
Modeling of CSCW system with Ontologies

Mario Anzures-García1, 2, Luz A. Sánchez-Gálvez1,2, Miguel J. Hornos2,
Patricia Paderewski-Rodríguez2, and Antonio Cid1

1 Facultad de Ciencias de la Computación, Benemérita Universidad Autónoma de Puebla, 14
sur y avenida San Claudio. Ciudad Universitaria, San Manuel, 72570 Puebla, Mexico

{anzures, luzsg}@correo.ugr.es
2 Departamento de Lenguajes y Sistemas Informáticos, E.T.S.I. Informática y de

Telecomunicación, Universidad de Granada, C/ Periodista Saucedo Aranda, s/n,
18071 Granada, Spain.

{mhornos, patricia}@ugr.es

Abstract. In recent years, there has been a growing interest in the development
and use of domain ontologies, strongly motivated by the Semantic Web
initiative. However, the application of ontologies in the CSCW domain has
been scarce. Therefore in this paper, it presents a novel architectural model to
CSCW systems described by means of an ontology. This ontology defines the
fundamental organization of a CSCW system, represented in its concepts,
relations, axioms and instances.

Keywords: Ontology, Groupware Application, SOA, Architectural Model,
Services.

1 Introduction

In the last two decades, the enormous growth of Internet and the web have given rise
to an intercreativity cyberspace, in which groups of people can communicate,
collaborate and coordinate to carry out common tasks. Therefore, a great number of
groupware applications has been developed using different approaches, including
object-oriented, component-oriented, and agent-oriented ones. However, the
development of this kind of applications is very complex, because different elements
and aspects must be taken into account. Hence, these applications must be
simultaneously supported by models, methodologies, architectures and platforms to
be developed in keeping with current needs. In the groupware domain, one of the
models most used is the Unified Modelling Language (UML) [1], although this has
not any element to represent constrains, which are very important in applications so
complex as the groupware ones.

There has recently been an increase in the use of ontologies in any domain to
model applications. An ontology is presented as an organization resource and
knowledge representation through an abstract model. This representation model
provides a common vocabulary of a domain and defines the meaning of the terms and
the relations amongst them. In the domain of groupware applications, the ontology

13

provides a well-defined common and shared vocabulary, which supplies a set of
concepts, relations and axioms to describe this domain in a formal way.

In this paper, two ontologies for the groupware domain are proposed. The first
ontology determines who authorize the registration of users, how interaction is carried
out among them, and how the turns for users participation are defined, among other
aspects. Moreover, it allows supporting modifications in runtime, such as changing
the user role, the rights/obligations of a role, the current policy, etc. The second
ontology establishes the necessary SOA-based services to develop groupware
applications in accordance with the existing papers in the literature about the
development of this type of applications. In addition, these services are clustered in
modules and layers with respect to the concern that they represent.

This paper is organized as follows. Section 2 gives an brief introduction to the
ontologies. Section 3 describes the ontology-based modeling of the group
organizational structure. Section 4 presents an ontological model, which allows us to
specify an architectural model for the development of groupware applications.
Finally, Section 5 outlines some conclusions and future work.

2 Introduction to the Ontologies

There are several definitions of ontology, which have different connotations
depending on the specific domain. In this paper, we will refer to Gruber’s well-know
definition [2], where an ontology is an explicit specification of a conceptualization.
For Gruber, a conceptualization is an abstract and simplified view of the world that
we wish to represent for some purpose, by the objects, concepts, and other entities
that are presumed to exist in some area of interest, and the relationships that hold
them. Furthermore, an explicit specification means that concepts and relations need to
be couched by means of explicit names and definitions.

Jasper and Ushold [3] identify four main categories of ontology applications: 1)
neutral authoring, 2) ontology-based specification, 3) common access to information,
and 4) ontology-based search. In the work presented here, the main idea is to use
ontologies to specify the modeling of both the group organizational structure and the
architectural model in the groupware domain, since an ontology is a high level formal
specification of a certain knowledge domain, which provides a simplified and well
defined view of such domain.

