
Logic‐based ad‐hoc business process management: Concepts and
Challenges

Darko Anicic
FZI Karlsruhe

Haid-und-Neu Strasse 10-14
76131 Karlsruhe
+49 721 9654958

Darko.Anicic@fzi.de

Nenad Stojanovic
FZI Karlsruhe

Haid-und-Neu Strasse 10-14
76131 Karlsruhe
+49 721 9654852

Nenad.Stojanovic@fzi.de

Ljiljana Stojanovic
FZI Karlsruhe

Haid-und-Neu Strasse 10-14
76131 Karlsruhe
+49 721 9654804

Ljiljana.Stojanovic@fzi.de

ABSTRACT
The need for unpredicted, real-time changes in the business
process is increasing tremendously. However, a well-founded
approach for representing these processes in an executable
form is missing. In this position paper we introduce the
concept of the event-driven ad-hoc business process
management and present some of challenges.

Keywords
Ad-hoc BPM, Logic Programming, Complex Event Processing

1. MOTIVATION
An increasing dynamics in today business and life requires
flexible infrastructures that can sense a problem or opportunity
almost immediately after their occurrence (ideally: before they
will appear) and react accordingly. It is especially relevant for the
business processes which are underpinning complex work or life
situations, like emergency management, since many unexpected
events (problems or opportunities) can happen all the time and
traditional approaches for coping with the diversity in business
processes, like using business rules, are simple not feasible.
Indeed, if we consider a forest fire, so many parameters can be
changed every second (like the direction of the wind, the intensity
of fire) so that any a priory coded adaptivity will fail.
Additionally, even someone wants to define adaptivity in design-
time, there are situations which cannot be calculated in advance.
For example, if during the fighting against the fire a very strong
wind starts, the correct action can be calculated only in the
moment of the execution, since there are so many parameters that
can influence the decision and which will be know in the real-
time, like the intensity of the fire, the number of available
firemen, the environment, … It means that the system must
reason about these events in real time in order to calculate
corresponding change in the workflow. This is what we call ad-
hoc process changes and corresponding processes event-driven
ad-hoc processes. Therefore, any precoding of the possible
changes (alternative paths in the process execution) will decrease
the flexibility of the process, i.e. the efficiency of the running
process instance.

However, these requirements are quite challenging and require a
different view on the process flexibility: flexibility in a process is
not defined a priory (like in business rules) but it is calculated in
the real time, based on the constraints which are defined (mainly)
a priory, in the design time. Obviously, it requires a different
formalism for representing business processes: one that enables
declarative representation and reasoning with constraints.

In this position paper we present such an approach based on the
logic.

2. A UNIFYING FRAMEWORK FOR
EVENT-DRIVEN AD-HOC PROCESSES:
MODELING AND REASONING

Figure 1 depicts the main aspects of event-driven ad-hoc
processes addressed in this work. In particular, the figure shows
the conceptual relationships between executing tasks, the
workflow scheduler, and the dynamic change manager. Tasks that
need to be executed are scheduled by the scheduler. The
scheduler orders executing tasks according to the model specified
by a concrete workflow. The dynamic change manager (DCM)
may alter the scheduling plan, i.e., the order in which tasks are
scheduled for execution. This may happen due to detection of
certain events that represent unexpected situations.

Figure 1. Conceptual architecture of event-driven ad-hoc
processes

48

In the presented conceptual architecture, tasks are seen as external
event sources. The scheduler receives a stream of events from
these sources, and schedules them in time. The incoming event
stream is denoted by the arc pointing from tasks to the scheduler
(see Figure 1). As events may represent statuses of executing
tasks (e.g., start, end etc.), scheduling an event amounts to
scheduling of a task (process). Process scheduling must ensure
that scheduling satisfy all constraints, specified by the workflow
(possible after reordering some events in the incoming stream).
Reordering is realized by sending events from the scheduler back
to tasks (depicted by the arc in the reverse direction).
For example, such an event may carry information that a
corresponding task is either allowed (for execution), rejected, or
delayed. Task events are also gathered by the dynamic change
manager, which additionally receives external events (e.g., events
from various information sources or sensors etc.). The manager
correlates these events into complex events (relevant with respect
to a particular business domain). Hence the manager utilises event
processing to detect real-time situations that require certain
decisions. Decisions may deviate an ongoing workflow instance.
They are made by humans, however DCM with its event
processing capabilities help in discovering situations (that might
require deviations). The deviation (adaptation) is typically driven
by the need to take into account new emerging issues (e.g.,
something accidentally happen) or to optimise the execution with
respect to certain events (that just happened). Finally, complex
events may further be used externally for e.g., activity
monitoring, various analytics etc. (see Figure 1).
In the following we describe main elements:

