
Approximate throughput maximization in scheduling
of parallel jobs on hypercubes?

Ondřej Zaj́ıček

Institute of Mathematics, AS CR
Žitná 25, CZ-11567 Praha 1, Czech Republic

ondrej.zajicek@mff.cuni.cz

Abstract. We study scheduling of unit-time parallel jobs
on hypercubes. A parallel job has to be scheduled between its
release time and deadline on a subcube of processors. The
objective is to maximize the number of early jobs. We pro-
vide an efficient 1.5-approximation algorithm for the prob-
lem.

1 Introduction

We study the scheduling of unit-time parallel jobs on
a parallel machine with a hypercube topology of a pro-
cessor network. Each job is specified by an integral re-
lease time and deadline, and the number of processors
it needs, which is required to be a power of two, to
respect the hypercube topology. The jobs have to be
scheduled between their release times and deadlines
and the goal is to maximize the number of jobs com-
pleted before their deadline.

If we consider scheduling of sequential jobs
(i.e., jobs requiring a single processor) instead of par-
allel jobs, the problem is trivial. The natural algorithm
always schedules the jobs with the smallest deadlines
(among the available jobs). A standard exchange ar-
gument shows that this is an optimal schedule. Once
parallel jobs are introduced, this no longer works.

Usually, parallel scheduling problems are NP-hard
because they include some partitioning problem.
Either partitioning the processors among the jobs, or
partitioning the jobs into groups with the same total
processing time is involved. In our case, the hyper-
cube topology, where processors are connected to form
a hypercube and jobs (having a size that is a power
of two) are scheduled on appropriate subhypercubes,
together with the restriction to unit processing times
make these packing problems easy. If we were able to
compute which jobs should be scheduled in each time-
slot, we could always assign the chosen jobs to sub-
cubes in a greedy manner from the largest job to the
smallest one.

? This research was partially supported by Institute for
Theoretical Computer Science, Prague (proj. 1M0545
of MŠMT ČR), grant IAA100190902 of GA AV ČR and
by Institutional Research Plan No. AV0Z10190503.

However, there is no known polynomial algorithm
even to decide whether it is possible to schedule all
jobs within their constraints (feasibility testing). Ye
and Zhang [3] showed that it is possible to maximize
the number of completed jobs if all the release times
are equal. This was generalized to the case of nested
intervals given by the release times and the deadlines,
see [4].

For general release times and deadlines, there are
positive results for the ‘tall/small’ model, in which
only jobs that request one or all processors are allowed.
Baptiste and Schieber [1] showed that feasibility test-
ing in the ‘tall/small’ model is polynomially solvable.
The article contains two algorithms for the ‘tall/small’
problem, see also [2] for an alternative proof. However,
the maximization of the number of completed jobs is
open even for two processors, which is a special case
of the tall/small variant.

Our previous result [5] used the same model (sche-
duling of hypercubes with general release times and
deadlines) but instead of an offline solution it pre-
sented an 1.6-competitive online algorithm. We refined
some ideas from this result and extended it
to take advantage of the offline setting to get an
1.5-approximation algorithm.

2 Preliminaries

The problem has a parameter m giving the number
of machines. An instance of the problem consists of
a set of n jobs. Each job J has an integral release
time rJ , an integral deadline dJ and a size sJ (the
number of requested processors). The numbers m and
sJ are powers of two. As all times are integers and
jobs’ processing times are equal to one, instead of time
we can consider timeslots (aligned unit-time intervals)
and every job requests one timeslot.

We say that job J is feasible at timeslot T if rJ ≤ T
and T < dJ . We say that job J is available at time-
slot T if it is feasible and not scheduled yet. We say
that job J is urgent at timeslot T if dJ = T+1. A sche-
dule assigns to each processed job J find a timeslot T
such that J is feasible at T , and sJ processors, so that
no processor is assigned to two jobs at the same time.



72 Ondřej Zaj́ıček

The objective is to find a schedule maximizing the
number of processed jobs.

We fix an ordering ≺ on jobs that is a strict li-
near ordering based on the ordering of deadlines, in
a case of equal deadlines it is defined arbitrarily. For
example, we take an ordering defined by formula
Ji ≺ Jj ⇔ di < dj ∨ (di = dj ∧ i < j). We suppose,
w.l.o.g., that any algorithm chooses the ≺-minimal job
from the available jobs of the same size when it needs
to choose one job of that size.

We use ALG to denote the analyzed algorithm and
OPT to denote an optimal offline algorithm. Jobs of
size m are called max-jobs, smaller jobs are called non-
max jobs. Jobs of size 2i are called i-jobs (where i is
some integer).