Ontology is specified using the following components:
 Classes: There is a set of classes, which represent concepts that belong to the

ontology. Each class may contain individuals (or instances), other classes or a
combination of both, with their corresponding attributes.

 Relations: These define interactions between two or several classes (object
properties) or between a concept and a data type (data type properties).

 Axioms: These are used to impose constraints on the values of classes or
instances. Axioms represent expressions (logical statement) in the ontology and
are always true inside the ontology.

 Instances: These represent the objects, elements or individuals of an ontology.

14

These four components will be described for the two ontologies proposed in this
paper.

In addition, ontologies require of a logical and formal language to be expressed. In
Artificial Intelligence, different languages have been developed, like the First-Order
Logic-based (which provide powerful primitive for modeling), the Frames-based
(with more expressive power but less inference capacity), and the Description Logics-
based (which are more robust in the reasoning power) ones.

OWL (Web Ontology Language) [4] is a language based on Description Logics for
defining and instantiating Web ontologies based on XML (eXtensible Markup
Language) [5] and RDF (Resource Description Framework) [6]. OWL can be used to
explicitly represent the meaning of terms in vocabularies and the relationships among
those terms. This language makes possible to infer new knowledge from a
conceptualization, by using a specific software called reasoner. It has used the tool
Protégé [7], which is based on OWL, to define the ontology for group organizational
structure.

In the groupware domain, ontologies have mainly been used to model task analysis
or sessions. Different concepts and terms, such as group, role, actor, task, etc. have
been used for the design of task analysis and sessions. Many of these terms are
considered in our conceptual model. Moreover, semiformal methods (e.g. UML class
diagrams, use cases, activity graphs, transition graphs, etc.) and formal ones (such as
algebraic expressions) have also been applied to model the sessions. There is also a
work [8] for modeling cross-enterprise business processes from the perspective of
cooperative system, which is a multi-level design scheme for the construction of
cooperative system ontologies. This last work is focused on business processes, and it
describes a general scheme for the construction of ontologies. However, in this paper,
we propose to model two specific aspects: the group organizational structure and the
architecture of a groupware application. Consequently, the application domain of both
ontologies is groupware, not business processes.

3 Ontology for specifying an architectural model

In order to specify architectural model five concerns are identified: Data, Group,
Cooperation, Application, and Adaptation. Consequently, five layers are considered.
Four layers are composed by modules and services, while the fifth one, the Data
Layer, contains repositories with the necessary information to carry out the group
work. The services of the architectural model are defined by the concepts' ontology.

3.1. Ontology Concepts

The architecture components are characterized through the concepts' ontology (shown
in Figure 1), which will be briefly described below:

 Registration is the first action that a user must carry out to can participate in the
group work using the collaborative application.

 Authentication validates the access to the group and depends on the
organizational style defined in the same.

15

 Group is who works in the session to perform work group.
 Organizational_Style defines the organizational style that a group will use to

carry out the group work.
 Stage restricts user’s access to the application in accordance with the

organizational style defined in it.
 Session defines a shared workspace where a group carries out common tasks.
 Session_Management manages and controls one or more sessions.
 Concurrency manages shared resources to avoid inconsistencies by using them.
 Shared_Resource is used by users to carry out basic activities.
 Basic_Activity is an action that a user must perform to carry out a task (which

can be made up by one or more basic activities).
 Task is carried out by the group to achieve a common goal.
 Notification notifies one or more users of all events that happen in a session.
 Group_Awareness gets the necessary information to supply group awareness to

users that take part in a group.
 Group_Memory is supplied by the application to facilitate a common context.
 Application is used by the users to carry out group work in established session.
 Configuration configures the application the first time that it is used and when

it is necessary.
 User_Interface shows users all the information about the application execution.
 Environment modifies the user interface to present the information in

accordance with the device used by each user.
 Adaptation is a process that allows adapting the collaborative application to the

new needs of the group.
 Detection monitors the execution environment to detect the events that

determine the adaptation process.
 Agreement decides whether an adaptation process must be carried out or not.
 Vote_Tool is used by users to perform the agreement.
 Adaptation_Flow is a set of steps carried out to adapt the collaborative

application in accordance with the selected event.
 Repair is required when the adaptation process can not be performed.

