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Abstract. We study the state complexity of languages
that can be obtained as reversals of regular languages repre-
sented by deterministic finite automata. We show that the
state complexity of the reversal of a regular language with
state complexity n is between logn and 2n. We first prove
that the upper bound is tight in the ternary case. Then we
present binary languages reaching this upper bound on the
reversal. We also obtain some other partial results in the
binary case.

1 Introduction

Regular languages and finite automata are the old-
est and the simplest topics in computer science. They
have been investigated since the 1950s. Despite their
simplicity, some problems are still open. Probably the
most challenging is the question of how many states
are sufficient and necessary for two-way deterministic
automata to simulate two-way nondeterministic au-
tomata which is connected to the well-known
DLOGSPACE vs. NLOGSPACE problem.

Motivating by applications of regular languages in
software engineering, programming languages, and
other areas in computer science, as well as by their im-
portance in theory, this class of languages is intensively
studied in recent years; for the discussion, we refer the
reader to [8, 23]. Various areas in this field are now
deeply and intensively examined. One of such areas
is descriptional complexity which studies the cost of
description of languages represented by different for-
mal systems such as deterministic and nondetermin-
istic finite automata, two-way automata, regular ex-
pressions, or grammars.

Rabin and Scott in 1959 [18] described an algo-
rithm for the conversion of nondeterministic finite au-
tomata into deterministic automata known as the sub-
set construction. The algorithm shows that every
n-state nondeterministic automaton can be simulating
by at most 2n state deterministic automaton. In 1963,
Lupanov [16] proved the optimality of this construc-
tion by describing a ternary and even a binary regular
language accepted by an n-state nondeterministic au-
tomaton that requires exactly 2n deterministic states.

Maslov in 1970 [13] considered the state complex-
ity of union, product, and Kleene star. He gave bi-

nary worst-case examples for these three operations,
however he did not present any proofs. Birget in his
works [1, 2] examined intersection and union of several
languages, and also the question of the size of nonde-
terministic automaton for complements. The system-
atic study of the state complexity of operations on
regular languages began in the paper by Yu, Zhuang,
and Salomaa [24]. This work was followed by papers
studying state complexity of operations on unary lan-
guages [17] and on finite languages [3], complexity of
proportional removals [5], and shuffle in [4].

Another stream of research is the study of so called
“magic” numbers, where not only worst-case complex-
ities are important, but also all values that can be
obtained as a corresponding complexity are consid-
ered. The problem was stated by Japanese authors
Iwama, Kambayashi, and Takaki [9] who asked what
values can be obtained as the size of the minimal de-
terministic automaton equivalent to a given n-state
nondeterministic automaton. The values that cannot
be obtained in such a way are called “magic” numbers
in [10]. The following research showed that there are
no magic numbers in the ternary case [12], while a lot
of them exist in the unary case [6]. The binary case is
still open.

Similar results for the size of nondeterministic au-
tomata for complements can be found in [19], for the
union and intersection in [7], and for the reversal and
star in [11]. In all cases, the whole range of complexi-
ties can be obtained, however while in the case of union
and intersection the used alphabet is fixed, in the case
of reversal and star, the alphabet grows exponentially
with n.

In this paper, we continue the study of the state
complexity of reversals of regular languages. In 1966,
Mirkin [14] pointed out that Lupanov’s ternary worst-
case example is a reversal of a deterministic automa-
ton, which proves that the complexity of the rever-
sal of a language accepted by a ternary n-state deter-
ministic automaton is 2n. The binary language with
more than one accepting state reaching this upper
bound has been given in 1983 by Leiss [15]. In 2004,
the paper [20] claimed a binary worst-case example
with a single accepting state. Unfortunately, the re-
sult does not hold: in the case of n = 8, the number
of reachable states in the subset automaton for the re-
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versal is 252 instead of 256. Since the result has been
used in the literature several times, our first aim is
to present a correct example, and a correct proof. We
start with an observation that all states in the subset
automaton corresponding to the nfa that is obtained
as a reversal of a minimal dfa are pairwise inequiva-
lent. We show that the state complexity of the rever-
sal of an n-state dfa language is between log n and 2n,
and present a ternary worst-case example with a very
simple proof of reachability of all subsets. In a much
more difficult way, we prove that the upper bound 2n

