
On the denotational semantics of XML-Lambda⋆

Pavel Loupal1 and Karel Richta2

1 Department of Software Engineering, Czech Technical University, Faculty of Information Technology
Prague, Czech Republic

pavel.loupal@fit.cvut.cz
2 Department of Software Engineering, Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
richta@ksi.mff.cuni.cz

Abstract. The article deals with the denotational seman-
tics of a special query language called XML-Lambda
(abbreviated as XML-λ), which is based on the simply typed
lambda calculus. The exact semantics allows experimenta-
tion with a language definition, prototyping of programs,
and similar experiments. One of such experiment is the
implementation of the XQuery language in the XML-λ en-
vironment. The main advantage of our approach is the pos-
sibility of a query optimizations in the XML-λ intermedi-
ate form. It is much more easier than optimizations based
on the official W3C semantics. XML-λ is a part of more
complex XML-λ Framework which serves for experiment-
ing with the tools for XML processing.

1 Introduction

In this paper, we define formally the semantics of
XML-Lambda Query Language. From now on we will
use abbreviation XML-λ. XML-λ employs the func-
tional data model for XML data elaboration. The first
idea for such an attitude was published in [5, 6]. This
research brought in the key idea of a functional query
processing with a wide potential that was later proven
by a simple prototype implementation [7].

We can imagine two scenarios for this language;
firstly, the language plays a role of a full-featured query
language for XML (it has both formal syntax and se-
mantics and there is also an existing prototype that
acts as a proof-of-the-concept application). But there
already exist standard approaches for XML querying
– especially XQuery, with probably more appropriate
syntax for users. So, there is no need to define any new
query language.

In the second scenario, the XML-λ Query Lan-
guage is utilized as an intermediate language for the
description of XQuery semantics. In [4] we propose
a novel method for XQuery evaluation based on the
transformation of XQuery queries into their XML-λ
equivalents and their subsequent evaluation. As an in-

⋆ This work has been supported by the Ministry of Edu-
cation, Youth and Sports under Research Program No.
MSM 6840770014 and also by the grant project of the
Czech Grant Agency No. GA201/09/0990.

tegral part of the work, we have designed and devel-
oped a prototype of an XML-λ query processor for
validating the functional approach and experimenting
with it. The main advantage of this concept is the
possibility of a query optimizations in the XML-λ in-
termediate form. It is much more easier than optimiza-
tions when we use the official W3C semantics ([3]).

Since it is not possible to express the semantics of
the whole XML-λ language in this contribution, the
paper focuses chiefly on its main idea and concepts.

2 XML-λ Query Language

In this section, we briefly describe the XML-λ Query
Language, a query language for XML based on the
simply typed lambda calculus.

2.1 Language of terms

Typical query expression has a query part — an ex-
pression to be evaluated over data — and a constructor
part that wraps a query result and forms the output.
The XML-λ Query Language is based on λ-terms de-
fined over the type system TE as will be shown later.
λ-calculus is a formal mathematical system for inves-
tigation of function definition and application. It was
introduced by Alonzo Church and has been utilized
in many ways. In this work, we use a variant of this
formalism, the simply-typed λ-calculus, as a core for
the XML-λ Query Language. We have gathered the
knowledge from [8] and [1]. Our realization is enriched
by usage of tuples.

The main constructs of the language are variables,
constants, tuples, projections, and λ-calculus opera-
tions — applications and abstractions. The syntax is
similar to λ-calculus expressions, thus the queries are
structured as nested λ-expressions, i.e.:

λ . . . (λ . . . (expression) . . .)

In addition, there are also typical constructs such as
logical connectives, constants, comparison predicates,
and a set of built-in functions.