needs

requieres

is_determined

administers manages

performs
uses

modifies

is_used

presents has

obtains

controls

gives

supplies

provides

organizes

acces

governs

defines
organ

i

dependes

allows

works

establishes

CMS

is_part_of

is_adapted

AA AFA AAA

ASI
APU

AUG

CBL

CS

AE

CAE

G1

NGA

NGM GN

COS
SOS
AOS

URA

RA

SCM SM

IUP
SRP

CF
SU
AS

TSP

RUI
AUI
SPI

MU
MAV
MIV

16

Figure 1. Ontology for specifying an architecture to model collaborative applications.

3.2. Ontology Relations

The architecture relationship to each component and its environment are symbolized
with the ontology relations (see Figure 1) listed below:

 allows (Registration, Authentication): Only registered users are allowed to
authenticate to access to the collaborative application.

 access (Authentication, Group): Authentication allows users to access to group.
 depends (Registration, Organizational_Style): Users registration depends on

the organizational style defined at a given stage.
 organizes (Organizational_Style, Group): An organizational style specifies the

way in which the group is organized.
 defines (Stage, Organizational_Style): A stage defines an organizational style.
 works (Group, Session): A group needs to be connected to a session to work.
 governs (Session_Management, Session): The session management governs a

session.
 controls (Concurrency, Session): The concurrency service controls the existing

interaction in a session.
 manages (Concurrency, Shared_Resource): The concurrency service manages

the shared resources to guarantee mutually exclusive usage of these.
 is_used (Shared_Resource, Basic_Activity): The shared resources are used by

basic activities.
 is_part_of (Basic_Activity, Task): A basic activity is part of a task.
 administers (Session, Notification): The session administers the notification.
 provides (Notification, Group_Awareness): The notification process provides

group awareness.
 obtains (Group, Group_Awareness): A group obtains group awareness to avoid

inconsistencies in the collaborative application.
 supplies (Notification, Group_Memory): The notification process supplies

group memory.
 gives (Application, Group_Memory): The application gives group memory.
 establishes (Application, Session): An application establishes a session.
 presents (Application, User_Interface): An application presents an user

interface so that users can use the collaborative application.

17

 modifies (Environment, User_Interface): The environment modifies the user
interface according to the device used by each user.

 has (Application, Configuration): Each application has a configuration process,
which is carried out by users.

 is_adapted (Application, Adaptation): An application is adapted by the
adaptation process.

 is_determined (Adaptation, Detection): The adaptation process is determined
by the detection process.

 needs (Adaptation, Agreement): The adaptation process needs an agreement
process to decide whether the adaptation is carried out or not.

 uses (Agreement, Vote_Tool): The agreement process uses a vote tool to carry
out the agreement.

 performs (Adaptation, Adaptation_Flow): The adaptation process performs an
adaptation flow to appropriately adjust the application.

 requires (Adaptation, Repair): When the adaptation process can not be
performed, it is required to repair the application to avoid inconsistencies in it.

3.3. Ontology Axioms

Finally, the principles governing design and evolution of the architectural model are
represented by ontology axioms (see Figure 1):

 An authentication must have only one registration, i.e. an user is authenticated
only if she/he is registered.

 A registration depends on an organizational style, i.e. an user is registered with
accordance to organizational style established in the group work.