Control flow graphs. The focus of the following use case is to
manage an emergency situation caused by a nuclear plant
accident. Let us imagine that due to a critical accident in a nuclear
plant, a large quantity of radioactive substance is released in
atmosphere.
In such a situation, an emergency response system coordinates
with a number activities including emergency responders,
ambulances, fire trucks etc.

Events. Events play a few important roles in our framework. We
summarise the roles in the following list:
– Control flow graph: workflow tasks are typically modeled in
terms of their externally observable events (such as start, end,
commit, precommit, abort etc). Such events can be directly
incorporated as nodes in a control flow graph; scheduling of the
control flow amounts to scheduling of events. (For brevity, our
running example collapses all significant events for the same task
into one event.)
– Workflow constraints: temporal and causality relationships
among workflow tasks are expressed as events. Verification of
workflow constraints is performed as the task of proving that a
given set of events with their temporal and causality interactions
is consistent.
– Complex event patterns: events are used to build more complex
event patterns; that may be used for various monitoring or
analytical purposes, or initiate ad-hoc changes in a workflow. In
this scope, events can represent not only tasks, but external events
too (e.g., events from various sensors, other workflows or
services etc.).

Our framework for event-driven ad-hoc processes needs to sense
for events all the time during its operation. For example, real time

events depict the current radiation measurements, weather
conditions, traffic information, and the present situation in the
decontaminated zone.

Complex events. Complex events represent more meaningful
situations of interest.
They help in assessing different situations and making real time
decisions

Constraints. Control flow graphs are typically used to represent
main activities and their basic dependencies in a workflow. More
fine-grained dependencies are specified by constraints; they
capture global temporal and causality interactions. Yet another
situation when constraints are useful is when specific
requirements need to be taken into account (though they may be
omitted in other situations).

Ad-hoc changes. Emergency response workflows need to cope
with unpredictable changes. Classical workflow management
systems offer good process support as long as the processes are
structured and do not require much flexibility. However
emergency response workflows are expected to be flexible. In
practice, it is not feasible to specify all possible cases that may
emerge in an incident situation. For example, it may happen that
during one emergency situation, another one happens. We can try
to structure typical flow of response activities in one incident
situation, but not in other ones (if they occur).We assume that ad-
hoc changes in workflows are, in major cases, a subject of
human’s decision; CEP provides just a means to detect real-time
situations that possibly require ad-hoc (unpredictable) changes.

With previously described building components (control flow
graph, constraints, (complex) events, changes) we define the main
problems addressed in this paper:
Complex event processing. Process multiple streams of atomic
events with the goal of detecting complex events, according to
meaningful event patterns.
Ad-hoc workflow scheduling. Given the fact that tasks are
represented as events, decide whether the scheduling of event
streams that satisfies both the workflow constraints and ad-hoc
changes exists

3. CONCLUSION
Hitherto, approaches to ad-hoc and dynamic process-aware
information systems acted on the assumption that decision on
process changes are not strictly time sensitive. The emphasis was
rather on full support to process modifications. In many practical
cases (e.g., emergency management) the time to react on certain
situation is limited. Further on, decisions on ad-hoc process
modifications need to be carefully assessed taking into account
many changing parameters. To address these requirements, we
have proposed a framework for event-driven ad-hoc processes.
The framework features both event processing capabilities as well
as capabilities to accept on-line process changes. The framework
is based on declarative rules, and as such it features greater
flexibility with ad-hoc changes.

49