34 Pavel Loupal, Karel Richta

Language of terms is defined inductively as the
least set containing all terms created by the applica-
tion of the following rules. Let T, T1, . . . , Tn, n ≥ 1 be
members of TE . Let F be a set of typed constants, and
V an at most countable set of typed variables. Then:

1. variable: each variable (member of V) of type T is
a term of type T

2. constant: each constant (member of F) of type T
is a term of type T

3. application: ifM is a term of type ((T1,. . ., Tn)→T)
and N1, . . . , Nn are terms of the types T1, . . . , Tn,
then M(N1, . . . , Nn) is a term of the type T

4. λ-abstraction: if x1, . . . , xn are distinct variables
of types T1, . . . , Tn and M is a term of type T ,
then λx1 : T1, . . . , xn : T1.(M) is a term of type
((T1, . . . , Tn)→ T)

5. n-tuple: if N1,. . ., Nn are terms of types T1,. . ., Tn,
then (N1, . . . , Nn) is a term of type (T1, . . . , Tn)

6. projection: if (N1, . . . , Nn) is a term of type
(T1, . . . , Tn), then N1, . . . , Nn are terms of types
T1, . . . , Tn

7. tagged term: if N is a term of type NAME and
M is a term of type T then N : M is a term of
type (E → T).

The set of abstract elements E serves as a notation
for abstract positions in XML trees. Terms can be in-
terpreted in a standard way by means of an interpre-
tation assigning to each constant from F an object of
the same type, and by a semantic mapping from the
language of terms to all functions and Cartesian prod-
ucts given by the type system TE . Speaking briefly, an
application is evaluated as an application of the as-
sociated function to given arguments, an abstraction
’constructs’ a new function of the respective type. The
tuple is a member of Cartesian product of sets of typed
objects. A tagged term is interpreted as a function de-
fined only for one e ∈ E. It returns again a function.

3 Abstract syntax

As for evaluation of a query, we do not need its com-
plete derivation tree; such information is too complex
and superfluous. Therefore, in order to diminish the
domain that needs to be described without any loss of
precision, we employ the abstract syntax. With the ab-
stract syntax, we break up the query into logical pieces
that forming an abstract syntax tree carrying all orig-
inal information constitute an internal representation
suitable for query evaluation. We introduce syntactic
domains for the language, i.e., logical blocks a query
may consist of. Subsequently, we list all production
rules. These definitions are later utilized in Section 4
within the denotational semantics.

3.1 Syntactic domains

By the term syntactic domain, we understand a logi-
cal part of a language. In Table 1, we list all syntactic
domains of the XML-λ Query Language with their in-
formal meaning. Notation Q : Query stands for the
symbol Q representing a member of the Query do-
main.

Q : Query XML-λ queries,
O : Options XML input attachements,
C : Constructor constructors of output results,
E : Expression general expressions,
SQ : SubQuery (nested) subqueries,
T : Term sort of expression,
F : Fragment sub-parts of a Term,
As : Assignment variable assignments,
Flt : Filter set pruning conditions,
FC : FunctionCall either built-in or user-defined

functions,
BinOp : BinOperator binary logical operators,
RelOp : RelOperator binary relational operators,
NF : Nullary identifiers of nullary functions

(subset of Identifier),
Proj : Projection identifiers for projections (sub-

set of Identifier),
B : Boolean logical values,
N : Numeral numbers,
D : Digits digits,
S : String character strings,
Id : Identifier strings conforming to the

Name syntactic rule in [2].

Table 1. Syntactic domains of the XML-λ Query Lan-
guage.

3.2 Abstract production rules

The abstract production rules listed in Table 2 (writ-
ten using EBNF) connect the terms of syntactic do-
mains from the previous section into logical parts with
suitable level of details for further processing. On the
basis of these rules, we will construct the denotational
semantics of the language.

4 Denotational semantics

We use denotational semantics for the description of
the meaning of each XML-λ query. The approach is
based on the idea that for each correct syntactic con-
struct of the language we can define a respective mean-
ing of it as a formal expression in another, well-known,
notation. We can say that the program is the denota-
tion of its meaning. The validity of the whole approach
is based on structural induction; i.e, that the meaning
of more complex expressions is defined on the basis

Semantics of XML-Lambda 35

Query ::= Options Constructor Expression
Constructor ::= ElemConstr + | Identifier+
ElemConstr ::= Name AttrConstr ∗ (Identifier

| ElemConstr)
AttrConstr ::= Name Identifier
Expression ::= Fragment
Fragment ::= Nullary | Identifier | Term

| Fragment Projection
| SubQuery | FunctionCall
| Numeral | String | Boolean

Term ::= Boolean | Filter | ’not’ Term
| Term BinOperator Term

Filter ::= Fragment RelOperator Fragment
SubQuery ::= Identifier + Expression
BinOperator ::= ’or’ | ’and’
RelOperator ::= ’<=’ | ’<’ | ’==’ | ’!=’ | ’>’ | ’>=’
Numeral ::= Digit+ | Numeral ′.′ Digit+
Digit ::= ’0’|’1’|’2’|’3’|’4’|’5’|’6’|’7’|’8’|’9’
Identifier ::= Name
Projection ::= Identifier

Table 2. Abstract production rules for the XML-λ Query
Language.

of their simpler parts. As the notation we employ the
simply typed lambda calculus. It is a well-known and
formally verified tool for such a purpose.