is tight also in the binary case. Our witness automaton
has a single accepting state, and is uniformly defined
for all integers n. Therefore, it can be used in all cases
where the incorrect result from [20] was used. We next
find binary n-state deterministic automata that need
n+ 1 or n+ 2 deterministic states for their reversals.
Finally, we present binary 1-, 2-, and 3-state automata
that reach all particular values from log n to 2n as the
state complexity of their reversals.

2 Preliminaries

This section gives some basic definitions, notations,
and preliminary results used throughout the paper.
For further details, we refer to [21, 22].

Let Σ be a finite alphabet and Σ∗ the set of all
strings over the alphabet Σ including the empty
string ε. The length of a string w is denoted by |w|.
A language is any subset of Σ∗. We denote the cardi-
nality of a finite set A by |A| and its power-set by 2A.

A deterministic finite automaton (dfa) is a 5-tuple
M = (Q,Σ, δ, s, F ), where Q is a finite set of states,
Σ is a finite input alphabet, δ is the transition function
that maps Q×Σ to Q, s is the starting state, s ∈ Q,
and F is the set of accepting states, F ⊆ Q. In this
paper, all dfa’s are assumed to be complete, that is,
the next state δ(q, a) is defined for every state q in Q
and every symbol a in Σ. The transition function δ is
generalized to a function from Q×Σ∗ to Q in a natural
way. A string w in Σ∗ is accepted by the dfa M if the
state δ(s, w) is an accepting state of the dfa M . The
language accepted by the dfa M , is the set L(M) =
{w ∈ Σ∗ | δ(s, w) ∈ F}.

A nondeterministic finite automaton (nfa) is
a 5-tupleM = (Q,Σ, δ, S, F ), where Q,Σ, S and F are
defined identically as for a dfa, S is the set of start-
ing states, and δ is now the nondeterministic tran-
sition function that maps Q × Σ to 2Q. The transi-
tion function can be naturally generalized to the do-
main Q × Σ∗. A string w in Σ∗ is accepted by the
nfa M if the set δ(q0, w) contains an accepting state
of the nfa M. The language accepted by the nfa M is
L(M) = {w ∈ Σ∗ | δ(S,w) ∩ F 6= ∅}.

Two automata are equivalent if they recognize the
same language. A dfa (an nfa) M is called minimal if
every dfa (every nfa, respectively) that is equivalent to
M has at least as many states as M . It is well-known
that a dfa M = (Q,Σ, δ, s, F ) is minimal if all its
states are reachable from the starting state and no two
its different states are equivalent (states p and q are
equivalent if for all strings w in Σ∗, the state δ(p, w) is
accepting if and only if the state δ(q, w) is accepting).
Every regular language has a unique minimal dfa, up
to the naming of states. However, the same result does
not hold for nfa’s.

The state complexity of a regular language is the
number of states in its minimal dfa. A regular lan-
guage with deterministic state complexity n is called
an n-state dfa language.

Every nfa M = (Q,Σ, δ, S, F ) can be transformed
to an equivalent deterministic finite automaton M ′ =
(2Q, Σ, δ′, s′, F ′) thanks to an algorithm known as the
“subset construction” in the following way. Every state
of the dfa M ′ is a subset of the state set Q. The start-
ing state of the dfa M ′ is the set S. The transition
function δ′ is defined by δ′(R, a) =

⋃
r∈R δ(r, a) for

every state R in 2Q and every symbol a in Σ. A state R
in 2Q is an accepting state of the dfa M ′ if it con-
tains at least one accepting state of the nfa M. We
call the dfa M ′ the subset automaton corresponding
to the nfa M . The subset automaton M ′ need not
be minimal since some states may be unreachable or
equivalent.

