
elements as well as resource elements. Only concepts relevant for
KISSmir have been selected. The two following ontologies have
been designed specifically for KISSmir. TDO stands for 'Task
Description Object'. It is used to store any information which is
retrieved from the web services as described in Figure 2, step .
This can be resourelink, weblink, expert, task pattern id, problem
and solution. The kissmir ontology refines the resources from the
ontogov ontology by distinguishing between knowledge resource,
information resource, parts and tools. It also defines different
roles that can be related to a person as executor, responsible,
involved, informed and expert. Skills, which again can be related
to persons, are defined and activities are further refined according
to the KISS approach [3]. The msc ontology is only used for
application specific needs. This means that every application
partner will have to replace this ontology with their own specific
concepts. MSc stands for 'Master of Science' for which persons

19 ISO 3166: http://www.iso.org/iso/country_codes.htm
20 DCMI: http://dublincore.org/

apply in the matriculation process. It includes concepts such as
the degree programme or the applicant and refines the information
source concept with multiple data element concepts.
There exist different approaches for the categorization of different
ontologies as the ones of Mizoguchi and colleagues [13], van
Heijst and colleagues [14], Lassila and McGuinness [15] or
Guarino [16] among others. Following the categorization of
Guarino, iso3166, dcelement and dcterms can be classified as top-
level ontologies, tdo, ontogov and kissmir as domain ontologies
and msc as application ontology.
Not indicated in the overview are the instances which can be
related to any ontology. The ontology has been loaded into the
OpenRDF Sesame Repository21 from where it can be accessed. A
specific service has been implemented based on the given basic
functionalities to create, read, update and delete data.

6. FUTURE WORK

6.1 Integration into the MATURE
infrastructure
One next goal is the KISSmir integration into the MATURE
infrastructure [2]. This infrastructure provides four levels of
integration. KISSmir will be integrated in to the following ones:
User interface integration: The KISSmir GUI is based on the
Adobe Flex rich internet application framework. This enables an
easy integration into the MATURE user interface layer and the
usage of intercommunication services. One benefit of the user
interface layer is the possibility to use event management
functionality as described in [17].
Functional integration: The demonstrator will be integrated into
the MATURE infrastructure by invoking the KISSmir services
over the MATURE Bus and using more MATURE services. Calls
to these services can be triggered by a so-called query resource
link (provided by KISSmir) or by the user who is provided with
relevant recommendations for a given work situation.
Data integration: The data, stored in a Sesame repository, will be
integrated by using the MATURE Sesame repository.

6.2 Mining
Process and task mining service(s) are planned to be implemented
in the coming year. When implemented, the service will mine
process and task instances for execution variants. Execution of
knowledge intensive processes with KISSmir gives users the
possibility to adjust task handling to their needs, e.g. creating
subtasks or delegating tasks. Those adaptations - stored in the
TDO - will be analysed. In addition, the system based selection of
knowledge intensive activities will be mined: how often has one
activity been chosen, has this selection been appropriate etc. [18].

7. CONCLUSION
The KISSmir approach addresses the current challenges of being
flexible and agile with semantic technologies in an integrative
manner. Through the usage of state of the art technologies
companies will be able to react on chances more rapidly. Of
course, the KISSmir approach requires an initial effort. An

21 OpenRDF: http://www.openrdf.org/

40

ontology has to be created or enhanced, executable processes
have to be adapted and persistence services need to be created,
but the two application scenarios deliver remarkable results. The
semantic based suggestions and recommendations empower the
users to perform knowledge intensive activities with increased
flexibility and economy of time.

8. REFERENCES

[1] C. Bradley, S. Braun, R. Brun, J. Cook, K. Hinkelmann,
B. Hu, C. Kunzmann, T. Ley, A. Martin, A. Mazarakis,
T. Nelkner, A. Ravenscroft, U. Riss, A. Schmidt, K.
Schöfegger, B. Thönssen, and H.F. Witschel, "D2.2 /
D3.2 Design and Delivery of Demonstrators of PLME /
OLME and Tool Wrapper Infrastructure," 2010.

[2] V. Blažević, S. Braun, R. Brun, H. Eichner, A. Martin,
and R. Woitsch, "D5.3 Infrastructure and Integrated 1st
MATURE System Prototypes," 2010.

[3] D. Feldkamp, K. Hinkelmann, and B. Thönssen, "KISS
– Knowledge-Intensive Service Support: An approach
for agile process management," 2006.

[4] U.V. Riss, A. Rickayzen, H. Maus, and W.M. van Der
Aalst, "Challenges for Business Process and Task
Management," Journal of Universal Knowledge
Management, Special Issue on Knowledge
Infrastructures for the Support of Knowledge Intensive
Business Processes, vol. 0, 2005, pp. 77-100.

[5] O. Grebner, E. Ong, and U. Riss, "KASIMIR – Work
process embedded task management leveraging the
Semantic Desktop," 'Multikonferenz
Wirtschaftsinformatik' MKWI, Berlin: 2008, pp. 715-
726.

[6] K. Hinkelmann, S. Nikles, and L. von Arx, "An
Ontology-based Modeling Tool for Knowledge-
intensive Services," MeTTeG07, Proceedings of the 1st
International Conference on Methodologies,
Technologies and Tools Enabling E-Government,
Camerino, Italy: 2007, pp. 43-56.

[7] D. Karagiannis and R. Telesko, "The EU-Project
PROMOTE: A Process-oriented Approach for
Knowledge Management," Methodology, 2000, pp. 30-
31.

[8] T. Andrews, F. Curbera, H. Dholakia, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.
Trickovic, and S. Weerawarana, "Business Process
Execution Language for Web Services," 2003.

[9] Workflow Management Coalition, "XML Process
Definition Language (XPDL)."

[10] W. van Der Aalst and A. ter Hofstede, "YAWL: yet
another workflow language, Technical Report,"
Information Systems, 2002.

[11] R. Studer, V.R. Benjamins, and D. Fensel, "Knowledge
Engineering: Principles and Methods," Data &
Knowledge Engineering, vol. 25, 1998, pp. 161-197.

[12] B. Thönssen, L. Stojanovic, and T. Pariente, "OntoGov,
Ontology-enabled e-Gov Service Configuration.
Description of Ontologies, Addendum to D2," 2004.

[13] R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda,
"Task ontology for reuse of problem solving
knowledge," Towards Very Large Knowledge Bases,
1995.

[14] G. van Heijst, A. Schreiber, and B. Wielinga, "Using
explicit ontologies in KBS development," International
Journal of Human-Computer Studies, 1997, pp. 183-
292.

[15] O. Lassila and D. McGuinness, "The role of frame-based
representation on the semantic web. Technical Report
KSL-01-02," Linköping Electronic Articles in Computer
and …, 2001.

[16] N. Guarino, "Formal ontology and information systems,"
Proceedings of FOIS’98, Trento, Italy: IOS Press, 1998,
pp. 3-15.

[17] T. Nelkner, Best Practices for the Knowledge Society.
Knowledge, Learning, Development and Technology for
All, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009.

[18] T. Ley, K. Schöfegger, and N. Weber, "D4.2 Maturing
Services Prototype V1," 2010.

41