4.1 Prerequisites

The denotational semantics utilizes a set of functions
for the definition of the language meaning. For this
purpose, we formulate all necessary mathematical def-
initions. We start with the data types and specifica-
tion of the evaluation context followed by the outline
of bindings to the TE type system. Then, all auxiliary
and denotation functions are introduced.

Data Types. Each value computed during the process
of the query evaluation is of a type from Type. Let E
be a type from the type system TE , we define Type as:

Type ::= BaseType | Seq(Type)
Seq(Type) ::= ⊥ | BaseType× Seq(Type)
BaseType ::= E | PrimitiveType
PrimitiveType ::= Boolean | String | Number

Primitive types, Boolean, String, and Number, are
defined with their set of allowed values as usual. The
type constructor Seq stands for the the type of ordered
sequences of elements of values of the type Type3. We
use it only for base types, so Seq(Type) is the type
of all ordered sequences of elements of base types. We
do not permit sequences of sequences. The symbol ⊥
stands for the empty sequence of types – represents
an unknown type. More precisely, we interpret types

3 We suppose usual functions nil, cons, append, null, head,
and tail for sequences.

as algebraic structures, where for each type τ ∈ Type
there is exactly one carrier Vτ , whose elements are the
values of the respective type τ .

Variables. An XML-λ query can use an arbitrary
(countable) number of variables. We model variables
as pairs name : τ , where name refers to a variable
name and τ is the data type of the variable – any
member of Type. Syntactically, variable name is al-
ways prepended by the dollar sign. Each expression in
XML-λ has a recognizable type, otherwise both the
type and the value are undefined.

Query Evaluation Context. During the process
of query evaluation we need to store variables inside
a working space known as a context. Formally, we de-
note this context as the State. We usually understand
a state as the set of all active objects and their values
at a given instance. We denote the semantic domain
State of all states as a set of all functions from the set
of identifiers Identifier into their values of the type
τ ∈ Type. Obviously, one particular state σ : State
represents an immediate snapshot of the evaluation
process; i.e., values of all variables at a given time. We
denote this particular value for the variable x as σ[[x]].
Simply speaking, the state is the particular valuation
of variables. We use the functor f [x← v] for the defini-
tion of a function change in one point x to the value v.

4.2 Signatures of semantic functions

Having defined all necessary prerequisites and auxil-
iary functions (recalling that the SeqType represents
any permitted type of value), we formalize semantic
functions over semantic domains as:

SemQuery : Query → Seq(XMLDoc)→ Seq(Type)
SemOptions : Options→ (State→ State)
SemExpr : Expression→ State→ Seq(Type)
SemTerm : Term→ (State→ Boolean)
SemFrag : Fragment→ State→ Seq(Type)
SemAssign : Fragment×Identifier→State→ State
SemRelOper : Fragment×RelOperator×Fragment→

→ (State→ Boolean)
SemBinOper : Term×BinOperator × Term→

→ (State→ Boolean)
SemAttrCons : AttrConstr × State→ Seq(Type)
SemElemCons : ElemConstr × State→ Seq(Type)

Table 3. Semantic functions arities.

4.3 Semantic equations

We start with the semantic equations for the expres-
sions, then we will continue with the semantics
of queries.

36 Pavel Loupal, Karel Richta

Terms. Terms are logical expressions. It means, that
the meaning of any term in a given state is the Boolean
value.

SemTerm : Term → State → Boolean

Terms are constructed with help of relational opera-
tors (we call it filter, but we do not distinguise it
here), binary operators, negation sign, or primitive
Boolean literals (denoted as B in the definition).

