
Two ways of using artificial neural networks
in knowledge discovery from chemical materials data⋆

Martin Holeňa
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Abstract. In the application area of chemical materials,
data mining methods have been used for more than a de-
cade. By far most popular have from the very beginning
been methods based on artificial neural networks. However,
they are frequently used without awareness of the difference
between the numeric nature of knowledge obtained from
data by neural network regression, and the symbolic nature
of knowledge obtained by some other data mining meth-
ods. This paper explains that within the surrogate model-
ling approach, which plays an important role in this area,
using numeric knowledge is justified. At the same time,
it recalls the possibility to obtain symbolic knowledge from
neural networks in the form of logical rules and describes
a recently proposed method for the extraction of Boolean
rules in disjunctive normal form. Both ways of using neural
networks are illustrated on examples from this application
area.

1 Introduction

The search for new chemical materials, e.g., catalytic
materials for a plethora of chemical reactions, pro-
duces large amounts of data. To discover useful knowl-
edge from those data, statistical as well as machine-
learning data mining methods have been used in this
area since the late 1990s, the former represented in
particular by the analysis of variance, decision trees
and support vector regression, the latter by main vari-
ants of feed-forward neural networks.

This paper summarizes experience from nearly ten
years using and developing neural-networks based data
mining methods for catalytic data. Artificial neural
networks are the most popular regression model in this
application area. In the survey [10], more than 20 pub-
lished applications of multilayer perceptrons (MLPs)
to catalytic data have been listed, as well as several ap-
plications of radial basis function networks. The role of
feed-forward neural nets as a regression model predict-
ing catalytic performance of materials (such as yield,
conversion, selectivity) is due partially to their preced-
ing success in other areas, but mostly to their ability
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to serve as universal approximators in very general
function spaces [12, 14, 18]. This ability is particularly
valuable in the context of the highly nonlinear nature
of the dependencies encountered in catalysis (cf. Fig-
ure 1).

However, it seems to be little awareness, among
researchers using artificial neural networks in catal-
ysis, of the difference among the symbolic nature of
the knowledge obtained from data by analysis of vari-
ance and decision trees, and the numeric nature of the
knowledge obtained by neural network regression.

Fig. 1. A 3-dimensional cut of a neural-network regression
of the yield of a reaction product on the composition of
the catalytic material.

Incited by the situation just outlined, the paper
presents two strategies for the application of artificial
neural networks to data about chemical materials. The
first strategy relies on the numeric knowledge from
neural network regression. Although numeric knowl-
edge is much less understandable to humans than sym-
bolic knowledge (in terms of [4], it has a high ”data
fit”, but a low ”mental fit”), we show that in this appli-
cation area, it can be very useful if directly integrated
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with the optimization of materials performance in an
approach called surrogate modelling. In that context,
also the possibility to increase the accuracy of neu-
ral network regression by means of boosting is men-
tioned. The other strategy, on the other hand, relies
on employing rules extraction methods to obtain, from
trained neural networks, symbolic knowledge.

These two strategies determine also the structure
of the paper. In Section 2, the surrogate modelling ap-
proach is described. Section 3 then explains a method
for the extraction of logical rules from trained neural
networks. Both strategies are in the respective sections
illustrated using real-world examples.

2 Neural networks used as surrogate
models

From the point of view of theoretical computer sci-
ence, the search for most suitable chemical materials
entails complex optimization tasks. As objective func-
tions, those tasks use various properties of the mate-
rials, e.g. in the case of catalytic materials, properties
quantifying their catalytic performance, such as yield,
conversion, or selectivity. A crucial feature of such ob-
jective functions is that they cannot be expressed an-
alytically, their values must be obtained empirically.
For their optimization, it is not possible to employ
most common optimization methods, such as steepest
descent, conjugate gradient methods or the Levenberg-
Marquardt method. Indeed, to obtain sufficiently pre-
cise numerical estimates of gradients or second order
derivatives of the empirical objective function, those
methods need to evaluate the function in points some
of which would have a smaller distance than is the em-
pirical error of catalytic measurements. That is why
methods not requiring any derivatives have been used
to solve such optimization tasks, such as the simplex
method, and most frequently genetic and other evolu-
tionary algorithms [2]. To compensate for missing in-
formation about derivatives, these methods need quite
large number of objective function evaluations. In the
context of catalysis, this is quite disadvantageous be-
cause the evaluation of the empirical objective func-
tions used in the search for optimal catalysts is of-
ten costly and time-consuming. Testing a generation
of catalytic materials proposed by an evolutionary al-
gorithm typically needs several days of time and costs
thousands of euros.

