
Clairvoyance versus cooperation
in scheduling of independent tasks?

Tomas Plachetka

Comenius University, Bratislava, Slovakia
plachetka@fmph.uniba.sk

Abstract. Finding a schedule with minimal makespan for
a finite number of independent tasks on a homogeneous net-
work of processors is an NP-hard problem if durations of
all tasks are known. With only partial a-priori knowledge
of tasks’ time durations, it makes sense to look for on-
line algorithms which guarantee short makespans in terms
of small competitive ratios. Three algorithms are analysed
and compared in this paper. The chunking algorithm as-
sumes a-priori knowledge of the longest task’s duration.
The factoring algorithm assumes a-priori knowledge of the
ratio between the longest and shortest task’s durations. The
work-stealing algorithm requires no a-priori knowledge but,
unlike the previous two algorithms, requires a mechanism
for redistribution of tasks which have already been assigned
to processors. It turns out that work-stealing outperforms
both the chunking and factoring algorithms when the num-
ber of tasks is sufficiently large. The analysis is not only
asymptotic—it also provides an accurate (worst-case) pre-
diction of makespans for all aforementioned algorithms for
an arbitrary number of processors and tasks.

1 Introduction

Finding an optimal schedule for a given number of in-
dependent tasks with known time durations on a given
number of (equally fast) parallel processors is
NP-hard [9]. An online version of this problem [14]
assumes only a partial knowledge of tasks’ durations.
This online version appears in the same abstract form
e.g. in parallel game-tree search, parallel ray tracing,
scheduling of independent loops for multiprocessor
machines etc. The challenge is to properly control the
trade-off between the costs of work imbalance and
communication.

The problem can be stated as follows. There is
a master holding W pieces of indivisible work (tasks).
Each task can be processed by any of N workers (the
master can actually be one of the workers, playing
both roles simultaneously). The durations of tasks can
be different (e.g. processing of one task can take a sec-
ond, processing of another task can take a minute).
The workers are reliable, equally fast and are willing
to complete the entire work as soon as possible (to
minimise the makespan, i.e. the parallel time). The

? This work was partially supported by the grant VEGA
1/0726/09.

master’s interest also is the fastest completion of
all W tasks. The master and the workers are isolated
from one another but can communicate via a reliable
asynchronous postal service. The delivery of a packet
(message) takes some time called communication la-
tency. More precisely, latency is the time from the
moment when a worker becomes idle until the mo-
ment when it receives some work to do (or realises
that there is no more work to do). Latency is a con-
stant which does not depend on the size of the packet
(e.g. on number of tasks transferred in the packet).
The master and the workers know this constant.1

If the master knows the durations of all tasks, it
can compute the shortest schedule offline (solving an
NP-hard problem) and send a single packet to each
worker. The packet contains all the tasks assigned in
the shortest schedule to that worker.

If the master knows nothing about the durations
of all tasks, it can for example send one packet con-
taining W/N arbitrarily chosen tasks to each worker.
By doing so, the latency is added only once to the
makespan (as in the previous offline algorithm). This
algorithm is good in case of equal tasks’ durations. But
it can happen that all the tasks are very short except
of W/N tasks which are very long. In a lucky case,
each worker will receive a packet which contains one
very long task and many short tasks. In an unlucky
case, N − 1 workers will receive packets which contain
only short tasks, while one worker will receive a packet
in which all the tasks are very long. Online analysis is
interested in this worst case, where an “adversary”
plays against the master and the workers. The inten-
tion of the adversary is to make the schedule as long
as possible.

1 Note that in asynchronous message passing model the
latency can vary not only for different runs of the same
program with the same input, but even for different mes-
sages in the same run. It is bounded for a given run,
but the bound is not a-priori known. In order to be fair
by comparison of different algorithms, we assume that
the latency is the same constant for all messages and
all runs. This is a common assumption in publications
relating to the problem in question. (In dedicated prac-
tical networks, the latency for a fixed message size is
bounded—and a-priori known, as it can be measured in
run-time before the actual computation begins.)

40 Tomas Plachetka

If the workers are not allowed to return tasks which
they are assigned and if no information on tasks’ du-
rations is available, then no master’s algorithm is intu-
itively “better” than the algorithm from the previous
paragraph. For example, consider an algorithm where
the master sends only one task as a reply to a request
from an idle worker. Then the unlucky case is that all
the packets are very short. The cost of communication
can then be very high in comparison with the work
itself and may exceed the total time of the previous
algorithm.

