
Implementation of a data layer for the visualization
of component-based applications

Jaroslav Šnajberk and Přemek Brada

Department of Computer Science and Engineering, Faculty of Applied Sciences
University of West Bohemia, Pilsen, Czech Republic

{snajberk,brada}@kiv.zcu.cz

Abstract. Current approaches to the visualization
of component-based applications mostly use only associ-
ations and dependencies between components and provide
limited supplementary information. In this paper, we in-
troduce a data layer that is able to store and later present
more information about component elements which
are bound together, and through this knowledge provide
more understanding about the component itself. These in-
formation could be presented in different ways to provide
different views for component software developers, design-
ers, and architects. This data layer is general and is able
to visualize component based applications of any component
model. It is presented here together with its structure, im-
plementation and tooling. We share experiences obtained
in the process of designing and implementing this layer.
Special care is given to the implementation details which
were solved in the process and relevant tools like MOF and
EMF are presented. Results from the test application are
also part of this paper.

1 Introduction

Many component based applications are developed in
different component environments. Component mod-
els like EJB [8], CORBA [6], OSGi [9] and more can be
found in commercial applications and even more com-
ponent models – for example SOFA [19] or CoSi [20]
– are the subject of research.

The diversity of component models or even ap-
proaches to components [1] poses problem when one
needs to visually represent a component or compo-
nent-based application. UML 2.0 [5] component dia-
gram is often used for the visualization of component
dependencies. The problem is that dependencies alone
do not provide much information about the component
itself.

It would be beneficial if there was a way to know
more about the elements that make up the bindings
between components. Based on the diversity of compo-
nent models we can say these elements should bear the
information relevant in the concrete component model.
This means that general visualization approaches like
UML can’t represent this extra information.

This problem is best presented on a short example
of a CORBA component. Let us presume there is com-

Fig. 1. Address Component in UML.

ponent as shown in Example 1 and we would like to
display it in diagram. In UML this component would
look like in Figure 1.

Example 1.
component AddressComponent
{

// a t t r i b u t e s
readonly a t t r i b u t e s t r i n g d e s c r i p t i o n ;
readonly a t t r i b u t e NetworkState s t a t e ;

// f a c e t s
prov ide s AddressBook book ;
prov ide s AddressSearch search ;

// events
p u b l i s h e s ChangeState s t a t e N o t i f y ;

}

UML only supports displaying attributes and in-
terfaces the component provides. The CORBA-specific
flag “readonly” assigned to the attributes is missing
on this diagram and could only be added using stereo-
types, which would make the diagram clumsy. Events
which the component publishes bring difficulties for
the UML component diagram, because it provides no
simple way how to represent them.

If we would like to capture such additional infor-
mation in the visualization of component based appli-
cations, appropriate specific meta information would
need to be available for its concrete component model.
That would lead to as many representations as there
are component models, leading to significant fragmen-
tation of visual notations. A better solution is to have
a generic meta-model which can be instantiated for
individual component models. This means a new data



56 Jaroslav Šnajberk, Přemek Brada

Fig. 2. ENT data container.

layer implementing this meta-meta level has to be de-
signed. The representation of this problem based on
MOF (Meta Object Facility) layers [4] is in Figure 2.

On the M3 level there is a data structure able to
hold information about both component models and
component based application. On the M2 level there is
a definition of a component model (defined manually
for each component model to provide meaningful rep-
resentation) which explains the information stored on
the M1 level. The M1 level should support automated
walking through component-based applications.

In [2] we introduced the ENT meta-model which
brought understandable component representation for
both automated software agents and humans. It con-
tains support for a classification applicable to compo-
nent models, description of components and several
views to represent this data based on user’s point of
interest.

1.1 Goal and structure of this paper

In this paper we focus on the design and implemen-
tation of a data layer meeting the above requirements
on storing and using of these additional information
for visualization of component-based applications. The
layer implements the ENT meta-model as a MOF
structure, using Eclipse Modeling Framework as the
underlying technology. Besides describing the data
layer itself, we also want share the experiences gained
in the process of designing its implementation.

In the next section we briefly review the related
standards and research works in the areas of (com-
ponent) meta-modeling and visual representation. An
overview of ENT meta-model is provided in Section 3
to understand the rest of the paper, including the ex-
tensions introduced for the description of component
models and component based applications.