 An organizational style organizes at least one group.
 A group works at least in one session.
 An application establishes at least one session.
 A session administers at least one notification process.
 A group obtains group awareness.
 An application gives group memory.
 The concurrency service controls at least one session.
 The concurrency service manages at least one shared resource.
 A shared resource is used by at least one basic activity.
 A basic activity is part of at least one task.
 An application has at least one possible configuration.
 An application presents at least one user interface.
 An environment modifies at least one user interface.
 An application can be adapted by an adaptation process.
 An adaptation process is determined by at least one detection process.
 An agreement process is carried out only if there is an adaptation process in a

non-hierarchical organizational style.
 An agreement process uses at least one vote tool.
 An adaptation process performs only one adaptation flow.
 An adaptation flow must verify at least one pre-condition and post-condition to

carry out the adaptation.

18

 An adaptation process can require a repair process, if this has not finished.

3.4. Ontology Instances

In order to show the architectural functionality, this section presents a set of instances
(see Figure 1), derived from the definition of the application instance, which is a
Conference Management System (CMS). A CMS is a web-based application that
supports the organization of scientific conferences. It can be regarded as a domain-
specific content management system. Nowadays, similar systems are used by editors
of scientific journals.

This type of systems generally has four stages: submission, assignment, review,
and acceptance/rejection of papers, and this paper adds the stage of application
configuration. CMS supports three user groups: Authors (A), Program Committee
Members (PCM) and Program Committee Chairs (PCC). The first user group (A)
corresponds to people who can submit papers (at the submission stage) through the
Internet, and who receive the review results and the final decision via an email (at the
acceptance/rejection stage). It is the largest user group (its average number is
normally between 100 and 400 people for most conferences). The second user group
(PCM) is made up of people who must evaluate some of the submitted papers and
send the result to the PC Chairs via the Internet (at the review stage). Its number is
about 20–50 persons in average. People in the last user group (PCC) are in charge of
allocating papers to reviewers (at the assignment stage) and making the final decision
on papers, as well as a number of other operations. This is the least numerous group,
being usual 1–3 PCC per conference. Therefore:

 Session instance is Session of the Conference Management (SCM).
 Session_Management instance is Session Management (SM).
 Stage instances are configuration (CF), and submission (SU), assignment

(AS), review (RE) and acceptance/rejection (AC) of papers.
 Authentication instance is user authentication in the group (UAG).
 Registration instance is user registration in the application (URA).
 Users instances are U1, U3 and U4 as A, U3 as PCM, and U2 as PCC.
 User_Interface (UI) instances are Registration UI (RUI), Authentication UI

(AUI), Submitting Paper UI (SPI), Configuration UI (CUI), etc.
 Environment instance is collaborative application environment (AE).
 Organizational_Style (OS) instances are Configuration OS (COS),

Submission OS (SOS), Assignment OS (AOS), Review OS (ROS), and
Acceptance/rejection OS (POS). In the ontology shown in Figure 3, SOS is
the unique OS considered by simplicity reasons.

 Group instance is G1, which is made up of three users, U1, U3 and U4,
because U2 does not participate at SOS.

 Concurrency instance is locks mechanism (LM).
 Shared_Resource (SR) instances are paper (SRP), and uploading paper (IUP).
 Basic Activity (BA) instances are submitting information (ASI), and uploading

paper (AUP).
 Task instance is submitting paper (TSP).
 Notification instance is group notification (GN).

19

 Configuration instance is configuration of the system (CS).
 Adaptation instance is adaptation application (AA).
 Detection instance is adaptation event (AE).
 Agreement instance is adaptation agreement of the application (AAA).
 Vote Tool instances are majority vote (MV), maximum value (MAV) and

minimum value (MIV).
 Adaptation_Flow instance is adaptation flow of the application (AFA).
 Repair instance is reparation of the adaptation (RA).