All algorithms used in the previous examples use
the same scheme. In the beginning, all the workers are
idle. Each worker process runs a loop in which it sends
a job request to the master process, waits for a job
(a set of tasks sent in a message) and then processes
all the tasks in the job, one after another. The algo-
rithms only differ in how the master decides for the
number of tasks (job size) which it sends when reply-
ing a job request. Without a knowledge on a specific
task’s duration only the job sizes K are important,
not the choice of tasks in a job. A generic master’s
algorithm is shown in Fig. 1.

master generic(int W , int N)
{

int K;
int work = W ;
while (work > 0)
{

wait for a job request from an idle worker;
compute the job size K;
assign a job consisting of K yet unprocessed tasks
to the idle worker;
work = work −K;

}
reply job requests with NO MORE WORK;

}

Fig. 1. Generic assignment algorithm (without work redis-
tribution).

Note that when a job request arrives, the master
process must decide immediately how many yet un-
processed tasks it assigns in that job (as it might take
long until another job request arrives). This decision
is based on partial a-priori knowledge of tasks’ du-
rations. Only deterministic online algorithms will be
considered, i.e. algorithms which do not internally use
any source of randomness. Two of the three algorithms
studied in this paper, chunking and factoring, follow
the scheme from Fig. 1. The third algorithm, deter-
ministic work stealing, uses a more complex scheme.

Chunking and factoring algorithms make use of
partial information on the tasks’ durations. They were
first investigated in a probabilistic model, where tasks’
durations are assumed to be realisations of a random
variable with known mean and variance [11, 7, 6, 1, 10].
The goal in the probabilistic model is to find parame-
ter settings which minimise the expected makespan of
the algorithms. Optimal settings have not been found,
only rough approximations are known.

In a deterministic model [12, 13] it is assumed that
the information on maximal and minimal tasks’ dura-
tions is available a-priori, i.e. before the computation
begins. The goal in the cited papers was to find param-
eter settings which minimise the maximal makespan
of chunking and factoring algorithms. The goal in this
paper is to find parameter settings which minimise the
competitive ratio of the algorithms.

The main contribution of this paper is competi-
tive analysis and quantitative comparison of three al-
gorithms in the deterministic model. Optimal param-
eters for chunking and factoring algorithms are de-
rived. (As it turns out, the optimal parameter settings
are almost the same in both scenarios—which is per-
haps not surprising, as both scenarios focus on the
worst-case input.) The third algorithm is determinis-
tic work stealing. This algorithm requires no a-priori
information and has no parameters; however, it re-
quires a mechanism for redistribution of already as-
signed tasks. This means that the workers are allowed
to communicate with one another and are allowed to
return assigned, but yet unprocessed tasks to the mas-
ter. We prove that the deterministic work stealing al-
gorithm performs better than the previous two algo-
rithms under certain assumptions which usually hold
in practical systems. This makes deterministic work
stealing very attractive for applications where no
a-priori knowledge of tasks’ durations is available.

The deterministic work stealing algorithm appears
in the context of diffusive load balancing, e.g.
in [3–5] (optimal load balancing scheme). In the con-
text of diffusive load balancing the data locality is the
main concern; the goal is to exploit the structure of the
network in order to minimise the cost of a single work
redistribution step. In this paper the network struc-
ture is ignored and the number of work redistribution
steps is minimised.

The paper is organised as follows. Section 2 intro-
duces the notation and definitions. Sections 3, 4 and 5
present online analysis of chunking, factoring and work
stealing algorithms in the deterministic model (related
results for chunking and factoring algorithms in
a probabilistic model are briefly summarised in subsec-
tions). Performance of these algorithms is compared in
Section 6. Section 7 concludes the paper.

Clairvoyance versus cooperation 41

2 Notation and definitions

The following notation is used throughout this paper:

N number of worker processes; N ≥ 1
W total number of tasks (total work); W ≥ 1
M makespan (total parallel time)
L latency (duration of assignment of one job)
ti task’s durations (i = 1...W); ti > 0.0
Tmin minimal task’s duration, Tmin = mini=1...W ti
Tmax maximal task’s duration, Tmax=maxi=1...W ti
T ratio Tmax/Tmin; T ≥ 1.0

In order to quantify the performance of algorithms,
a standard definition of competitive ratio is used [2]:

Definition 1 (competitive ratio of algorithm).
For given W , N , L, let CRS(A) denote the maximal ra-
tio between the makespan MS(A) of algorithm S which
uses a-priori information A and the best offline make-
span Mbest offline over all sequences t1 . . . tW of the
input tasks’ durations which conform to the a-priori
information A:

CRS(A)(W,N,L) = sup
t1...tW

MS(A)(t1 . . . tW)

Mbest offline(t1 . . . tW)

where MS(A)(t1 . . . tW) is the makespan of S with
N processes on W tasks with durations t1 . . . tW , with
assignment latency L. CRS(A) is called competitive ra-
tio of algorithm S with a-priori information A.