To build a data container according to the ENT
specification, a MOF model [4] was created in which
key features of the meta-model were identified and
model elements were designed. Implementation char-
acteristics were considered in this phase and the meta-
model was slightly modified. The structure of the
MOF model and the description of design steps can
be found in Section 4.

For its good fit with the data layer needs, the
Eclipse Modelling Framework (EMF) was chosen as
a model generator. More information about EMF, the
generated model and editor can be found in Section 5.

As a proof that the MOF model of ENT meta-
model was designed correctly, we implemented rep-
resentations of several component models. The list of
these component models and a case study can be found
in Section 6.

2 Component meta-modeling

The diversity of component models or even approaches
to components [1] has been mentioned in several stud-
ies, e.g. [12, 13]. There are differences in terms of the
target use of the component model (desktop GUI, en-
terprise applications, embedded or real-time systems),
the richness of the interface contract type (from a sin-
gle interface through a set similar to CORBA com-
ponents, to an extensible model as represented by the
iPOJO [14] research framework) as well as between flat
models like OSGi and hierarchical ones like SOFA.

The domain of meta-models is best represented
by the Meta-Object Facility (MOF) standard [4]. As
described in the Introduction, it uses a layered ap-
proach to create progressively more specific structures
defining the terms of a particular domain, their at-
tributes and relationships. MOF itself has been a sub-
ject of rich research. An interesting contribution is
Poernonomo’s work [15] on providing type-theoretical
foundation for the meta-models.

UML [5] component diagram is often used to vi-
sualize component based applications and since ver-
sion 2.0 of the notation it doesn’t suffer from problems
presented in [17] – mainly the inability to clearly dis-
tinguish provided and required interfaces. The UML
component diagram is nowadays a common tool for
the visualization of component dependencies. An
alternative visualization of component-based applica-
tions is presented in [16], this approach supports EFP
(extra functional properties) on top of a classical com-
ponent diagram.

3 Overview of the ENT meta-model

The ENT meta-model is a MOF M3 model whose main
characteristic is the use of faceted classification



Data layer for visualization 57

approach [3] to classify characteristic traits of compo-
nent models. The ENT meta-model is structured into
two levels. On the Component model level the main
characteristic features of a given component model are
defined and the characteristic traits of components de-
fined in this model are classified. On the Application
level the previous definitions are used and the inter-
face elements belonging to individual components are
identified. To support additional information, tags are
provided which can be added to components or single
component elements. The faceted view is used to rep-
resent components in way better readable to humans.

For complete ENT meta-model specification,
please refer to [2]. Compared to this base specification
the meta-model was extended in this work to support
relations and dependencies between components, see
Section 3.5.

3.1 Classification system

The ENT classification system has eight facets called
“dimensions”. These dimensions have predefined val-
ues and each dimension represents a different point of
view on a component. Some facets can have more then
one value, for instance Role which says if an element
is provided or required – in some cases an element can
exhibit both provided and required roles, as e.g. the
SOFA behaviour protocol [18].

– Nature = {syntax, semantics, nonfunctional}
– Kind = {operational, data}
– Role = {provided, required, neutral}
– Granularity = {item, structure, compound}
– Construct = {constant, instance, type}
– Presence = {mandatory, permanent, optional}
– Arity = {single, multiple}
– Lifecycle = {development, assembly, deployment,

setup, runtime}

3.2 Component model level

Complete characteristic features of a given component
model are identified on this level of understanding.

Identification of different component types is the
first step, because the component model consists of
one or more component types. As an example, there
is only one component type in OSGi (called Bundle);
in EJB on the other hand several different compo-
nent types can be identified because EJB applications
can be built from SessionBeans, EntityBeans or Mes-
sageDrivenBeans.

Every component type has its traits definitions
that define the kinds of elements (features) the con-
crete component can have on its surface. Traits thus
helps to fully characterize component of such a type.

Each trait definition is classified using ENT classifi-
cation giving different meaning to these trait defini-
tions. For example, CORBA components (cf. Exam-
ple 1) have traits facets (provided interfaces), recepta-
cles (required interfaces), event sinks, etc.

For other information that are important for the
component model and cannot be described us-
ing traits, tags are used. Tags can expand information
about component types or about elements in traits,
for instance to keep track about version, accessibility,
range and other additional parameters. Tag definitions
are defined on the component model level in order to
be available on the application level.

When the component model level is designed, set of
data structures for its component-based applications
is prepared. These data structures can fully describe
all applications implemented in the given component
model.