SemTerm[[B]] = λσ.bool[[B]]
if B is a constant of the type Boolean

SemTerm[[F1 RelOp F2]] =
λσ.SemRelOper[[F1 RelOp F2]]σ

SemTerm[[′not′ T]] = λσ.not(SemTerm[[T]]σ)

SemTerm[[T1 BinOp T2]] =
= λσ.SemBinOper[[T1 BinOp T2]]σ

Table 4. Semantic equations for terms.

Relational Operators. Relational operators can be ap-
plied to any two fragments and the meaning of result-
ing expression is the mapping from the current state
to Boolean values. They serve in filters.

SemRelOper :
Fragment×RelOperator × Fragment→
→ State→ Boolean

SemRelOper[[F1 ’<’ F2]] =
= λσ.(SemFrag[[F1]]σ < SemFrag[[F2]]σ)

SemRelOper[[F1 ’==’ F2]] =
= λσ.(SemFrag[[F1]]σ == SemFrag[[F2]]σ)

SemRelOper[[F1 ’>’ F2]] =
= λσ.(SemFrag[[F1]]σ > SemFrag[[F2]]σ)

SemRelOper[[F1 ’<=’ F2]] =
= λσ.(SemFrag[[F1]]σ <= SemFrag[[F2]]σ)

SemRelOper[[F1 ’>=’ F2]] =
= λσ.(SemFrag[[F1]]σ >= SemFrag[[F2]]σ)

SemRelOper[[F1 ’!=’ F2]] =
= λσ.(not(SemFrag[[F1]]σ = SemFrag[[F2]]σ))

Table 5. Semantic equations for relational operators.

Binary Operators. Binary operators can be applied to
any two terms and the meaning of resulting expres-
sion is the mapping from the current state to Boolean
values. XML-λ uses clasical logical conectives – logical
’or’ and logical ’and’

SemBinOper : Term×BinOperator × Term
→ State→ Boolean

SemBinOper[[T1 ’or’ T2]] =
= λσ.(SemTerm[[T1]]σ or SemTerm[[T2]]σ)

SemBinOper[[T1 ’and’ T2]] =
= λσ.(SemTerm[[T1]]σ and SemTerm[[T2]]σ)

Table 6. Semantic equations for binary operators.

Fragments. Fragments are logical parts of filters and
have the same meaning as expressions.

SemFrag : Fragment→ State→ Seq(Type)

SemFrag[[Id]] = λσ.σ[[Id]]

SemFrag[[f(E1, ..., En)]] =
= λσ.f(SemExpr[[E1]]σ, ..., SemExpr[[En]]σ)

SemFrag[[F P]] =
= λσ.(SemFrag[[F]] ◦ SemFrag[[P]])σ

SemFrag[[(subquery)(arg)]] =
= λσ.(SemExpr[[subquery]](σ)(SemExpr[[arg]](σ)))

SemFrag[[I1I2...InE]] =
= SemExpr[[I2...InE]](σ[SemExpr[[E]]σ ← I1])

SemFrag[[N]] =
= λσ.num[[N]] if N is a constant of the type Numeral

SemFrag[[S]] =
= λσ.str[[S]] if S is a constant of the type String

SemFrag[[B]] =
= λσ.bool[[B]] if B is a constant of the type Boolean

Table 7. Semantic equations for fragments.

Assignments. An assignment expression is a manda-
tory part of a query. It sets the initial context of the
evaluation, more precisely, such expression evaluates
a nullary function and stores the result into a vari-
able. Then, the evaluation process will filter results
and than iterates over all values and computes remain-
ing results.

SemAssign : Fragment × Identifier
→ State → State

SemAssign[[Id ’=’ F]] = λσ.σ[Id← SemFrag[[F]]σ]

Table 8. Semantic equation for assignments.

Expressions. Each expression e has a defined value
SemExpr[[e]](σ)(ξ) in a state σ and in an en-
vironment ξ. The state represents the values of vari-
ables, the environment represents XML document that
is elaborated. The result is a state SemExpr[[e]](σ)(ξ),

Semantics of XML-Lambda 37

where all interesting values are bound into local vari-
ables. We do not need the environment in the next
computation, because all information is in the state.
We can model input data as a mapping Env from
identifiers to XML documents, formally:

Env : Identifier → XMLdoc

SemExpr : Expression × State × Env →
Seq(Type)

SemExpr[[A1A2...AnF1F2...Fm]]σξ =
= SemExpr[[A2...AnF1F2...Fm]](SemAssign[[A1]]σξ)

SemExpr[[F1F2...Fm]]σξ =

= append(SemExpr[[F1]]σξ, SemExpr[[F2...Fm]]σξ)
if SemRelOper[[F1]]σξ = true

SemExpr[[F1F2...Fm]]σξ =
= SemExpr[[F2...Fm]]σξ
if SemRelOper[[F1]]σξ = false

SemExpr[[]]σξ = nil

Table 9. The semantics of general expressions.