We next give the definitions and some preliminary
results concerning the reversal operation.

Definition 1. The reversal wR of a string w is de-
fined as follows: εR = ε and if w = a1a1 · · · an with
ai ∈ Σ, then wR = anan−1 · · · a2a1. The reversal of
a language L is the language LR = {wR | w ∈ L}.

The reversal of a dfa A = (Q,Σ, δ, s, F ) is the
nfa AR obtained from A by reversing all transitions
and by swapping the role of starting and accept-
ing states, that is AR =

(
Q,Σ, δR, F, {s}), where

δR (q, a) = {p ∈ Q : δ (p, a) = q}.

Proposition 1. The reversal of a dfa A recognizes
the language L (A)

R
.

Proof. We prove that a string w is in L (A)
R

if and
only if the string w is accepted by the nfa AR.

Fig. 1. The string wR is accepted by the dfa A.
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Fig. 2. The string w is accepted by the nfa AR.

If w is in L (A)
R
, then wR is in L (A), and so

the starting state s goes to an accepting state f in F
by wR. It follows that the starting state f of the nfaAR

goes to the accepting state s of AR by w, and so w is
accepted by AR.

Next, if a string w is accepted by the nfa AR, then
there is a starting state f in F that goes to the ac-
cepting state s of AR by w. It turns out, that in the
dfa A, the starting state s goes to an accepting state f
by wR. Thus the string wR is in the language L (A),
and so the string w is in the language LR (A). ut

Since a language is regular if and only if it is rec-
ognized by a dfa or, equivalently, by an nfa, we get the
following result.

Corollary 1. The reversal of every regular language
is a regular language.

After the construction of nfa for the reversal of
a regular language we can use the subset construction
to get a dfa for the reversal. This gives the following
bounds on the size of the dfa.

Theorem 1. Let L be a regular language accepted by
a minimal n-state dfa. Then the minimal dfa for the
language LR has at most 2n and at least dlog2ne states.
Proof. Let A be an n-state dfa for a language L. The
reversal AR of the dfa A is an n-state nfa for the lan-
guage LR. After applying the subset construction to
this nfa AR, we get at most 2n-state dfa for the lan-
guage LR. Now since (LR)R = L, the lower bound
is dlog ne. ut

We now prove quite interesting result that in the
subset automaton corresponding to the reversal
of a minimal dfa, all states are pairwise inequivalent.
This means that we need not prove inequivalence of
states troughtout the paper.

Lemma 1. Let for each state q of an nfa there exists
a string wq such that wq is accepted by the nfa from
state q, but is not accepted from any other state. Then
in the corresponding subset automaton, all states are
pairwise inequivalent.

Proof. Let M = (Q,Σ, δ, S, F ) be an nfa, and let for
each state q in Q, wq be a string that is accepted by M
only from state q. Let S and T be two different subsets

in the subset automaton corresponding to the nfa M .
Then, without loss of generality,there exists a state q
in Q such that q ∈ S and q /∈ T . It follows that the
string wq is accepted by the subset automaton from
state S but not from state T . Thus the states S and T
are inequivalent. ut

Theorem 2. All states in the subset automaton cor-
responding to the reversal of a minimal dfa are pair-
wise inequivalent.

Proof. Let us show that every nfa obtained as the
reversal of a minimal dfa satisfies the condition in
Lemma 1. Let q be a state of the nfa. Since state q
is reachable in the given dfa, there exists a string x
such that the starting state of the dfa goes to state q
by x, as illustrated in Fig. 3.

Fig. 3. State q is reachable in the dfa A (left); p 6= q in the
nfa AR (right) implies two distinct conputations of the dfa
on the string x.

This means that the string xR is accepted by the
nfa from state q, see Fig. 3. We now prove that the
string xR is not accepted by the nfa from any other
state. Assume for contradiction that the string xR is
accepted by the nfa from a state p with p 6= q. It
turns out that the starting state of the dfa might go
by the string x to state q as well as to state p, which
is a contradiction since in the dfa we woud have two
different computations on the string x. Hence the nfa
satisfies the condition of Lemma 1, and so all states
in the corresponding subset automaton are pairwise
inquivalent. ut

3 Ternary alphabet

We start with the upper bound 2n in the ternary case.
The next theorem presents a ternary worst-case exam-
ple for the reversal with a very simple proof of reach-
ability of all subsets.