3.3 Application level

Components, from which an application is built from,
are represented on this level. The component model
has to be already defined on the component model
level because the application level references its ele-
ments. By creating these references on higher level,
the meaning is given to the application elements.

It means a concrete component is assigned a cor-
responding component type and based on that, a set
of its traits is gained. Traits alone do not say any-
thing about the particular component, but elements
that belong to the given trait do. Each trait has its
own element set – the interfaces, classes, events, etc.
found on the component’s surface. The component is
thus described by several sets of elements grouped to-
gether by their characteristic traits. The trait has only
grouping purpose and through the reference to its trait
definition gives meaning to all elements contained in
it. Concrete values of tags can be set on the component
and its elements, thus providing their more precise de-
scription.

For example, the “facets” trait of the component
from Example 1 is a set { (book,AddressBook), (search,
AddressSearch) } and the (description,string) element
has a tag set { (access,readonly) }.

3.4 Category sets

The level of traits and elements could contain a lot
of unwanted information for some sorts of users. For
example software architects are interested in other in-
formation than programmers of component-based ap-
plications. By using such data layer there could be
a danger of confusion when representing big and com-
plex applications.



58 Jaroslav Šnajberk, Přemek Brada

After representing a component-based application
according to the Application level, the received infor-
mation can therefore be organized using category sets.
These sets are defined by selector operators on the
trait classification, and can be supplemented by any
user of the ENT meta-model if another point of view
is needed. In [2] five category sets are presented, from
which we introduce here only the first one (E-N-T)
that gave name to the ENT meta-model.

Category sets say how to group and display traits.
The E-N-T category has three groups. In the first
group are elements that are contained in traits with di-
mension {role = provided}, this means those elements
which the component exports. Required elements are
similarly grouped as needs and elements that can be
both provided and required are called ties.

E-N-T (Exports-Needs-Ties)
fE = λC.(C.role = {provided})
fN = λC.(C.role = {required})
fT = λC.(C.role = {provided, required})

Fig. 3. ENT category set.

For example, the attributes and facets of the COR-
BA component in Example 1 belong to the “E” cat-
egory set, while the stateNotify event belongs to the
“N” set (because it signals the component requires an
event sink to which it needs to be connected).

3.5 Extensions of the ENT meta-model

The original ENT meta-model [2] was concerned only
with the representation of standalone components. We
wanted the ENT meta-model to be able to visualize
whole component based applications with dependen-
cies between components and we further wanted to
add support for hierarchical components. The exten-
sions of ENT meta-model are presented in this section.

A new meta-model entity Binding=(Element local,
Element alien, direction ∈ {provided, required}) was
created to represent bindings between components.
Bindings are realized through concrete elements that
are physically linked to each other, with additional
information about the binding direction – provided
means “from local to alien”, required means oppo-
site. Every component has its own list of bindings,
this list contains all bindings involving the elements
of the component. This means a Binding between ele-
ments of components A and B is in the lists of both
these components. This method has the advantage of
ensuring that the binding list is complete in any com-
ponent’s representation.

The ENT meta-model already contained lists of all
elements that can be bound, as element sets contained
in traits. This modification only allows to add infor-
mation which elements are actually bound to other
elements and does not create any new element.

The list of components which constitute a hierar-
chical component was added as an attribute to the par-
ent component structure. This modification together
with element bindings allows to represent hierarchi-
cal components. This kind of components can add its
own elements and export/import only some of the el-
ements that are contained by components it is built
from. These inner components are restricted in that
they can only bind with each other within the bound-
aries of their parent hierarchical component. In every
other respect they are normal components.

4 ENT model in MOF

This section introduces the data structures which form
a concrete implementation of the ENT meta-model, to
be used in visualization of component-based applica-
tions. The explanations in this section use the descrip-
tion of the process of creating this design and imple-
mentation, as it provides a way to share experiences
that other projects can draw from.

The MOF is a Domain Specific Language used to
define meta-models. The core of MOF is shared with
UML and its meta-models can be defined using UML
class diagram. This means the ENT meta-model can
be defined using MOF and the product of this defi-
nition will be UML class diagram which can later be
processed. Entities defined in this section can be im-
plemented in specific programming language and used
as data layer in any other project.

The creation of a MOF model is most easily started
from a formal definition of the corresponding domain
abstractions. We have to keep in mind that there can
be changes introduced by this MOF model because
the formal description doesn’t consider implementa-
tion limitations and details like references on objects.