The usual approach to decreasing the cost and time
of optimization of empirical objective functions is to
evaluate the function only in points considered to be
most important for the progress of the employed opti-
mization method, and to evaluate its suitable regres-
sion model otherwise. That model is termed surrogate
model of the function, and the approach is referred to

as surrogate modelling [17, 20, 23, 27]. Needless to say,
the time and costs needed to evaluate a regression mo-
del are negligible compared to time and costs needed
to evaluate empirical functions such as yield or con-
version. However, it must not be forgotten that the
agreement between the results obtained with a surro-
gate model and those obtained with the original func-
tion depends on the accuracy of the model.

The fact that feed-forward neural networks are the
most frequent regression models in catalysis suggests
them as the most natural candidate for surrogate mod-
els in this area. Indeed, several nice examples of the
application of neural-network based surrogate model-
ling to the optimization of performance of catalytic
materials have been published during the last five
years [3, 6, 21, 25]. Within the overall context of the
application of artificial neural networks to mining cat-
alytic data, however, they are still rare.

Although surrogate modelling has been also ap-
plied to conventional optimization [5], it is most fre-
quently encountered in connection with evolutionary
algorithms because for them, the approach leads to the
approximation of the fitness function, whose usefulness
in evolutionary computation is already known [13, 19].
For the progress of evolutionary optimization, most
important criteria are on the one hand points that in-
dicate closeness to the global optimum (through high-
est values of the fitness function), on the other hand
points that most contribute to the diversity of the pop-
ulation.

In the literature, various possibilities of combin-
ing evolutionary optimization with surrogate model-
ling have been discussed [17, 24, 27]. Nevertheless, all
of them are controlled by one of two basic approaches:

A. The individual-based-control consists in choosing
between the evaluation of the empirical objective
function and the evaluation of its surrogate model
individual-wise, basically in the following steps:
(i) An initial set E of individuals is collected, in

which the considered empirical fitness η was
evaluated (for example, the population of sev-
eral first generations of the evolutionary algo-
rithm).

(ii) The surrogate model is constructed using the
set of pairs {(x, η(x)) : x ∈ E}.

(iii) The evolutionary algorithm is run with the
fitness η replaced by the model for one gener-
ation with a population Q of size qP , where
P is the desired population size for the opti-
mization of η, and q is a prescribed ratio (e.g.,
q = 10 or q = 100).

(iv) A subset P ⊂ Q of size P is selected so as to
contain those individuals fromQ that are most
important according to the considered criteria
for the progress of optimization.
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(v) For x ∈ P, the empirical fitness is evaluated.

(vi) The set E is replaced by E ∪ P and the algo-
rithm returns to the step (ii).

B. The generation-based-control consists in choosing
between both kinds of evaluation generation-wise,
basically in the following steps:

(i) An initial set E of individuals in which the
considered empirical fitness η was evaluated is
collected like with the individual-based con-
trol.

(ii) The surrogate model is constructed using the
set of pairs {(x, η(x)) : x ∈ E}.

(iii) Relying on the error of the surrogate mo-
del, measured with a prescribed error measure
(e.g., mean squared error, MSE, or mean abso-
lute error, MAE), an appropriate number gm
of generations is chosen, during which η should
be replaced by the model.

(iv) The evolutionary algorithm is run with the
fitness η replaced by the model for gm genera-
tions with populations P1, . . . ,Pgm of size P .