The best offline algorithm assigns all the tasks in
one round, i.e. its communication overhead is L. It
produces a schedule with the shortest makespan for
W tasks with durations t1 . . . tW . Thus competitive ra-
tio of any algorithm is at least 1.0. The smaller it is,
the better the algorithm is.

Definition 2 (comparison of algorithms). An as-
signment algorithm S performs at least as well as an
assignment algorithm R for some W , N , L (we will
also say that S does not perform worse than R, or that
S competes with R) iff

CRS(A)(W,N,L) ≤ CRR(A′)(W,N,L)

In a practical setting the number of processes N
is fixed (equal to the number of available processors).
The latency L can be considered a constant. The num-
ber of tasks W is constant for a given run of an al-
gorithm. Intuitively, the relative overhead of an effi-
cient assignment algorithm should diminish with the
growing number of tasks W , i.e. the competitive ratio
should approach a small constant independent of N
with increasing W .

Although we are particularly interested in asymp-
totic case W → ∞, we prefer to keep the comparison
parameterised with respect to W , N , L instead of us-
ing the limit values of CRS(A) and CRR(A) in Defini-
tion 2. This allows for a finer comparison of algorithms.

3 Chunking

The chunking algorithm [11], [8] always assigns jobs
of size K to idling worker processes, where K remains
constant (the last assignment may be an exception,
where a smaller job is assigned), see Fig. 1. Once a job
has been assigned to a worker, this decision cannot be
changed—the worker must then compute all the tasks
assigned in that job.

We will prove a general theorem which states that
a-priori knowledge of Tmax does not help much. The
parallel time of any algorithm (including chunking) is
in the worst case comparable with the sequential time
for a sufficiently large number of tasks.

Theorem 1. For all W,N,L, Tmax such that W >
N3 +N2(N − 1)Tmax/L competitive ratio of an arbi-
trary assignment algorithm with no work redistribution
and with a-priori knowledge of Tmax is at least N (i.e.
Ω(N) for W = Ω(N3)).

Proof. Let W > N3 + N2(N − 1)Tmax/L. Let K de-
note the maximal job size assigned by an algorithm S.
There are two cases:
case 1, K ≥ WL/(N2L+N(N − 1)Tmax);
case 2, K < WL/(N2L+N(N − 1)Tmax).

In case 1, there is Kint such that N ≤ Kint ≤ K
and Kint/N is an integer. Kint tasks of the maximal
job will have duration Tmax, while all the other tasks
will have duration ε → 0. The best offline algorithm
computes the Kint long tasks in parallel, whereas the
algorithm S computes them sequentially. This implies
(as S makes at least as many assignments as the best
offline algorithm)

CRS(Tmax)(W,N,L) ≥ KintTmax

KintTmax/N
= N

In case 2, consider the latency overhead of the al-
gorithm S, which is at least WL/(NK). Assume that
one task has duration Tmax and is assigned in the last
job; all the remaining tasks are of an equal duration
ε → 0). Hence the makespan of the algorithm S is at
least WL/(NK) + Tmax and

CRS(Tmax)(W,N,L) ≥ WL/(NK) + Tmax

L+ Tmax
≥ N

This completes the proof. ut
Consider the case where all K tasks of some job

are of duration ε → 0 and all the other tasks are of
duration Tmax. The competitive ratio of the chunking
algorithm using the job size K is then

CRchunking(Tmax)(W,N,L) =
KTmax +WL/(NK)

L+ Tmax

The competitive ratio is minimised by setting the first
derivative of CRchunking with respect to K to zero and

solving for K. This yields K =
√

WL(L+Tmax)
NTmax

.