We will present the ENT model thus created in
three separate parts. The Classification system is mod-
eled as a simple class ENTClassification with at-
tributes corresponding to classification facets. These
facets are modeled as enumerations, which is appropri-
ate given their needs. The facet attributes were iden-
tified as mandatory, with “single” multiplicity except
for Life-cycle and Role which have “multiple” multi-
plicity.

The component model level is represented by four
elements. ComponentModel entity is the main one and
is designed to keep all instances together on one place.
ComponentTypes and TraitDefinitions will be ac-
cessed via references gained from arrays stored in



Data layer for visualization 59

Fig. 4. Component model level in MOF.

ComponentModel. This level quite corresponds to its
formal description. The “note” attribute was added to
all these elements, to provide for descriptive informa-
tion about the implemented component model in this
data structure.

The application level is represented by five elements
and it is the most changed part of the ENT meta-
model compared to its formal description in [2]. The
changes were due to the extensions described in Sec-
tion 3.5. Component, Trait and Tag entities contain
references to their descriptors at the component model
level. Binding and Element entities are component mo-
del independent.

Fig. 5. Application level in MOF.

5 EMF implementation

The MOF model could be converted to a concrete
implementation manually, but EMF (Eclipse Model-
ing Framework) was chosen instead. EMF is used for
Model Driven Development and offers additional ser-
vices such as generating the model classes from UML,
and editors for the model in the form of an plugin for
the Eclipse integrated development environment. This
section describes the advantages brought by the use of
EMF.

EMF was used to generate a Java implementation
of the data layer from the MOF model of the ENT
meta-model. This implementation is called ENTMM
as an abbreviation for ENT meta-model. ENTMM
consists of interfaces and classes corresponding di-
rectly to the model entities presented in the previous
section. This implementation thus forms a run-time
ENT representation of any given component model
and its applications and will be used in every project
that uses the ENT meta-model; for some such future
projects see Section 7.

An editor of ENTMM data was created to pro-
vide GUI for component model definition described in
Section 3.2; it is very similar to editor displayed in
Figure 6. This editor is implemented as Eclipse plugin
and can’t be used without the Eclipse IDE.

EMF however offers more than just the advanced
code generator and Eclipse plug-ins to support model-
ing. One of its features is advanced work with the XML
format. Editors automatically save all model data in
an XML file which can be easily accessed using EMF-
generated resource classes. This brought us very usable
form of automated storing and loading representations
of various component models. This EMF ability goes
both ways so in the future there is the possibility of
using EMF buit-in features to save current application
models in XML.

Eclipse Modeling Framework is able to set many
features of the generated model in its editor and it is
strongly recommended to use this opportunity instead
of manual changes to generated code. EMF transforms
the UML diagram into its internal format of
“ECORE” file, where all information and settings re-
lated to the model are stored. Similarly there
is a “GENMODEL” file which is used to store set-
tings for the editors of the generated model and for
the generating process itself.

The base model created automatically had several
limitations mainly from practical point of view. For-
tunately, EMF is able to set many features for the
component model representation created in its editor.
After an automated transformation of UML into the
EMF basic ECORE format, a few additional changes
had to be performed.



60 Jaroslav Šnajberk, Přemek Brada

The most important one was to configure
the ECORE editor so that entity references are used
(instead of instances) for many model class attributes.
This prevented the undesired effect that the same trait
definition could not be shared by several component
representations.

6 Creating component model
representations

The ENTMM editor for Eclipse was used to create the
representation of several component models, namely
OSGi, EJB, CORBA, and SOFA (which have been al-
ready defined) and the CoSi [20] and MVE [11] models
(their definitions were newly created). In this process,
the plugins created by EMF and described in Section 5
were used.

By adding these plugins, a new file type appears
in Eclipse while creating new file, named “ENTMM
Model”. To start defining the representation, the user
has to choose this file type and select “Component
Model” as an “Model Object” when asked. ENTMM
editor like the one in Figure 6 will appear and by using
its simple interface, the user is able to define a new
component model easily.

Fig. 6. ENTMM editor in Eclipse IDE.

6.1 Case study of SOFA

As a case study, the representation of the SOFA com-
ponent model is presented below to show how sim-
ple it is to create a definition of a new component

model. SOFA [19] is a research component model from
Charles University, Prague. A SOFA component is in-
teracting with other components only via designated
provided and required interfaces. A component can be
viewed as both a black-box and gray-box entity.