(v) The evolutionary algorithm is run with the
empirical fitness η for a prescribed number ge
of generations (frequently, ge = 1) with popu-
lations Pgm+1, . . . ,Pgm+ge .

(vi) The set E is replaced by E ∪ Pgm+1 ∪ . . .
· · · ∪ Pgm+ge and the algorithm returns to the
step (ii).

The agreement between the results that are ob-
tained with a surrogate model and those that would be
obtained if the empirical objective function were evalu-
ated depends on the accuracy of the model. A popular
approach to increasing the accuracy of learning meth-
ods is boosting, i.e., construction of a strong learner
through combining weak learners. It is important to
realize that boosted surrogate models are only par-
ticular kinds of surrogate models and their interaction
with optimization algorithms in optimization tasks fol-
lows the same rules as the interaction of surrogate
models in general. In particular in the above outlines of
individual-based and generation-based control, boost-
ing is always performed in the step (ii), which has to
be replaced with:

(ii’a) The set {(x, η(x)) : x ∈ E} is divided into k

disjoint subsets of size ⌊ |E|
k ⌋ or ⌈ |E|

k ⌉, where | |
denotes the cardinality of a set, ⌊ ⌋ the lower in-
teger bound of a real number, and ⌈ ⌉ its upper
integer bound.

(ii’b) For each j = 1, . . . , k, a surrogate model F j
1 is

constructed, using only data not belonging to
the j-th subset.

(ii’c) A k-fold crossvalidation of regression boosting
is performed, and the error of the boosting ap-
proximation is in each iteration measured with
the prescribed error measure on the validation
data.

(ii’d) The first iteration i in which the average error
of the boosting approximation on the validation
data is lower than in the i + 1-th iteration is
taken as the final iteration of boosting.

(ii’e) Boosting using the complete set {(x, η(x)) :
x ∈ E} is performed up to the final iteration
found in step (ii’d), and the result of the ap-
plication of the employed boosting method in
each such iteration of boosting is taken as the
boosted surrogate model in that iteration.

2.1 An illustration

A particular method for MLP boosting has been pre-
sented in [11]. That method will now be employed in
surrogate modelling with data from the investigation
of catalytic materials for the high-temperature synthe-
sis of hydrocyanic acid (HCN) [16]. The composition
of most of those materials was designed by means of
a specific genetic algorithm (GA) for heterogeneous
catalysis [26]. As usually in evolutionary optimization
of catalytic materials, the GA configuration was de-
termined by the experimental conditions in which the
optimization was performed: number of channels of the
reactor in which the materials were tested, as well as
time and financial resources available for those expen-
sive tests. In the reported investigation, the algorithm
was running for 7 generations of population size 92,
and in addition 52 other catalysts with manually de-
signed composition were investigated. Consequently,
data about 696 catalytic materials were available. The
considered MLPs had 14 input neurons: 4 of them cod-
ing catalyst support, the other 10 corresponding to the
proportions of 10 metal additives forming the active
shell, and 3 output neurons, corresponding to 3 kinds
of catalytic activity considered as fitness functions.

For boosting, only data about catalysts from the
1.-6. generation of the GA and about the 52 catalysts
with manually designed composition were used, thus
altogether data about 604 catalytic materials. Data
about catalysts from the 7. generation were completely
excluded and left out for testing. The set of architec-
tures to which boosting was applied was restricted to
MLPS with 1 and 2 hidden layers and was delimited by
means of the heuristic pyramidal condition: the num-
ber of neurons in a subsequent layer must not exceed
the number of neurons in a previous layer. Let nI , nH

and nO denote the numbers of input, hidden and out-
put neurons, respectively, and nH1 and nH2 denote
the numbers of neurons in the first and second hid-
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den layer, respectively. Then the pyramidal condition
entails the following 90 architectures:
(i) one hidden layer and 3 ≤ nH ≤ 14 (12 architec-

tures);
(ii) two hidden layers and 3 ≤ nH2 ≤ nH1 ≤ 14

(78 architectures).
As was mentioned above, boosting can be combined
both with the individaul-based and with the genera-
tion-based control of surrogate modelling. In the re-
ported investigation of catalytic materials for HCN
synthesis, the indiviual-based control was employed.