Constructors. Resulting values are created by con-
structors. A constructor is a list of items which can
be either a variable identifier or a constructing expres-
sion.

SemCons : Constructor × State→ Seq(Type)

SemCons[[E1E]]σ = append(SemElemCons[[E1]]σ,
SemCons[[E]]σ)

SemCons[[I1E]]σ = cons(σ[[I1]], SemCons[[E]]σ)

SemCons[[]]σ = nil

Table 10. Semantic equations for constructors.

Element Constructors. The most common kind of re-
sulting value is undoubtedly the element constructor;
obviously, all its alternatives are supported – either
with empty content, textual content or more complex
(i.e. “mixed”) content. For all cases we can also attach
attributes to elements. In the definition we use ab-
stract functions element and attribute, which serves
to construct output XML values from arguments.

SemElemCons : ElemConstr × State→ Seq(Type)

Attribute Constructors. Elements can have attributes
assigned by attribute constructors

SemAttrCons : AttrConstr × State→ Seq(Type)

SemElemCons[[NA1...AnI]]σ =

= element(N,σ[[I]], SemAttrCons[[A1]]σ, ...,
SemAttrCons[[An]]σ)

SemElemCons[[NA1...AnE]]σ =

= element(N,SemExpr[[E]]σ, SemAttrCons[[A1]]σ, ...,
SemAttrCons[[An]]σ)

SemElemCons[[N I]]σ = element(N, σ[[I]], nil)

SemElemCons[[N E]]σ =
= element(N,SemExpr[[E]]σ, nil)

Table 11. Semantic equations for element constructors.

SemAttrCons[[N I]]σ = attribute(N,SemExpr[[I]]σ)

Table 12. The semantic equation for attribute construc-
tors.

Example. Let us show an example of resulting se-
quence for the XML-λ constructor

lambda book attlist [title $b] $a

The result is the function

λσ.element(′book′, σ[[a]], attribute(′title′, σ[[b]]))

returning in the given state the string

element(book,"the value of a",

attribute(title,"the value of b"))

Options. The only allowed option in the language is
now the specification of input XML documents.

SemOptions : Options× Env → Env

SemOptions[[]](E) = E

SemOptions[[xmldata(X) Y]] =
= λξ.SemOptions[[Y]](ξ[Dom(X)← X#])

Table 13. Semantic equations for options.

We explore a function Dom(X) that converts an in-
put XML document X into its internal representation
accessible under identification X#.

Query. A query (denoted as Q) consists of query op-
tions (denoted as O), where input XML documents are
bound to its formal names, the query expression to be
evaluated (denoted as E), and the output construction
commands (denoted as C). At first, input files are elab-
orated, than an initial variable assignment takes place,
followed by evaluation of expression. Finally, the out-
put is constructed. This idea is inbuilt into the defini-
tion of SemQuery[[O C E]] bellow. The whole meaning

38 Pavel Loupal, Karel Richta

SemQuery[[Q]] of a query Q can be modeled as a map-
ping from the sequence of input XML documents into
a sequence of output values of the type of Type. The
definition is carried by the structural induction on the
possible forms of an input sequence.

SemQuery[[Q]] : Seq(XMLDoc)→ Seq(Type)

SemQuery[[O C E]] : XMLDoc → Seq(Type)

SemQuery[[Q]](nil) = nil

SemQuery[[Q]](cons(H,T)) =
= append(SemQuery[[Q]](H), SemQuery[[Q]](T))

SemQuery[[O C E]] =

= λδ.(SemCons[[C]](SemExpr[[E]](λσ.⊥)
(SemOptions[[O]](λξ.⊥)(δ)))

Table 14. Semantic equations for queries.