Definition of SOFA component model in ENT is
provided in [2], and repeated below for understanding
of this case study.

Definition of SOFA component model in ENT:

SOFA component framework defines one kind of com-
ponents, with no component-level and element-level
tags and with four traits.

provides - provided interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {provided},
{structure}, {instance}, {permanent}, {multiple},
Lifecycle),

requires - required interfaces
metatype = interface,
classifier = ({syntax}, {operational}, {required},
{structure}, {instance}, {permanent}, {multiple},
Lifecycle),

properties - provided interfaces
metatype = property,
classifier = ({syntax}, {data}, {provided}, {item},
{instance}, {permanent}, {multiple}, {development,
assembly, runtime}),

protocol - provided interfaces
metatype = protocol, and
classifier = ({semantics}, {operational}, {provided,
required}, {item}, {type}, {permanent}, {na},
{development, assembly, runtime}).

The representation of the SOFA component model
was created in ENTMM editor and the final view of
this implementation can be seen in Figure 6. As men-
tioned in Section 5, EMF stores data in XML format.
XML version of the SOFA component model repre-
sentation is given in Example 2. This representation
can be recreated by intuitive use of editor and filling
data from the formal definition to the prepared data
structure.

The generated XML structure does not follow all
rules of good XML data but EMF does not support
XML customization. This disadvantage is the only tax
to pay for automated storing and loading of compo-
nent models.

Example 2.
<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<ENTMM: ComponentModel xmi : v e r s i on =”2.0”



Data layer for visualization 61

xmlns : xmi=”http ://www. omg . org /XMI”
xmlns :ENTMM=”http :///ENTMM. ecore ”
name=”SOFA”>

<componentSet t r a i t S e t =”// @tra i tSe t . 2
// @tra i tSe t . 3 // @tra i tSe t . 0
// @tra i tSe t .1”/>

<t r a i t S e t name=”prov ide s ”
metatype=” i n t e r f a c e ”>

< t r a i t C l a s s i f i e r g r a n u l a r i t y=
” s t r u c t u r e ” a r i t y=”mul t ip l e ”
cons t ruc t=”in s t anc e ”
presence=”permanent”>

<ro l e>provided</ro l e>
< l i f e c y c l e >development</ l i f e c y c l e >
< l i f e c y c l e >assembly</ l i f e c y c l e >
< l i f e c y c l e >deployment</ l i f e c y c l e >
< l i f e c y c l e >setup</ l i f e c y c l e >
< l i f e c y c l e >runtime</ l i f e c y c l e >

</ t r a i t C l a s s i f i e r >
</t r a i t S e t>
<t r a i t S e t name=”r e q u i r e s ”

metatype=” i n t e r f a c e ”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >

</t r a i t S e t>
<t r a i t S e t name=”p r o p e r t i e s ”

metatype=”property”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >

</t r a i t S e t>
<t r a i t S e t name=”pro to co l ”

metatype=”pro to co l”>
< t r a i t C l a s s i f i e r . . . >
</ t r a i t C l a s s i f i e r >

</t r a i t S e t>
</ENTMM: ComponentModel>

7 Future work

Having created the ENTMM implementation, work is
currently under way on the implementation of compo-
nent application loaders for the OSGi and CoSi frame-
works. These loaders should analyze component ap-
plication based on the used component model and
load information we are interested in. This informa-
tion will be stored in the implemented ENT meta-
model data structures. In future we will extend the
supported component models to include EJB, SOFA,
etc. based on actual needs.

We concurrently work on Component model visu-
alizer based on ENT faceted views and of course on the
ENT meta model EMF implementation. This applica-
tion will support multiple ENT views and automated
application loading using implemented component ap-
plication loaders. This should give us a tool able to

provide component application visualization for many
component models and with multiple views based on
ENT philosophy.

All these efforts should result in advanced visual-
izer of component based applications fulfilling these
points:

1. Dynamic loading of any component based appli-
cation no matter which component model is used.

2. Component displayed with additional information.

3. Support of different views, based on user needs.

The visualized component should look similar to
component visualized in Figure 7. This kind of visu-
alization will meet all requirements discussed in this
paper.

Fig. 7. AddressComponent visualized in ENT style.

8 Conclusion

This paper presented an extended ENT meta-model
with the support for inter-component dependencies.
The process of creating the MOF-based representa-
tion of this model was described to share as much
experience as possible, including relevant class dia-
grams. Based on these diagrams a EMF-generated tool
was presented which is used to create representations
of concrete component models, with a discussion of
its advantages and several interesting points we met
in the process of generating the implementation Java
code from the class diagrams.