The error measure employed in the crossvalidation
in the step (ii’c) was MSE. The distribution of the fi-
nal iterations of boosting, found for MLPs with the
90 considered architectures in the step (ii’d), is de-
picted in Figure 2. We can see that only for 16 MLPs,
already the 1st iteration was the final. For the remain-
ing 74 MLPs, boosting improved the average MSE on
the validation data for at least 1 iteration. The mean
and median of the distribution of the final iterations
were 6.6 and 5, respectively.

Fig. 2. Distribution of the final iterations of boosting of
the 90 MLPs with 1-hidden-layer architectures fulfilling
3 ≤ nH ≤ 14 and 2-hidden-layer architectures fulfilling
3 ≤ nH2 ≤ nH1 ≤ 14.

For testing with the data from the 7th generation
of the evolutionary algorithm, we used only the five
MLPs most promising from the point of view of the
average MSE on the validation data in the final itera-
tion of boosting. These were the following MLPs:

– a 1-hidden-layer MLP, with nH = 11 and the
3rd iteration of boosting being the final iteration,

– four 2-hidden-layers MLPs, with (nH1, nH2) =
= (10, 4), (10, 6), (13, 5), (14, 8) and the final itera-
tions of boosting 19, 32, 31 and 29, respectively.

For each of them, the validation proceeded as follows:

1. In each iteration up to the final, a single MLP
was trained with data about all the 604 catalytic
materials used for boosting.

2. In each iteration up the final iteration of boosting,
the boosted surrogate model was constructed for
the trained MLP, according to the step (ii’e).

3. From the values predicted by the boosted surro-
gate model for the 92 materials from the 7. gen-
eration of the GA, and from the measured values,
the boosting MSE was calculated.

The results are summarized in Figure 3, decom-
posed to the properties corresponding to the MLP
outputs – conversions of CH4 and NH3 and yield of
HCN. They clearly confirm the usefulness of boost-
ing for the five considered architectures. For each of
them, boosting leads to an overall decrease of MSE of
the conversion of CH4 and HCN yield, on new data
from the 7th generation of the GA, which is uninter-
rupted or nearly uninterrupted till the final boosting
iteration. On the other hand, boosting did not lead
to any decrease of the error of the conversion of NH3,
which on the other hand is already from the beginning
much lower than the two other performance measures
(notice that the scale of the y-axis is 10-times finer
for the conversion of NH3 than for the conversion of
CH4 and HCN yield). The explanation for the differ-
ent behavior of the conversion of NH3 is the substan-
tially lower variability of its values in the seventh gen-
eration of the GA, used for validating the usefulness
of boosting (standard deviation, SD: 2.8, interquar-
tile range, IQR: 1.6), compared to the conversion of
CH4 (SD: 26.1, IQR: 45.0) and HCN yield (SD: 20.1,
IQR: 35.9). Due to so low variability, the conversion
of NH3 appears effectively as nearly constant during
the validation of boosting, which in turn accounts for
a nearly constant MSE.

3 Neural-network based rules
extraction from data

The architecture of a trained neural network and the
weights and biases that determine the regression mo-
del computed by the network inherently represent the
knowledge contained in the data used to train the net-
work. As was already mentioned in the introduction,
such a representation is not comprehensible to hu-
mans, being very far from the symbolic, modular and
often vague way they represent knowledge by them-
selves. Therefore, methods for the extraction of sym-
bolic knowledge from trained neural networks have
been investigated since the late 1980s. Most frequently,
the extracted knowledge has the form of a Boolean im-
plication:

IF the input variables fulfil an input condition CI

THEN the output variables are likely

to fulfil an output condition CO. (1)
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Fig. 3. History of the boosting MSE on the data from the 7th generation of the GA for MLPs with the 5 architectures
included in the validation of boosting, decomposed to the properties corresponding to the MLP outputs.