Theorem 3. For every integer n with n ≥ 3, there
exists an n-state dfa A over a three-letter alphabet
such that the minimal dfa for the reversal of the lan-
guage L(A) has 2n states.

Proof. Let A be the minimal n-state dfa shown in
Fig. 4. Construct an nfa for the reversal of the lan-
guage L(A) from the dfa A by reversing all transitions,
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Fig. 4. The ternary dfa A reaching the bound 2n.

Fig. 5. The nfa for the reversal of the language L(A).

and exchanging the starting and accepting states. The
nfa is shown in Fig. 5.

Let us show that the corresponding subset automa-
ton has 2n reachable and pairwise inequivalent states.
We first show that every set containing state 0 is reach-
able. The proof is by induction on the size of sets. The
basis, |S| = 1, holds true because state 0 is the start-
ing state of the subset automaton. Assume that every
set of size k, 1 ≤ k ≤ n−1, containing state 0 is reach-
able. Let S = {0, i1, i2, ..., ik} with 1 ≤ i1 < i2 < · · · <
ik ≤ n− 1 be a set of size k+1. Consider the set S′ =
{0, i2 − i1 + 1, ..., ik − i1 + 1}. The set S′ is of size k
and contains state 0, and so is reachable by the induc-
tion hypothesis. The set S′ goes to the set S by bci1−1

since S′ goes to {0, 1, i2 − i1 + 1, . . . , ik − i1 + 1} by b,
and then to S by ci1−1. It turns out that the set S is
reachable.

We next prove the reachability of sets with-
out state 0. Let S = {i1, i2, ..., ik} with 1 ≤ i1 < i2 <
· · · < ik ≤ n − 1. Then the set S is reached from the
set {0, i2 − i1, . . . , ik − i1}, containing state 0, by ai1 .
Finally, the empty set is reached from the set {1} by b.
This completes the proof since the inequivalence fol-
lows from Theorem 2. ut

4 Binary alphabet and upper bound

The authors of the paper [20] present a binary n-state
dfa and claim that its reversal requires 2n determinis-
tic states. Unfortunately, the example does not work:
in the case of n = 8, the resulting dfa has 252 reachable
states instead of 256. The next theorem describes cor-
rect binary n-state witness dfa’s with a single accept-
ing state, uniformly defined for every n with n ≥ 2.

b
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Fig. 6. The binary dfa A reaching the bound 2n.
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Fig. 7. The nfa AR for the binary language L(A)R.

Theorem 4. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the language
L(A) has 2n states.

Proof. Let us consider a binary n-state dfa A in Fig. 6
with states 0, 1, . . . , n− 1, where n ≥ 4, state n is the
starting state and state 0 is the sole accepting state.
For all i = 4, 5 . . . , n− 1, state i goes to state i− 1 by
symbol a, and to itself by symbol b. State 3 goes to
state n − 1 by symbol a, and to state 2 by b. State 2
goes to state 1 by a, and to state 3 by b. State 1 goes
to state 0 by both symbols a and b. State 0 goes to
state 2 by a, and to itself by b. In the case of n = 2 or
n = 3, there are some small changes in the structure
of the automaton. If n = 2, then state 0 goes to state 1
by symbol a. If n = 3, then state 2 goes to itself by
symbol b.

In these two cases, we reverse the dfa A, and after
the determinisation of the reversal, we get a four-state
minimal dfa if n = 2 in Fig. 12, and an eight-state
minimal dfa if n = 3 in Fig. 17.