3 Algorithm

The algorithm is based on the online algorithm
from [5], which is a memoryless online algorithm that
in each timeslot examines a set of available jobs and
chooses the maximal subset of jobs to process in that
timeslot according to these rules (in the order of im-
portance):

– Prefer more smaller jobs over one bigger job.
– Prefer an urgent job over an non-urgent job.
– Prefer a bigger job over a smaller job.
– Prefer ≺-minimal jobs between jobs of the same

size.

We call such subset of available jobs a T -preferred set.
The algorithm is modified so that in the timeslots

where a set of available jobs contains some max-jobs
and exactly one non-max job M that has deadline
smaller than all these available max-jobs but it is still
non-urgent, the algorithm not only chooses to process
the max-job with the smallest deadline (by rules 3
and 4) but also marks job M . If job M is schedu-
led later, the algorithm just clears the mark. But if
job M expires later without being scheduled (when
the algorithm processed the last timeslot before the
deadline of the marked job), the algorithm examines
all max-jobs scheduled from the time when job M was
marked, chooses the one with the largest deadline and
replaces it with job M (and also clears its mark). In
that case we call job M a replacer job. Because the
replaced max-job has a bigger deadline than replacer
job M , it will reappear in a set of available jobs. The
algorithm continues with processing the next timeslot
(the timeslot that is equal to the deadline of job M).
Note that when one job is marked, another job cannot
be marked until the mark is cleared.

The algorithm is described by the following pseu-
docode representing a loop body. Global variables

are T for current timeslot, A for a set of available jobs
and MJ , MT for a marked job and its timeslot, other
variables are local to the loop iteration.

1. Add jobs with release time T to set A.
2. Compute T -preferred set S from the set of avail-

able jobs A (specified below).
3. If set A contains exactly one non-max job M ,

which is not a member of set S, let MJ := M ,
MT := T (mark job M and timeslot T ).

4. Remove jobs that are members of set S from set
A, store set S as a schedule for timeslot T .

5. Remove jobs with deadline of T + 1 from set A.
6. If job MJ was removed in the previous step,

examine the computed schedules from time-
slot MT to timeslot T to find a scheduled max-
job J with the largest deadline, change schedule
for timeslot containing job J to contain job MJ
instead, and add job J to the set A.

7. Repeat with T := T+1, until all jobs are processed
and set A is empty.

To complete the description of the algorithm, it re-
mains to describe how to compute a T -preferred set S.
In timeslot T it is possible to schedule any set of jobs
satisfying that each its member is available during T
and a sum of sizes of its members is less than or equal
to m. Let such a set be called a T -schedulable set.

Let us consider a set of all T -schedulable sets. First,
we restrict ourselves to the T -schedulable sets that
maximize the number of jobs. Second, we restrict our-
selves to the sets that maximize the number of urgent
jobs. And finally, we restrict ourselves to the sets that
maximize the sum of the sizes of the jobs. Let the re-
maining schedulable sets be called T -conforming sets.

Lemma 1. All T -conforming sets have the same
number of jobs of specific sizes.

Proof. Let us have two T -conforming sets S1 and S2

that have different number of i-jobs (w.l.o.g. S1 con-
tains more i-jobs than S2) and the same number of
smaller jobs. As both S1 and S2 have the same number
of jobs and the same sum of sizes of jobs, the difference
between number of i-jobs has to be an even number
(otherwise it would not be possible to balance the sum
of sizes by bigger jobs) and there has to be some j-job
(j > i) in S2 and not in S1 (for the same reason).
We can remove one j-job from S2 and add two more
i-jobs (that are in S1 and not in S2) and we still get
a T -schedulable set, but with more jobs than S1 (and
S2). As S1 maximizes the number of jobs (between all
T -schedulable sets), this is a contradiction. ut

Let ni be the number of i-jobs in any T -conforming
set (this is well-defined by Lemma 1). We choose the
T -preferred set as a set containing (for each i) ni



Approximate scheduling on hypercubes 73

≺-smallest i-jobs from all i-jobs available during T .
Obviously, the T -preferred set is also a T -conforming
set.

Our algorithm needs to compute a T -preferred set
for timeslot T . The T -preferred set can be constructed
efficiently by the following procedure:

1. Sort available jobs (set A, input to the procedure)
according to their job sizes in increasing order. In
the case of a tie, ≺-smaller jobs are preferred.

2. Choose as many jobs as possible (the sum of the
sizes of the chosen jobs is not allowed to exceed m)
in the sorted order. Let C be the set of chosen jobs.