In addition, also implications and equivalences of im-
portant kinds of fuzzy logic are frequently ex-
tracted [8, 15]. In general, extracted formulas of a for-
mal logic are called rules. Over the last two decades,
various rules extraction methods have been proposed
for neural networks, but so far none of them has be-
come a common standard (cf. the survey pa-
pers [1, 15, 22] and the monograph [7]). Here, a method
for the extraction of Boolean implications from mul-
tilayer perceptrons with n inputs and m outputs will
be sketched that finds to each output condition of the
form:

CO : the value y of the output variables

lies in a rectangular area R ⊂ Rm (2)

one or more input conditions of the form

CI : the value x of the input variables

lies in a polyhedron P ⊂ Rn (3)

Hence, this method extracts rules of the form:

IF x ∈ P THEN y ∈ R. (4)

A detailed explanation of the method can be found
in [9]. Its main principles can be summarized as fol-
lows:

– An m-dimensional rectangular area R with bor-
ders perpendicular to the m coordinate axes has
to be chosen in advance in the output space of
a trained MLP with sigmoid activation functions.
The reason for choosing such an area is that in
the space of evaluations of m free variables, each
m-dimensional rectangular area is the validity set
of the conjunction of some m univariate Boolean
predicates. That conjunction then serves as the
consequent of the rule to extract.

– The activation functions in the hidden neurons are
approximated with piecewise-linear sigmoid acti-
vation functions. This can be done with an arbi-
trary precision.

– The products of individual linearity intervals of
all the activation functions determine areas in the
input space in which the final approximating map-
ping computed by the multilayer perceptron is lin-
ear.

– In each such area, all points mapped to R form
a polyhedron, which may eventually be empty or
may be concatenated with polyhedra from some
of the neighboring areas to a larger polyhedron.

– The union of all the nonempty concatenated poly-
hedra P1, . . . , Pq defines the antecedent of a rule
in a combined form

IF x ∈ P1 ∪ · · · ∪ Pq THEN y ∈ R, (5)
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which is equivalent to a logical disjunction of
q rules of the simple form (4):

IF x ∈ P1 THEN y ∈ R

. . . (6)

IF x ∈ Pq THEN y ∈ R.

To increase the comprehensibility of the extracted
rules, visualization by means of 2- or 3-dimensional
cuts of the set P1 ∪ · · · ∪ Pq can be used (Figure 4).

Usually, logical rules of the form (4) are the fi-
nal results of this rule-extraction method. Nonethe-
less, there is one exception – when the polyhedron P
is also rectangular with borders perpendicular to axes,
or more generally, when P can be approximately re-
placed with such a rectangular area RI in the input
space. Then the above rule (4) can be approximately
expressed in the conjunctive form

IF x1 ∈ I1 & . . .& xnI ∈ InI THEN y ∈ R. (7)

Here, I1, . . . , InI are intervals that constitute the pro-
jections of RI into the nI input dimensions. Each such
interval can be restricted both from below and from
above, restricted only from below or only from above,
or finally can be even the complete set of real num-
bers. However, dimensions for which the corresponding
projection of RI equals the complete real axis are usu-
ally not included in (7), since they would not provide
any new knowledge. Finally, observe that due to (5)
and (7), the final extracted rule is in the disjunctive
normal form.

In the rule-extraction method outlined above, the
possibility of replacing a polyhedron P with a rectan-
gular area RI is assessed according to the following
principles:

1. The resulting dissatisfaction with points that
either belong to P but do not belong to RI , or be-
long to RI but do not belong to P (i.e., with points
from the symmetric difference RI∆P ), has to re-
main within a prescribed tolerance ε and RI has
to be minimal in the input space among rectangu-
lar areas of some specified kind with dissatisfacion
within that tolerance.

2. The dissatisfaction with points from RI∆P de-
pends solely on those points and is increasing with
respect to inclusion. Consequently, it can be mea-
sured using some monotone measure on the input
space, possibly depending on P .