Now let n ≥ 4. Construct an nfa for the reversal
of the language L (A) by exchanging the starting and
accepting states, and by reversing all transitions in the
dfa A, see Fig. 7. We are going to show that the cor-
responding subset automaton has 2n reachable states.
To make the proof more understandable, we call the
set of states {0, 1, 2} the first part, and the set of states
{3, 4, . . . , n− 1} the second second part of the nfa.

We will consider two cases:
1. n = 3k + 1 or n = 3k + 2,
2. n = 3k,
where k is a positive integer.

1. If n = 3k + 1 or n = 3k + 2, then the number
of states in the first part is three, while the number
of states in the second part is 3 (k − 1) + 1 or
3 (k − 1)+2. Thus these two numbers are are relativily
prime. First, the set {0, 1} is reached from the starting
set {0} by symbol b. Now we demonstrate how to add
a new state ` to a set {0, 1}∪S, where S is a subset of
the second part with ` /∈ S, to get a set {0, 1}∪S∪
{`}. By symbol a, we can rotate states in both parts.
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Consider the set {0, 1, `}. Since the sizes of the two
parts are relatively primes, there exists an integer x
such that the set {0, 1, `} goes to the set {0, 2, 3} by
the string ax. Apply the string ax to the set {0, 1}∪S,
and then apply symbol b. We get the set {0, 1, 3}∪S′,
where S′ is a rotation of the set S by the string ax.
And now, again, there exists an integer y such that the
set {0, 1, 3} ∪S′ goes to the set {0, 1} ∪S ∪ {`} by ay.
So, in this way, we can reach every set {0, 1} ∪ S. Let
us show how to get every subset of states in first part
without changing the second part. Every set {0, 1}∪S
goes to the set {1, 2}∪S as well as to the set {0, 2}∪S
by an appropriate numbers of a’s. Every set {1, 2}∪S
goes to the set {2}∪S by bb, and then to {0}∪S and
{1} ∪ S by an appropriate numbers of a’s. Every set
{0, 2} ∪ S goes to the set {0, 1, 2} ∪ S by bb. Finally,
every set {1} ∪ S goes to the set ∅ ∪ S by bb. This
completes the proof of reachability if n = 3k + 1 or
n = 3k + 2.

2. If n = 3k, we can split the states of the nfa
into triples, the first part is a triple 0, and the second
part consists of triples 1, 2, . . . , k − 1. We first reach
the set {0, 1, 2} from the starting set {0} by the string
baabb. Let us show how to set a triple in the second
part without changing the other triples. We use the
automaton B shown in Fig. 8. In automaton B, every
set is reachable from the set {0, 1, 2}. Assume we want
to set the `-th triple with 2 ≤ ` ≤ k − 1, and let us

Fig. 8. The nfa AR from Proof of Theorem 4 for n = 6 (left
up corner), and dfa for L(A)R, the main part of the picture.
Red lines correspond to the transitions by symbol b, and
blue lines to the transitions by symbol a.

denote the states of this triple by `0, `1, `2. We choose
which configaration for this triple we want obtain, and
show that we set this configuration with the 0-th triple
set to {0, 1, 2}. When finally setting the first triple, we
also show how to set it with an arbitrary configuration
in the 0-th triple. So, first let ` ≥ 2. A configuration
in this triple is given by a subset S of {3, 4, 5}. We
first count the numbers of a’s in the string on a path
from {0, 1, 2} to {0, 1, 2} ∪ S in the dfa B, and denote
it by a#. Now consider some starting strings:

as0 = a3.(k−1−`+1),
as1 = a3.(k−1−`+1)−1,
as2 = a3.(k−1−`+1)−2;

different starting strings are needed because the num-
ber of a’s must be a multiply of 3 in the end.

Next we move the `-th triple to the place of first
triple by one the of starting strings as0 , as1 , as2 : if
a# (mod 3) = 0 we use as0 so we get `0, `1, `2 at
the place of the first triple, if a# (mod 3) = 1 we
use as1 so we get `1, `2, X at place of first triple, if
a# (mod 3) = 2 we use as2 so we get `2, X,X at place
of first triple whereX is a state from some other triple,
thus we cannot modify X.