42 Tomas Plachetka

3.1 Chunking in a probabilistic model

Recall that the probabilistic model assumes that tasks’
durations are realisations of a random variable with
(known) mean µ and (known) standard deviation σ.
The fixed-size chunking strategy in the probabilistic
model was analysed by Kruskal and Weiss [11]. They
derived the following estimation of the expected make-
span E[M] for the chunk size K:

E[M] ≈ W

N
µ+

WL

NK
+ σ

√
2K lnN (1)

This formula has a nice intuitive interpretation.
The first term is the time of executing W tasks on
N processors on a system with no overhead. The sec-
ond term describes the latency overhead. The third
term describes the load imbalance due to the varia-
tion in tasks’ durations. Unfortunately, the estimation
in Equation 1 only holds if W and K are large and
K À logN . If these assumptions hold then also the
optimal chunk size Kopt can be estimated:

K̂opt =

(√
2WL

σN
√
lnN

)

If the assumptions above do not hold, [11] gives the
following estimates for the expected makespan E[M]:

E[M] ≈ W

N
µ+

WL

NK
+ σ

√
2K ln

σN√
Kµ

for K ¿ W/N and small
√
K/N ; and

E[M] ≈ W

N
µ+

WL

NK
+

Nσ2

µ

for K ¿ W/N and large
√
K/N . However, a tracta-

ble analytical expression for the optimal chunk size K
could not be derived.

4 Factoring

Factoring [7, 6, 1, 8] works in rounds, see Fig. 2 it could
also be expressed in the form of the generic algorithm
from Fig. 1 by rewriting the procedure compute the

job size K, but doing so would make the algorithm
more difficult for reading). In each round, it assigns N
jobs of equal size. The job size is decreased after each
round, whereby the job size in a round is a factor of the
work remaining (the number of yet unassigned tasks)
at the beginning of the round. The factor F remains

MASTER FACTORING(int W , int N , float F)
{

int K;
int counter;
int round = 0;
int work = W ;
while (work > 0)
{

round = round+ 1;
K = max(work/F , 1);
counter = 0;
while ((counter < N) and (work > 0))
{

counter = counter + 1;
wait for a job request from an idle worker;
assign a job consisting of K yet unprocessed tasks
to the idle worker;
work = work −K;

}
} reply job requests with NO MORE WORK;

}

Fig. 2. Factoring algorithm with factor F .

constant over all rounds. During the last round, single-
task jobs are assigned. Once a job has been assigned to
a worker, the worker must compute all tasks assigned
in that job.

We will derive the optimal factor F , assuming that
the ratio T = Tmax/Tmin is the only a-priori knowl-
edge available. (A similar analysis which assumes an
a-priori knowledge of both Tmax and Tmin can be
found in [8] and [12].) Denote Ki the job size which is
assigned during the round i of the factoring algorithm
and let wi denote the number of still unassigned tasks
at the beginning of round i. In order to be competitive,
factoring guarantees that the longest sequential com-
putation of a job of size Ki will not take longer than
the shortest parallel computation of the still unas-
signed wi −Ki tasks on the remaining N − 1 workers:
max seq time(Ki) ≤ min par time(wi−Ki, N − 1). In
order to minimise the assignment overhead, Ki must
be as large as possible. The largest Ki which satis-
fies the inequality above (and thus guarantees
the maximal imbalance of at most 1 task) is
Ki = wi/(1 + T (N − 1)).

Note that it is only the assignment overhead which
determines the competitive ratio of factoring. For ex-
ample, the trick with setting durations of all the tasks
of K1 to Tmax and computing them in parallel by
the best offline algorithm does not work. The rea-
son is that this does not increase the makespan of
factoring at all: K1Tmax = WTmax/(T (N − 1)) =
WTmin/(N − 1).

Clairvoyance versus cooperation 43

Theorem 2. For all W,N,L, T competitive ratio of
the factoring algorithm with a-priori knowledge of T
using factor F = 1 + T (N − 1) is O((lnW)/W) and
approaches 1 if W → ∞.

Proof. Let r denote the last round at the beginning
of which the number of still unassigned tasks wr is at
most N (as the size of the jobs assigned in the round
r is Kr = 1 and the number of the jobs assigned in
the round r is at most N). It can be observed that the
number of yet unassigned tasks wi at the beginning of
round i is equal to wi=W (1−N/(1 + T (N − 1)))

i−1
.