5 The example

The following example illustrates the computations
performed in order to evaluate given XML-λ queries
inside a virtual machine. It just computes a simple nu-
merical term. More complex examples could be found
in [4].

5.1 Simple computation

Let us suppose the following simple query in the
XML-λ and its evaluation.

lambda $v1 ($v1 = plus(3, 2))

We can compute its meaning according to the XML-λ
semantics as (the result is independent on the input
XML documents, so we can use the empty sequence
nil as the input):

SemQuery[[
′lambda $v1 ($v1=plus(3, 2)′]](nil) =

= λδ.(SemCons[[
′lambda $v1 ($v1 = plus(3, 2))′]]

(SemExpr[[]])(λσ.⊥)(δ))(nil) =
= SemCons[[

′lambda $v1 ($v1 = plus(3, 2))′]]
(λσ.⊥) =

= SemAssign[[
′$v1 = plus(3, 2)′]]

(λσ.⊥)(′$v1′) =
= λσ1.σ1[

′$v1′ ← SemFrag[[
′plus(3,2)′]]

(σ1)](λσ.⊥)(′$v1′) =
= (λσ.⊥)[′$v1′ ← SemFrag[[

′plus(3,2)′]]
(λσ.⊥)](′$v1′) =

= (λσ.⊥)[′$v1′ ← λσ2.plus(SemExpr[[
′3′]]

(λσ2.⊥), SemExpr[[
′2′]](λσ2.⊥))

(λσ.⊥)](′$v1′) =

= (λσ.⊥)[′$v1′ ← λσ2.plus(num[[′3′]]
(λσ2.⊥), num[[′2′]](λσ2.⊥))(λσ.⊥)](′$v1′) =

= (λσ.⊥)[′$v1′ ← λσ2.plus(3, 2)(λσ.⊥)](′$v1′) =
= (λσ.⊥)[′$v1′ ← λσ2.5(λσ.⊥)](′$v1′) =
= (λσ.⊥)[′$v1′ ← λσ.5](′$v1′) =
= (λσ.⊥)[′$v1′ ← 5](′$v1′) =
= 5

6 Conclusion

In this paper, we have presented syntax and deno-
tational semantics of the XML-λ Query Language,
a query language for XML based on simply typed
lambda calculus. We use this language within the spe-
cial XML-λ Framework as an intermediate form of
XQuery expressions for description of its semantics.
Nevertheless the language in its current version does
not support all XML features, e.g. comments, process-
ing instructions, and deals only with type information
available in DTD, it can be successfully utilized for
fundamental scenarios both for standalone query eval-
uation or as a tool for XQuery semantics description.

References

1. H. Barendregt: Lambda calculi with types. In: Handbook
of Logic in Computer Science, Volumes 1 (Background:
Mathematical Structures) and 2 (Background: Compu-
tational Structures), Abramsky & Gabbay & Maibaum
(Eds.), Clarendon, volume 2, Oxford University Press,
1992.

2. T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, and F. Yergeau: Extensible markup
language (XML) 1.0 (fifth edition), November 2008.
http://www.w3.org/TR/2008/REC-xml-20081126.

3. D. Draper, P. Fankhauser, M. Fernández, A. Malhotra,
K. Rose, M. Rys, J. Siméon, and P. Wadler: XQuery
1.0 and XPath 2.0 formal semantics, September 2005.
http://www.w3.org/TR/xquery-semantics.

4. P. Loupal. XML-λ: A functional framework for XML.
Ph.d. Thesis, Department of Computer Science and
Engineering, Faculty of Electrical Engineering, Czech
Technical University in Prague, February 2010, sub-
mitted.

5. J. Pokorný: XML functionally. In: B. C. De-
sai, Y. Kioki, and M. Toyama, (Eds), Proceedings
of IDEAS2000, IEEE Computer Society, 2000, 266–274.

6. J. Pokorný: XML-λ: an extendible framework for ma-
nipulating XML data. In: Proceedings of BIS 2002, Poz-
nan, 2002, 160–168.

7. P. Šárek: Implementation of the XML lambda language.
Master’s thesis, Dept. of Software Engineering, Charles
University, Prague, 2002.

8. J. Zlatuška: Lambda-kalkul. Masarykova univerzita,
Brno, Česká republika, 1993.