3. To be eligible for replacement, P has to cover at
least one point of the available data.

For 2., the most attractive monotone measures, due
to their straightforward interpretability, are:

– The joint empirical distribution of the input vari-
ables in the available data.

– The conditional empirical distribution of the input
variables in the available data, conditioned by P .

Rules of the form (7) are also very convenient from
the visualization point of view: Since cuts of rectangu-
lar areas coincide with the corresponding projections
of those areas, the values of no variables need to be
fixed.

3.1 An illustration

As an example, Figure 5 shows three-dimensional cuts
determining the antecedents of conjunctive-form rules
extracted from a trained MLP with 5 input neurons
and 1 output neuron such that:
(i) the input neurons correspond to variables that re-

cord the molar proportions of the oxides of Fe, Ga,
Mg, Mn and Mo in the catalytic material;

(ii) the output neuron corresponds to a variable re-
cording propene yield.

The extracted rules are listed in Table 1.

Fig. 4. A two-dimensional cut of the union of polyhedra
from the antecedent of a rule of the form (5) extracted from
a trained MLP. The cut corresponds to input variables
recording the molar proportions of oxides of Mn and Ga in
the catalytic material, for the consequent ”propene yield
> 8%”.

4 Conclusion

The paper dealt with employing feed-forward neural
networks for knowledge discovery from data about che-
mical materials. It has shown that in this application
area, obtaining numeric knowledge by neural-network
regression is justified, in spite of the fact that numeric
knowledge is substantially less human-understandable
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Rule Antecedent Consequent

1 24% < Ga proportion < 33% & 31% < Mg proportion < 39%
& Mo proportion < 7% & Fe, Mn proportions = 0

2 Ga proportion ≈ 36% & 28% < Mg proportion < 38% C3H6 yield > 8%
& Fe, Mn, Mo proportions = 0

3 Fe proportion < 12% & Ga proportion ≈ 38% & 29% < Mg proportion < 36%
& Mo proportion < 9% & Mn proportion = 0

Table 1. Antecedents of the rules of the form (7) extracted using the method described in this section for the consequent
”propene yield > 8%” from a trained MLP with 5 input neurons and 1 output neuron, assuming that the above
interpretation of the variables to which those neurons correspond is described by (i) and (ii).

Fig. 5. A three-dimensional projection of the union of rect-
angular areas that replace, following the method described
in this section, the union of of polyhedra from the an-
tecedent of a combined form rule extracted from a trained
MLP. The projection corresponds to input variables re-
cording the molar proportion of oxides of Ga, Mg and Mo
in a catalytic material. The numbers 1, 2, 3 refer to the
antecedents of the rules in Table 1.

than symbolic knowledge. Its justification consists in
the possibility to use such knowledge in the optimiza-
tion tasks entailed by search for new materials in the
surrogate modelling approach.

In addition to justifying the specific need for nu-
meric knowledge from neural network regression in
this application area, the paper recalled the possibil-
ity to obtain symbolic knowledge in the form of logical
rules from trained neural networks. It explained a re-
cently proposed method for the extraction of Boolean
rules in disjunctive normal form, and illustrated it on
data about catalytic materials.
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13. Y. Jin, M. Hüsken, M. Olhofer, and B. Sendhoff: Neu-
ral networks for fitness approximation in evolutionary
optimization. In Y. Jin, (ed.), Knowledge Incorpora-
tion in Evolutionary Computation, Springer Verlag,
Berlin, 2005, 281–306.



24 Martin Holeňa
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In: A.E. Eiben, T. Bäck, M. Schoenauer, and H.-
P. Schwefel, (eds), Parallel Problem Solving from Na-
ture, Springer Verlag, Berlin, 1998, 87–96.

20. A. Ratle: Kriging as a surrogate fitness landscape in
evolutionary optimization. Artificial Intelligence for
Engineering Design, Analysis and Manufacturing, 15,
2001, 37–49.

21. U. Rodemerck, M. Baerns, and M. Holeňa: Applica-
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