Next we proceed by the string w and count the
number of a’s. If the starting string was as0 , after the
1st, 4th, 7th, . . . symbol a, we apply a rotation arot

where a arot = a3.(k−2), so that we do not modify
the other triples. Similarly, if the starting string was
as1 , we apply the rotation arot after the 2nd, 5th, 8th,
. . . symbol a. Finally, if the starting string was as2 , we
apply the rotation after the 3rd, 6th, 9th, . . . symbol a.

Now we have set the `-th triple, but still have to
move the triple to its place `: we just need to apply
the string a3(`−1) (a back string).

So the complete string consists of one of the strat-
ing strings, a new route string, and a back string. Thus
in this way, we can set the 0-th triple {0, 1, 2} with all
triples except for the first triple. We set the first triple
in a similar way, but now we use paths from {0, 1, 2} to
every state in the dfa B. That means that all subsets
are reachable. This completes the proof of reachability
for n = 3k. ut

5 Unary alphabet

We now show that we cannot reduce the size of the
alphabet to one symbol.

Theorem 5. The minimal dfa for the reversal of
every unary n-state dfa language has n states.

Proof. Every string w in a unary language L consists
only of symbols, for example, a. Therefore, w = wR,
and so L = LR. That means that the reversal of the
language L has also complexity n. ut
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6 Binary automata with one, two, and
three states

In this section, we examine the reversals of regular lan-
guages that can be accepted by one-, two- and three-
state dfa’s. We first observe that the reversal of a one-
state dfa language is the same language. It turns out
that that the reversal of no two-state dfa language can
be accepted by a one-state dfa, and so in this case, the
lower bound log 2 cannot be reached. On the other
hand, we show that all other possible values, that is,
2, 3, and 4, can be obtained as the size of the mini-
mal dfa for the reversal of a two-state binary dfa lan-
guage. We next prove that all values from 2 to 8 can be
reached as the number of states in the minimal dfa rec-
ognizing the reversal of a binary language represented
by a three-state deterministic finite automaton.

Theorem 6. The reversal of every one-state dfa lan-
guage is a one-state dfa language.

Proof. Let us prove the theorem by inspecting all one-
state automata. We only have two possibilities shown
in Fig. 9. If the state is accepting, then the automa-

Fig. 9. The one-state dfa accepting all strings (left), and
the one-state dfa accepting no strings (right).

ton accepts all strings. If the state is rejecting, the
automaton does not accept any string. In both cases,
the reversal is the same language, and so is accepted
by the same one-state dfa. ut
Theorem 7. For each α with 2 ≤ α ≤ 4, there exists
a two-state binary dfa A such that the minimal dfa for
the reversal of the language L(A) has exactly α states.

Proof. The corresponding automata for α = 2, 3, 4 are
shonw in Fig. 10, Fig. 11, and Fig. 12, respectively.
The figures show a two-state dfa, its reversal, and the
reachable states in the corresponding subset automa-
ton. By Theorem 2, the subset automata are minimal.

Theorem 8. For each α with 2 ≤ α ≤ 8, there exists
a three-state binary dfa A such that the minimal dfa
for the reversal of the language L(A) has exactly
α states.

Proof. Similarly as in the previous proof, we show
the appropriate three-state binary automata for α =
2, 3, 4, 5, 6, 7, 8 in Figures 13, 14, 15, 16, 17.

Fig. 10. The dfa A (top left), the reversal of A (bottom
left), the subset automaton for the reversal; α = 2.

Fig. 11. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 3.

7 Binary alphabet

In this section, we describe n-state dfa’s whose rever-
sals need exactly n+1 and n+2 deterministic states.
Notice that by Theorem 5, the reversal of an n-state
unary language needs exactly n-states.

Theorem 9. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the
language L(A) has n+ 1 states.