3. If all jobs were chosen, finish and return C.
Otherwise, let X be the first job that was not cho-
sen.

4. Find the smallest non-urgent job Y that is suf-
ficiently large so that its removal from C makes
enough space to be able to add X to C. In case of
a tie, a ≺-bigger job is preferred.

5. If Y was not found in the previous step and X
is urgent, then repeat the search but look for an
urgent job instead of a non-urgent job.

6. If Y was found in step 5 or 6, let C ′=C\{X}∪{Y },
otherwise let C ′ = C.

7. Return C ′.

Lemma 2. Set C from the procedure can be trans-
formed to any schedulable set that maximizes the num-
ber of jobs by replacing some jobs with jobs of the same
size and at most one job of an arbitrary size with a job
of size sX .

Proof. C is obviously a schedulable set that maximizes
the number of jobs; therefore, it contains the same
number of jobs as any schedulable set that maximizes
the number of jobs; therefore, to reach such sets we
may restrict to one-for-one job replacements. We may
ignore replacements with jobs smaller than X because
all such jobs are already in C. Replacements with big-
ger jobs are limited by the number of free machines. It
is not possible to replace a job with a job larger than
job X, otherwise there would be enough free machines
to choose X in step 2. It is also not possible to replace
two (smaller) jobs with jobs of the same size as job X,
by the same argument. ut
Theorem 1. For time T , the procedure finds the
T -preferred set.

Proof. By Lemma 2, we can transform set C to the
T -preferred set by some job replacements. There is
no need for replacements between jobs of the same
size because if there are k i-jobs in C ′, then they are
k ≺-smallest available i-jobs. The remaining replace-
ment (Y with X) is chosen to maximize the number
of urgent jobs (X is the ≺-smallest between possible

choices, if X is not an urgent job, then Y is neither)
and remove smallest jobs to maximize the sum of sizes
of jobs. ut

4 Approximation ratio

We will use a charging scheme to prove the upper
bound for the approximation ratio of ALG. A charging
scheme is a set of rules for a specification of weighted
edges between the set of jobs in ALG schedule and
the set of jobs in OPT schedule to create a bipartite
graph. This graph obeys some constraints: For each
job in OPT schedule the sum of the weights of incident
edges is exactly 1 and for each job in ALG schedule
the sum of weights of incident edges is at most 1.5.
These constraints (and the fact that this scheme spec-
ifies such a matching for OPT and ALG schedules of
every instance) imply that the approximation ratio of
the algorithm is at most 1.5.

We introduce some terminology. When there is an
edge between two jobs with weight x we write that
the job in OPT schedule sends x and the job in ALG
schedule receives x. The charging scheme uses mainly
two kinds of edges: diagonal edges and vertical edges.
A diagonal edge is an edge from a job in OPT sche-
dule to the same job in ALG schedule in a different
timeslot. A vertical edge is an edge from a job in OPT
schedule to any job in ALG schedule in the same time-
slot.

We use a job in two slightly different meanings.
First, there is a particular job from an instance of
a problem. Second, the job is scheduled by a particular
schedule to some machines and some timeslot. The po-
sition occupied by some job in the particular schedule
is also called the job. Specifically, we use ALG-job for
the position of a job in ALG schedule and OPT-job for
the position of a job in OPT schedule. Obviously, the
charging edges do not connect jobs in the first sense,
but ALG-jobs and OPT-jobs.

A job not scheduled by ALG (but possibly sche-
duled by OPT) is called an unscheduled job. A job
scheduled by OPT and either not scheduled by ALG
during that or earlier timeslots (but possibly schedu-
led later) or scheduled by replacement (a replacer job)
is called a free job. The motivation for such definition
is that a free job is a job that is available for ALG at
the timeslot in which it is scheduled by OPT. Because
a decision to do a replacement is done later in the run
of the algorithm, replacer jobs (scheduled by OPT)
are also counted as free jobs. An important property
of free job J is that the relevant timeslots (from release
time of job J to the timeslot when job J is scheduled
by OPT) in ALG schedule do not contain enough free
machines to schedule job J .



74 Ondřej Zaj́ıček

If there is a max-job in ALG schedule and in the
same timeslot there is only one non-max free job (re-
gardless of the number of non-free jobs) in OPT sche-
dule, then we call this non-max free job a red job. Note
that in such case the red job is the only non-max job
available to ALG (otherwise ALG would also choose
it by rule 1) and therefore it is marked by ALG and
is a candidate to be a replacer job. Other free jobs are
called white jobs, non-free jobs (scheduled first by ALG
and later by OPT, or scheduled in the same timeslot
by ALG and OPT) are called black jobs.

