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Abstract. The internet is not only a platform for publishing documents; it is a 
provider of data and services. Increasingly, scientific disciplines are exposing 
their tools and data to the internet, as a result, some scientific problems have 
become essentially internet mining problems. We show that candidate gene 
prioritisation, a challenging problem in biology, is essentially an internet 
mining problem. Thus, improving our ability to mine Future Internet 
Knowledge Bases (FIKBs) will advance biology and other sciences. 
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1   Introduction 

The internet has been, and still is, primarily concerned with publishing documents. 
However, it is clearly also a provider of data and services: scientific data is 
increasingly accessible on the internet, and many scientific tools are made available 
via the web, as web services, web applications, or otherwise exposed to the internet.    
    Th is is particularly evident in the Life Science domain, which has embraced 
theinternet as a medium for publishing data and tools. To cite a few examples, for 
molecular data, the journal Nucleic Acids Research has tracked 1,230 databases [1], 
covering a diverse range of topics and this figure is growing at an rapid rate. 
Likewise, the BioCatalogue directory tracks 1,695 publicly available web services of 
bioinformat ics analysis tools [2]. PubMed, the web’s largest bibliography, is also life 
science centred with a historical focus on biomedical topics. Therefore the internet is, 
amongst other things, a distributed knowledge base for biological studies where the 
network of bio logical entit ies and their relations is described “in the web”: via 
interlinked websites, or more exp licit ly, as RDF graphs [3].  
    In light of the “internetisation” of biological data and resources, we assert that 
many biological problems are de facto internet mining problems, analogous to more 
conventional internet mining problems. Therefore improving our ability to mine 



Future Internet Knowledge Bases (FIKBs) will certain ly advance biology and other 
sciences. We demonstrate this by showing how the problem of gene prioritisation is 
analogous to automatic page tagging. 

2   Gene prioritisation: a biological problem 

Finding causes that influence particular traits is an important challenge in bio logy; 
whether it is locating disease genes affecting humans, factors decreasing food 
production for cereals, or factors increasing industrial insulin production, 
fundamentally, the goal is the same, to find causes of biological traits. Often the 
causes under study are genetic actors, and the methods employed to examine them 
invariably rely on drawing parallels against the body of studied genes; that is to say, 
given some new gene of study, the assumption is always that it works in a similar way 
to closely evolutionarily related genes [4]. 
    Th is assertion underpins the choice to focus study on model organisms, usually 
organisms which lend themselves to study (i.e. by virtue of having easily observed 
characteristics or by being cheap to work with) which are representative of their 
respective classes [5], for example, mouse is commonly used as a model organism for 
human. For studying a newly discovered gene, bioinformat ics can be used first to 
identify studied evolutionarily related genes by various similarity measures and then 
to transpose information to the unstudied gene by assigning it putative functions [6]. 
    Using observations and statistical techniques, associations can be drawn between 
complex traits and genomic regions, however, these regions can be large [7] and also 
the costs of gene testing may be high, so as to make the cost of exhaustively testing 
every gene in the region prohibitive. For the biofuels crop willow, b iomass is an 
important trait involved in the production of biofuels. Testing time for a single gene 
for its influence on this trait ranges from months to years, and genomic regions 
derived from the statistical techniques may contain several hundred genes. As 
randomly testing genes is unlikely to reveal trait-affecting genes, this is a clear case 
for gene prioritisation techniques. 
    When analysing genes, whilst some useful knowledge may be gleaned from 
analysing their sequences directly [8], by and large, the bulk of useful knowledge 
about these genes will be derived from comparing or otherwise associating the newly 
sequence genes to the corpus of well-studied genes [9], to existing pathways [10], to 
publications [11], and any other availab le data. These associations induce a 
semantically heterogeneous graph, with each gene comparison or association method 
asserting a new type of relationship between genes from the newly sequenced 
organism to the wider general body of knowledge, which itself would be a semantic 
heterogeneous graph (see Figure 1 for an example). Once viewed as a graph, 
descriptions of complex traits of interest can then be represented as a collection of 
nodes in the graph representing functional annotations, such as those from the various 
biological ontologies [12] or controlled vocabularies. Finding good ways to prioritise 
genes for experimental testing for complex biolog ical t raits then becomes equivalent 
to ranking the overall association in a heterogeneous graph, from a set of nodes of a 
gene type (genes from the newly sequenced organism) to a set of a set of nodes of the 
annotation types. 