Proof. Let n ≥ 2. Consider the n-state dfa A shown
in Fig. 18 with states 1, 2, . . . , n, of which 1 is the
starting state and also the sole accepting state. For all
i = 1, 2, . . . , n − 1 state i goes by symbol a to state
i + 1, and state n goes by symbol a to itself. For all
i = 2, 3, . . . , n state i goes by symbol b to state i− 1,
and state 1 goes by b to itself. The dfa A is minimal
since for two states i, j with i < i, the string bi−1 is
accepted from state i but not from state j.

Construct an nfa for the reversal of the lan-
guage L (A) by swapping the starting and accepting
states, and by reversing all transitions in A. Let us
show that the corresponding subset automaton has
n + 1 reachable states . The set {1} is reachable be-
cause it is the starting state in the subset automaton.
The set {1} goes to the empty set by symbol a, and to
the set {1, 2} by symbol b. Every set {1, 2, . . . , i} with
2 ≤ i ≤ n−1 goes to the set {1, 2, . . . , i− 1} by a, and
to the set {1, 2, . . . , i+ 1} by b. The set {1, 2, . . . , n}
goes to itself by a and b. Thus the sets {1}, {1, 2}, . . .,
{1, 2, . . . , n}, and the empty set are reachable, while
no other set is reachable. It follows that the minimal
dfa for the reversal of L(A) has n+ 1 sets. ut
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Fig. 12. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 4. ut

Fig. 13. The dfa A (top left), the reversal of A (bottom
left), the subset automaton for the reversal; α = 2.

Fig. 14. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 3, 4.

Fig. 15. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 5, 6.

Fig. 16. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 7.

Theorem 10. For every integer n with n ≥ 2, there
exists an n-state dfa A over a two-letter alphabet such
that the minimal dfa for the reversal of the language
L(A) has n+ 2 states.

Fig. 17. The dfa A, the reversal of A, the subset automa-
ton for the reversal; α = 8. ut

Fig. 18. The n-state binary dfa requiring (n+1)-state dfa
for the reversal.

Fig. 19. The n-state binary dfa requiring (n+2)-state dfa
for the reversal.

Proof. Let n ≥ 2. Consider the n-state dfa A shown in
Fig. 19 with states 1, 2, . . . , n, of which 1 is the starting
and the sole accepting state. Each state i goes to state
i − 1 by symbol a, except for state 1 that goes to
state n by symbol a. Each state i goes to state 1 by
symbol b. The dfa A is minimal since for each state i,
the string ai−1 is accepted only from state i.

Construct an nfa for the reversal of the lan-
guage L (A) by swapping the starting and accepting
states, and by reversing all transitions in A. Let us
show that the corresponding subset automaton has
n+2 reachable states. The set {1} is the starting state
in the suset automaton. For all i = 1, 2, . . . , n− 1, the
set {i} goes to set {i+ 1} by symbol a, and the set {n}
goes to the set {1} by symbol a. The set {1} goes to set
{1, 2, . . . , n} by symbol b. Each set {i} with i ≥ 2 goes
to the empty set by symbol b. The set {1, 2, . . . , n}
goes to itself by symbols a and b. So the sets {1}, {2},
. . ., {n}, {1, 2, . . . , n}, and the empty set are reach-
able, while no other set is reachable. ut

8 Conclusions

We studied the state complexity of languages that can
be obtained as reversals of regular languages repre-
sented by deterministic finite automata. We showed
that the state complexity of the reversal of a regu-
lar language with state complexity n is between log n
and 2n. We gave a simple proof of a fact that the up-
per bound is tight in the ternary case. Then we pre-
sented binary languages reaching this upper bound on
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the reversal. Our witness deterministic automata have
a single accepting state, which can be used in some
results in the literature instead of an incorrect exam-
ple in [20]. We also obtained some other partial results
in the binary case for one-, two-, and three-state au-
tomata. We described automata, the reversal of which
has state complexity n, n + 1, and n + 2. In future,
we want to do statistics of reachable complexities for
the reversal of all automata up to five states. We also
want to find automata, with other complexities then
n, n+1, n+2, and 2n, and try to answer the question
whether all values from log n to 2n can be reached,
or whether there are some “magic numbers” for the
reversal.
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