Solving wr ≤ N for maximal r yields the number of
rounds r performed by the factoring algorithm:

rfactoring =
ln (W/N)

ln 1+T (N−1)
(N−1)(T−1)

(2)

The cost of assignments of the factoring algorithm
is Lr. The imbalance of the factoring algorithm is at
most 1 task. Thus the difference between the net make-
span of the factoring (which does not include the cost
of assignments) and the best net offline makespan is
at most Tmax − Tmin. In the worst case all task’s du-
rations are Tmin except of one task which is of dura-
tion Tmax and is assigned in the last round of the fac-
toring algorithm. Hence competitive ratio of the fac-
toring algorithm can be bounded from above:

CRfactoring(T)(W,N,L) ≤

≤ WTmin/N+Tmax−Tmin+L
(
ln (W/N)/ln

1+T (N−1)
(N−1)(T−1)

)
WTmin/N+L =

= O((lnW)/W) (3)

This completes the proof. ut

4.1 Factoring in a probabilistic model

The factoring algorithm in a probabilistic model (with
known µ and σ) was studied by Flynn, Flynn-Hummel
and Schonberg in the context of scheduling indepen-
dent loops on multiprocessor shared-memory ma-
chines. An approximation of the optimum job
size K̂opt

i which is used in round i was determined
in [6, 7] by estimating the maximal portion of the re-
maining (unassigned) work which has a high probabil-
ity of being completed by N processors within
time µwi/N . The analysis yields the following itera-
tion scheme (at the beginning of round i, wi denotes
the number of still unassigned tasks, 1/(Nxi) is the
division factor):

w1 = W, x1 = 1 +
N2

w1

(
σ

µ

)2

K̂opt
i =

wi

Nxi
,

wi+1 = wi −NK̂opt
i , xi+1 = 2 +

N2

wi

(
σ

µ

)2

Note that this iteration scheme only requires the
knowledge of the coefficient of variation cov of the
tasks’ probability distribution (cov = σ/µ). There are
two extreme cases: 1. If cov = 0 (no variance) then
this strategy assigns all jobs in a single round; 2. If
cov → ∞ (unbounded variance or negligible tasks’ du-
rations) then this scheme assigns jobs of size 1. (This
scheme is not strictly factoring in the sense of Sec-
tion 4 because the factor is not the same constant in
subsequent rounds.)

5 Work stealing

So far we assumed that the master process cannot take
back its decisions—i.e. once a job has been assigned
to a worker, then the job must be processed by that
worker. In the work stealing algorithm, the master pro-
cess can reclaim already assigned but yet unprocessed
tasks from the workers. The work stealing algorithm
requires no a-priori information (not even the knowl-
edge of latency). It initially assigns all the tasks in
jobs of size W/N to idling worker processes. When
a worker becomes idle again, the master reclaims all
yet unprocessed tasks from all the worker processes
and redistributes them equally back again to all worker
processes. The periods between the redistributions are
called rounds. Each round adds a penalty L′ to the
makespan.

An implementation of the work stealing algorithm
can use two threads of control in each worker process:
a “listening thread” which reacts to work redistribu-
tion messages by sending all yet unprocessed tasks
to the master process; and a “working thread” which
computes the tasks and notifies other processes when
it runs out of work. These two threads share a queue
of tasks. The queue is protected by a semaphore in
order to exclude its simultaneous access by both the
threads. The working thread repeats a loop in which it
locks the queue, pops one task, unlocks the queue and
starts processing the task. After finishing the task, this
procedure repeats until the working thread finds the
queue empty. Then it notifies the other processes and
waits until the listening thread inserts tasks of the new
round into the queue and resumes the computation (or
terminates the whole process). Yet unprocessed tasks
in a process are the tasks in the queue. A clever imple-
mentation of the algorithm amortises the latency by
allowing a worker which reacts to a work redistribu-
tion message to continue in processing of tasks in its
queue during the work redistribution.

As the task distribution in work stealing uses
a more complex communication pattern (broadcasting
and gathering) than the previous algorithms (point-
to-point round-trip), we will denote this latency L′,
whereby L′ ≥ L. However, L′ differs from L only

44 Tomas Plachetka

by a constant factor if N is a constant. This fac-
tor depends on the physical mechanism which is used
for communication among the processes. Note that
L′ ≈ L e.g. in a bus network or a network with a com-
plete interconnection graph. Similarly as by factoring,
there is no work imbalance at the end of the algorithm,
therefore the competitive ratio of work stealing only
depends on the number of rounds.