Finally we presented component models that were
implemented using the generated Eclipse IDE plugin.
Brief description how to use this plugin is also pro-
vided and supplemented with a case study of the rep-
resentation of the SOFA component model. Both the
XML format and the graphic view of the final product
were presented.



62 Jaroslav Šnajberk, Přemek Brada

The key contribution of this paper is the descrip-
tion of a MOF-based data layer able to hold and inter-
pret rich information about various component mod-
els and their concrete components. This layer can be
used in many scenarios, including representing visually
complex component-based applications.

This paper can also be used to learn experiences we
gained in the process of the transformation from for-
mal model definitions to this implementation. These
experiences can be used as a whole, providing tuto-
rial how to transform meta-model from paper to real
life application, or separately when the reader is inter-
ested only in some parts like creating a MOF model
or using the EMF tool.

References

1. C. Szyperski: Component software: beyond object-
oriented programming, 2nd edition. Addison-Wesley
Professional, 2002.

2. P. Brada: The ENT Meta-Model of Component In-
terface, version 2. Technical report DCSE/TR-2004-
14, Department of Computer Science and Engineering,
University of West Bohemia, 2004.

3. R. Prieto-Diaz, P. Freeman: Classifying software for
reusability. IEEE Software 18 (1), 1987.

4. Object Management Group: Meta Object Facility
(MOF) Core Specification, Version 2.0. OMG speci-
fication formal/06-01-01

5. Object Management Group: UML Superstruc-
ture Specification, Version 2.2. OMG specification
formal/2009-02-02.

6. Object management Group: CORBA Components,
Version 3.2. OMG Specification formal/02-12-06

7. D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks: Eclipse modelling framework, Second Edi-
tion. Addison Wesley, 2009.

8. Sun Microsystems, Inc.: Enterprise JavaBeans(TM)
Specification, Version 2.0. Sun Microsystems, Inc.
2001.

9. OSGi Alliance: OSGi Servise Platform Core Specifica-
tion. OSGi Alliance, 2009.

10. F. Plǎšil, D. Bǎlek, and R. Janeček: SOFA/DCUP: ar-
chitecture for component trading and dynamic updat-
ing. Proceedings of ICCDS’98, Annapolis, Maryland,
USA, 1998. IEEE CS Press.

11. M. Roušal and V. Skala: Modular visualization envi-
ronment - MVE. Proceedings of International Confer-
ence ECI 2000, Herlany, Slovakia.

12. N. Medvidovic and R.N. Taylor: A classification and
comparison framework for software architecture de-
scription languages. In: IEEE Transactions on Soft-
ware Engineering 26 (1) 2000, 70–93.

13. I. Crknovic, M. Chaudron, S. Sentilles, and A. Vulgar-
akis: A classification framework for component models.
Proceedings of the 7th Conference on Software Engi-
neering and Practice in Sweden, 2007.

14. C. Escoffier and R.S. Hall: Dynamically adaptable ap-
plications with iPOJO service components. Proceed-
ings of 6th International Symposium on Software Com-
position, Braga, Portugal, 2007.

15. I. Poernomo: A type theoretic framework for formal
metamodelling. In: Architecting Systems with Trust-
worthy Components, Lecture Notes in Computer Sci-
ence 3938/2006, Springer-Verlag 2006.

16. R. Monge, C. Alves, C. and A. Vallecillo: A graphical
representation of COTS-based software architectures.
Proceedings of IDEAS, April 2002.

17. Ch. Lüer, and D.S. Rosenblum: UML component di-
agrams and software architecture – experiences from
the WREN project. 1st ICSE Workshop on Describing
Software Architecture with UML, 2002.

18. F. Plášil, and S. Vǐsnovský: Behavior protocols for soft-
ware components. IEEE Transactions on Software En-
gineering, 28 (10), 2002.

19. T. Bures, P. Hnetynka and F. Plasil: SOFA 2.0: Bal-
ancing advanced features in a hierarchical component
model. Proceedings of SERA 2006, IEEE CS, 2006.

20. P. Brada: The CoSi component model: reviving the
black-box nature of components. Proceedings of the
11th International Symposium on Component Based
Software Engineering, October 2008, Springer Verlag,
LNCS 5282.