The charging scheme is specified as follows: Each
black job charges one diagonal edge (to the same job
in ALG schedule), each white job charges one vertical
edge (upwards to an unspecified job in the same time-
slot). Each red job charges 1/2 diagonally and 1/2 ver-
tically. We will specify exact rules for a distribution of
vertical edges to ALG-jobs later.

Matching of i-jobs at timeslot T is a process that
finds a maximal matching between a set of i-jobs in
ALG schedule of timeslot T and a set of white i-jobs
in OPT schedule of timeslot T . If there is a job sche-
duled at timeslot T by both ALG and OPT, then it
is matched with itself, remaining jobs are matched ar-
bitrarily with one restriction: any red jobs J in ALG
schedule are matched at the end, only when no other
jobs remain. Some i-jobs may be left unmatched in
ALG or OPT schedule, but not in both schedules.

We will use modified variants of lemmas from [5]:

Lemma 3. If non-red ALG-job A (scheduled at some
timeslot T ) is matched with OPT-job B, then A re-
ceives nothing diagonally (from OPT-job A).

Proof. If job A is white, it is obvious (white jobs does
not charge diagonally). If job A is black, we prove it
by contradiction. Suppose ALG-job A receives diag-
onally from (black) OPT-job A. Jobs A and B have
to be different jobs, because OPT-job B is white. Be-
cause B is a white job, it follows that ALG did not
schedule B before or at timeslot T . Because A is black,
OPT scheduled A after timeslot T . Thus both A and B
were available to both ALG and OPT at timeslot T ,
but ALG scheduled A and didn’t schedule B and OPT
scheduled B and didn’t schedule A. This is a contra-
diction because A and B are jobs of the same size and
both algorithms choose the ≺-minimal jobs from avail-
able jobs of the same size. ut
Lemma 4. For every timeslot it is possible to find
a distribution of weight of all incoming vertical edges
between ALG-jobs of the timeslot such that every job
in ALG schedule can be categorized to at least one of
these classes:

– Class C (common): The job receives at most
1/2 vertically.

– Class M (matched): The job receives 1 vertically
from the matched job. If the job is non-red, it could
also receive 1/2 vertically from another job.

– Class U (urgent): The job is urgent and receives
at most 1 vertically.

– Class R (replacer): The job is a replacer job and
receives at most 1 vertically.

Proof. The proof is done independently for each time-
slot. We show that for each free job in OPT schedule
we find the same job or two other jobs in ALG schedule
(in the same timeslot). Let T be any fixed timeslot. We
use ALGT (and OPTT ) schedule for ALG (and OPT)
schedule restricted to timeslot T .

If there is no job in ALGT schedule, then all jobs
in OPTT schedule have to be black, because any free
OPTT job could also be scheduled by ALG at T .
So suppose there are some jobs in ALGT schedule
and the biggest job among them is an i-job. Jobs
smaller than 2i will be called small jobs. It is easy
to see that there is no more than one small free job in
OPTT schedule—otherwise ALG should schedule two
(or more) small jobs instead of the i-job. We distin-
guish two cases: one small free job and no small free
job.

Case 1: There is exactly one small free job J in
OPTT schedule. First we match i-jobs in T . We split
the timeslot in ALGT schedule to slots of size 2i. In
each slot there is either one i-job or more small jobs
(there is neither an empty slot nor a slot with one
small job, otherwise the free space in that slot is large
enough that ALG should schedule the job J in it).
Now we assign those slots to OPTT free jobs. The
idea is that each OPTT free i-job gets one slot and
larger free jobs get proportionally more slots. Slots
with matched i-jobs are assigned to matched OPTT

free i-jobs. If there are remaining OPTT free i-jobs,
they get slots with more small jobs. If we disregard
job J then the rest is correct: matched ALGT i-jobs
are class M jobs, smaller jobs (assigned together to one
job) are class C as well as remaining i-jobs assigned
together to larger jobs. Unused ALGT jobs may be
class C as they receive nothing vertically. Now we find
the assignment for job J . There are two cases:

Case 1.1: There is at least one slot with more small
jobs. Then we assign it in the first place to job J (and
those small jobs are class C) and the lemma holds.

Case 1.2: There are only i-jobs in ALGT schedule
(and one i-job called job K is assigned to job J).
We have three cases distinguished by the structure of
OPTT schedule.

Case 1.2.1: There is at least one free i-job (job L)
in OPTT schedule. Then job L is matched with some
ALGT i-job (job L′). Job L′ receives 1 vertically from
job L; hence, it is a class M job and it is non-red



Approximate scheduling on hypercubes 75

(because there is at most one red job in ALGT sche-
dule and there are more i-jobs in ALGT schedule than
in OPTT schedule, therefore the eventual red job left
unmatched as it would be matched at the end), there-
fore it can receive additional 1/2 from job J . Job K
receives remaining 1/2 from job J , is a class C job and
the lemma holds.