Theorem 3. For all W,N,L, L′ competitive ratio of
the work stealing algorithm with no a-priori knowledge
is O((lnW)/W) and approaches 1 if W → ∞.

Proof. The number of rounds of work stealing in the
worst case can be determined as follows. Assume that
one of the worker processes finishes its first job of
size W/N , while no other worker process has finished
its first task. After the redistribution a second round
begins and the same situation happens: one worker
process finishes its job, while none of the other worker
processes has finished its first task. Etc. The total
number of yet unprocessed tasks (in the whole sys-

tem) is at most wi = W ((N − 1)/N)
i
at the begin-

ning of round i. At most N tasks are distributed at
the beginning of the last round r. Solving wr ≤ N for
maximal r yields

r =
ln (W/N)

ln (N/(N − 1))
(4)

The rest of the proof is similar to the proof of The-
orem 2. The competitive ratio of the work stealing al-
gorithm can be bounded from above:

CRworkstealing(W,N,L, L′) ≤

≤ WTmin/N+Tmax−Tmin+L′
(
ln (W/N)/ln N

(N−1)

)
WTmin/N+L =

= O((lnW)/W) (5)

This completes the proof. ut

6 Comparison of deterministic
assignment algorithms

It is clear from theorems 1, 2 and 3 that the chunk-
ing algorithm can not compete with the factoring and
work stealing algorithms if the number of processes N
is constant and the number of tasks W is sufficiently
large in comparison with N (W ≈ N3 or larger).

We proved a common upper bound for competitive
ratios of the work stealing and factoring algorithms for
W → ∞. Both these algorithms guarantee a perfect
balance, therefore we can focus on their number of
rounds which determine the cost of assignment. In or-
der to keep things simple, we will assume L = L′ in the
sequel. If we directly compare the number of rounds in

work stealing (Eq. 4) and factoring (Eq. 2), then work
stealing does not perform worse than factoring when
T ≤ N + 1, because then

rworkstealing

rfactoring
=

ln N
N−1

ln 1+T (N−1)
(T−1)(N−1)

≤ 1

However, the comparison above is not fair, because
the work stealing algorithm with a-priori knowledge of
T = Tmax/Tmin is actually more efficient than in the
proof of Theorem 3 (although it does not makes use
of the knowledge of T). For a given T , let us recon-
sider the scenario in which always one worker process
finishes all its tasks from the first round, while all the
other worker processes do as little work as possible.
While the worker computes its first job of size W/N
tasks, all the other workers must have computed at
least W/(NT) tasks each. So every other worker has
at most W (T − 1)/(NT) yet unprocessed tasks; in
sum, there are at most W (T − 1)(N − 1)/(NT) un-
processed tasks in the whole system (which is
less than W (N − 1)/N tasks in the proof of
Theorem 3). In the second round, each worker
is assigned W (T − 1)(N − 1)/ (N2T) tasks. When
a worker finishes its job from the second round, then
all the other workers have at most W ((T − 1)/(NT))

2

yet unprocessed tasks each; in sum, there are at most
W ((T − 1)(N − 1)/(NT))

2
yet unprocessed tasks in

the whole system. Etc. Generally, there are wi =
W ((T − 1)(N − 1)/(NT))

i
yet unprocessed tasks in

the whole system at the beginning of round i. At most
N tasks are distributed at the beginning of the last
round r. Solving wr < N for maximal r yields

rworkstealing =
ln (W/N)

ln NT
(T−1)(N−1)

(6)

Fair comparison of the number of work stealing
rounds (Eq. 6) with the number of factoring rounds
(Eq. 2) yields

rworkstealing

rfactoring
=

ln (W/N)

ln NT
(T−1)(N−1)

ln (W/N)

ln
1+T (N−1)

(T−1)(N−1)

=
ln 1+T (N−1)

(T−1)(N−1)

ln NT
(T−1)(N−1)

< 1

This means the work stealing algorithm performs
better than the factoring algorithm for all W,N,L,
L′, T if L’=L. More precisely, the work stealing algo-
rithm performs better for L, L’ such that

ln 1+T (N−1)
(T−1)(N−1)

ln NT
(T−1)(N−1)

<
L

L′

because then L′rworkstealing ≤ Lrfactoring. We stress
that an a-priori knowledge of T is rarely available in

Clairvoyance versus cooperation 45

practice and must therefore be estimated. With an in-
accurate estimation of T , the factoring algorithm per-
forms worse than in our analysis.