3   Automatic page tagging: an analogy 

The pattern of the problem presented earlier is not unique to the biological domain. 
As an example, the same pattern can also be found in an automatic page tagging 
system that works by comparing untagged pages against an existing corpus, where 
pages may be associated by relationships such as: “belonging to the same domain”, 
“being written in the same language”, or “belonging to the same web ring”. 
Furthermore, pages can be related by the similarity of their structure, by shared 
keywords, by a shared audience of the pages, and by other page comparison methods. 
These relationships may be more or less informat ive, but will induce a semantically 
heterogeneous graph.  
    Suppose that the pages in the existing corpus have been assigned appropriate tags 
by curation, these tags may be from a controlled vocabulary, ontology, or free (which 
could still fall into a structure such as WordNet [13]). An automat ic tagging method 
then might be, for each untagged page, to determine the strength of association 
between that page and the existing tags, and then assign tags according to the strength 
of association (with some sensible threshold). 
    Then tag based search (by single tags or by collection of tags) of the new, 
automatically tagged pages would return an ordered list of those pages most 
associated to those tags, this order can utilise the semantic distances between tags, and 
makes the problem analogous to the gene prioritisation problem. An example of a 
graph that this view of the tagging problem may induce is shown in Figure 1.  

 

 
Fig. 1. Two example graphs, candidate gene prioritizat ion based on studied genes, 
and automatic page tagging based on curated pages sharing the same graph topology. 
Bold type represent to the “gene version” of this graph topology, whereas regular type 
represents the “page version” of this graph topology. Where edge/node types are the 
same in both cases, they are italicised. 



4   Gene prioritisation: an internet mining problem 

In the previous section, we have shown how a typical bioinformatics problem, gene 
prioritisation, is analogous to a typical internet mining problem. Beyond this analogy, 
this and other bioinformatics studies should also be considered internet mining 
problems in the own right. 
    Each of the node types shown in the gene priorit isation example in Figure 1 is 
represented by one or more internet resources, as are the edge types. For each of the 
node types shown in Figure 1, one source of this type of data is given in Table 1. For 
each of the edge types shown in Figure 1, one source of data for this type of 
relationship, or one tool for asserting this type of relationship, is shown in Table 2. 
Biological entities and relationships are encoded in a variety of forms, as documents, 
in structured data, and combinations of both, for our purposes, we only wish to 
illustrate that at least one form is (and in general, many forms are) available on the 
internet. 
    Thus, heterogeneous graphs that can be used for solving the candidate gene 
prioritisation problem are d irect ly availab le on the internet, and along with other 
scientific resources, will be part of Future Internet Knowledge Bases (FIKBs). 
 
 
Nodes Source URL 
Genes Ensembl [14] http://www.ensembl.org/index.html 

 
Pathways KEGG Pathway 

[15] 
http://www.genome.jp/kegg/pathway.
html 

Annotation terms 
 

Gene Ontology [12] http://www.geneontology.org/ 
 

Table 1. Bio logical entity types and a source of information about them available on 
the internet. 
 
Edges Source URL 
Alignment 
(aligns_with) 

NCBI BLAST [16] http://blast.ncbi.nlm.nih.gov/Blast.cgi 
 

Annotation 
(annotated_with) 

GOA [17] http://www.geneontology.org/GO.dow
nloads.annotations.shtml 

Pathway associations 
(belongs_to) 

PathExpress [18] http://bioinfoserver.rsbs.anu.edu.au/uti
ls/PathExpress/ 

Text mining  
(co-occurs_with) 

PPI Finder [19] http://liweilab.genetics.ac.cn/tm/ 
 

Table 2. Types of relationships between biological data, and examples of internet 
databases containing such data, or web tools available to generate such data 
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5   Concluding thoughts 

In conclusion, with the greater availab ility of scientific  resources on the internet, tasks 
in mining scientific data will increasingly become internet min ing problems. 
Scientific research will increasingly rely on the design and availability of dedicated 
Future Internet Knowledge Bases (FIKBs), and on the development of associated 
methods to analyse them. 
 
This brings with it, both new challenges and new opportunities. Whilst we have 
illustrated our case with a problem in the biological domain, the principles hold more 
widely for other sciences. Some scientific problems have parallels amongst existing 
internet mining  p roblems, and it is reasonable to expect that advances in techniques 
in mining the future internet will provide solutions to scientific problems, and vice 
versa. 
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