Case 1.2.2: There is no free i-job in OPTT sche-
dule but there are some larger free jobs. Then there
are two unused slots in ALGT schedule, because the
sum of sizes of larger OPTT jobs is a multiple of 2i+1

and the number of ALGT i-jobs assigned to them is
even. Therefore, there are at least two ALGT i-jobs
available, they receive 1/2 from job J and are class C.

Case 1.2.3: Job J is the only free job in OPTT

schedule. If there are more than one ALGT i-job then
two of them receive 1/2 and are class C. If there is only
one job M , then M has to be max-job, because there
is no empty slot (ALGT is full of i-jobs). In that case
job J (which is not a max-job because it is a small job)
is a red job and therefore charges just 1/2 to job M
and job M is class C.

Case 2: There is no small free job in OPTT sche-
dule. Let j-jobs be the smallest free OPTT jobs, ob-
viously j ≥ i. First we match j-jobs (which does
nothing if j > i). We split timeslot T in ALGT sche-
dule to slots of size 2j . No such slot is empty (other-
wise, ALG should schedule some free j-jobs scheduled
by OPT at T ). At most one slot is not full (because
job sizes are powers of two we can always pack jobs
from two half-empty slots to make one slot empty or
full). Now we assign the slots to OPTT free jobs as we
did in the first case. If we have only slots with either
one j-job or with more smaller jobs then it is the same
argument as in first case (even easier because there is
no job J). But the one non-full slot can contain only
one job (job N), which is smaller than j-job. In that
case job N has to be urgent or a replacer job; oth-
erwise, ALG should schedule some free j-job instead
of job N , by rule 3. Therefore, job N is a class U or
class R job and the slot with job N may be used much
like a slot with two jobs. Even in this case the lemma
holds. ut
Theorem 2. The approximation ratio of ALG is at
most 1.5.

Proof. We described the charging scheme earlier. To
complete the proof it remains to show that each ALG
job receives at most 1.5 of the charged edges. Accord-
ing to Lemma 4, it is possible to distribute vertical
edges between ALG jobs in such a way that ALG jobs
can be divided to four classes C, M, U, and R. Class C
jobs receive at most 1/2 vertically (by definition) and
at most 1 diagonally (as every job). Non-red class M
jobs receive at most 1.5 vertically (by definition) and

nothing diagonally (by Lemma 3), Red class M jobs re-
ceive at most 1 vertically (by definition) and at most
1/2 diagonally. Class U and class R jobs receive at
most 1 vertically (by definition) and at most 1/2 diag-
onally if they are red. They receive nothing diagonally
from a black job because they are never black jobs
(class R jobs by definition and class U jobs because
they are urgent and therefore they cannot be schedu-
led later by OPT). Therefore, each ALG job receives
at most 1.5. ut

5 Conclusion

We addressed the offline scheduling problem of unit-
time parallel jobs on hypercubes to maximize the num-
ber of early jobs. We have presented an efficient
1.5-approximation algorithm for the problem. The re-
sult extends our previously published result [5].

A natural question is whether it is possible to find
the optimal solution to the problem (or at least some
restricted variant of the problem, like the tall/small
scheduling) in polynomial time. Another interesting
question is what approach should be used for the
weighted variant of the problem, where every job has
a weight and the objective is to maximize the sum of
weights of early jobs.

References

1. P. Baptiste and B. Schieber: A note on scheduling
tall/small multiprocessor tasks with unit processing time
to minimize maximum tardiness. J. Sched., 6, 2003,
395–404.

2. C. Dürr and M. Hurand: Finding total unimodularity
in optimization problems solved by linear programs. In:
Proc. 13th European Symp. on Algorithms (ESA), vol-
ume 4168 of Lecture Notes in Comput. Sci., Springer,
2006, 53–64.

3. D. Ye and G. Zhang: Maximizing the throughput of
parallel jobs on hypercubes. Inform. Process. Lett., 102,
2007, 259–263.

4. O. Zaj́ıček: A note on scheduling parallel unit jobs on
hypercubes. Int. J. on Found. Comput. Sci., 20 (2),
2009, 341–349.

5. O. Zaj́ıček, J. Sgall, and T. Ebenlendr: Online schedul-
ing of parallel jobs on hypercubes: Maximizing the
throughput. Technical report ITI Series 2009-481,
Charles University, Prague, 2009; to appear in PPAM
2009 Proceedings.