The work stealing algorithm is a clear winner. It
has no parameters and requires no tuning. Moreover, it
can be used (after some modifications) in applications
where processes may fail or where the number of tasks
may grow in run-time.

7 Conclusions

We analysed online performance of chunking, factor-
ing and work stealing assignment algorithms in a de-
terministic model. The chunking algorithm requires an
a-priori knowledge of the maximal task’s duration and
achieves competitive ratio N (which does not depend
on W) for W = Ω(N3), where N denotes the num-
ber of processes and W denotes the number of tasks.
The performance of chunking algorithm is thus very
poor, at least from the point of view of competitive
analysis. The factoring algorithm requires an a-priori
knowledge of the factor T = Tmax/Tmin. Its competi-
tive ratio is bounded from above by O(ln (W)/W) and
approaches 1 when W → ∞, which is very desirable.
The same holds for the deterministic work stealing al-
gorithm, which performs better than the factoring al-
gorithm and requires no a-priori information.

The last result is valid under two assumptions:
1. the underlying communication mechanism provides
an efficient implementation of broadcasting and gath-
ering, which we assume to be as fast as round-trip
point-to-point communication; 2. the communication
latency is constant which does not depend on the mes-
sage size. The first assumption holds e.g. for bus and
fully-switched networks; the second assumption holds
for practically all contemporary networks, if the mes-
sage size does not exceed a certain threshold.

References

1. I. Banicescu and S. Flynn-Hummel: Balancing proces-
sor loads and exploiting data locality in irregular com-
putations. Technical Report RC 19934, IBM Research,
1995.

2. A. Borodin and R. El-Yaniv: Online computation
and competitive analysis. Cambridge University Press,
1998.

3. R. Diekmann, A. Frommer, and B. Monien: Efficient
schemes for nearest neighbor load balancing. Parallel
Computing, 25 (7), 1999, 789–812.

4. R. Elsasser, A. Frommer, B. Monien, and R. Preis: Op-
timal and alternating-direction loadbalancing schemes.
In: Proc. of Euro-Par, volume 1685 of Lecture Notes
in Computer Science, Springer-Verlag, 1999, 280–290.

5. R. Elsasser, B. Monien, A. Frommer, and R. Preis: Op-
timal diffusion schemes and load balancing on product
graphs. Parallel Processing Letters, 14 (1), 2004, 61–
73.

6. L. E. Flynn and S. Flynn-Hummel: Scheduling
variable-length parallel subtasks. Technical Report RC
15492, IBM Research, 1990.

7. S. Flynn-Hummel, E. Schonberg, and L. E. Flynn: Fac-
toring: A practical and robust method for scheduling
parallel loops. In: Proc. of Supercomputing ’91, IEEE
Computer Society / ACM, 1991, 610–619.

8. S. Fujita: A semi-dynamic multiprocessor scheduling
algorithm with an asymptotically optimal competitive
ratio. In: Proc. of the 8th International Euro-Par Con-
ference on Parallel Processing, Springer-Verlag, 2002,
240–247.

9. M. R. Garey and D. S. Johnson: Computers and in-
tractability. W. H. Freeman and Company, 1979.

10. T. Hagerup: Allocating independent tasks to parallel
processors: An experimental study. Journal of Parallel
and Distributed Computing, 47 (2), 1997, 185–197.

11. C. P. Kruskal and A Weiss: Allocating independent
subtasks on parallel processors. IEEE Transactions on
Software Engineering, 11 (10):1001–1016, 1985.

12. T. Plachetka: Perfect load balancing for demand-
driven parallel ray tracing. In: B. Monien and R. Feld-
man, (eds), Proc. of Euro-Par 2002, volume 2400 of
Lecture Notes in Computer Science, Springer-Verlag,
2002, 410–419.

13. T. Plachetka: Tuning of algorithms for indepen-
dent task placement in the context of demand-driven
parallel ray tracing. In: D. Bartz, B. Raffin, and
H.W. Shen, (eds), Proc. of the Eurographics/ACM
SIGGRAPH Symposium on Parallel Graphics and Vi-
sualization (EGPGV), Eurographics Proceedings Se-
ries, Eurographics Association, 2004, 101–109.

14. K. Pruhs, J. Sgall, and E. Torng: Online scheduling. In:
J.Y.-T. Leung, (ed.), Handbook of Scheduling, chap-
ter 15, CRC Press, 2004, 15.1–15.41.