4 BPM to Manage the Ontoloy-based Architectural Model

BPM [16] is a set of methods, tools and technologies used to design, perform, analyze
and manage operational business processes, by means of different phases. It also
facilitates service composition. In this paper, BPM is based on ontological approach
[17] and is composes for three phases, which are: Process Modeling, Process
Implementation, and Process Execution. The ontology is used in order to simplify the
task of governing the behaviour of BPM; it enables to BPM to uses concepts to
describe the models and the entities being controlled, thus simplifying their
description and facilitating the analysis and the careful reasoning over them; and it
allows dynamically calculating relations between business processes and
environment, supporting modifications in runtime. BPM and SOA make the
integration faster and easier than never, it is not necessary to discard of the
investments already made, everything can be reused.

4.1. Process Modeling

This phase identifies the participating elements in a business process. Unlike other
existent models, we use an ontology (shown in the Figure 1), to clearly specify the
semantics of the tasks and the decisions in the process flow. Therefore, four layers of
the architectural model, (see Figure 2), are composed of the services, which were
defined as concepts, in the ontology. The Group Layer includes three modules, which
are Access, Group and Session. The Access Module has two services: Registration and
Authentication. The Group Module presents three services: Group, Organizational
Style, and Stage. The Session Module contains two services: Session Management,
and Session. The Cooperation Layer has the Context Module and Interaction Module.
The former includes four services: Concurrency, Shared Resource, Activity Basic, and
Task. The later encompasses the Group Awareness Service, the Group Memory
Service, and the Notification Service. The Application Layer comprises only the
Application Service, the Configuration Service, the User Interface Service, and the
Environment Service. Finally, the Adaptation Layer involves the Pre-adaptation
Module and the Adaptation Module. The former encompass the Detection Service, the
Agreement Service, and the Vote Tool Service. The latter comprises the Adaptation
Flow Service, and the Repair Service.

20

Figure 2. Architectural model for developing collaborative applications.

4.2. Process Execution

In this phase, the business process model is transformed into an executable process
model, which can be deployed to a process engine for its execution. Figure 3 shows a
sequence diagrams (that represents an executable process model), when the author
submits papers to the CMS. In this figure, the CMS users are consumer services,
invoking different services and only are considering some services of the architectural
model by simplicity.

Figure 3. Sequence diagram of papers sent.

21

4.3. Process Implementation

In the process execution phase, the process engine executes a process model by
firstly creating a process instance and then navigating through the control flow of the
process model. In order to ensure seamless interaction when navigating through the
control flow of the process model, this phase provides mechanisms for the discovery,
selection and invocation of services. The module dynamically discovers and selects
the appropriate service of the architectural model basing on the task description, and
invokes it on behalf of the process engine, which plays the role of a requester service
when it invokes the service to perform a task. Moreover, this module carries out a
process monitoring that provides relevant information about running process
instances. If during the process execution a failure arises, such as network faults,
server crashes, or application-related errors (e.g. unavailability of a requested service,
errors in the composition or missing data, etc.), reconfiguration actions are carried
out, such as duplication (or replication) or substitution of a faulty service. The first
case involves addition of services representing similar functionalities; this aims at
improving load balancing between services in order to achieve a better adaptation.
The second case encompasses redirection between two services; applying this action
means the first one is deactivated and replaced by the second one.

5 Conclusions and Future Work

The current work has presented an ontology-based architectural model, which
facilitates the development of collaborative applications. The ontology describes the
components, their relationships to each other and the environment, and the principles
governing architectural design and evolution. For that reason, we think that the
ontology is a proper model to describe architectures. BPM is used to manage and
control the interaction between the services that make up the architectural model. In
addition, BPM also is based on the ontology proposed. These services are designed
using SOA that together with BPM, facilitates the application's integration. The future
work will consist on extending the existent reconfiguration actions of the service-
based collaborative applications.

References

1. Garlan D., Shaw, M.: An introduction to software architecture. Advances in Software
Engineering and Knowledge Engineering, 1--39, (1993)

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40--52, (1992)

3. Architecture working group: Recommended practice for architectural description of
software-intensive systems. IEEE Std 1471 (2000)

4. UML 2.0 Superstructure Specification (OMG). Ptc/03-08-02, 455—510, (2003)
5. Spivey, J.M.: The Z Notation: A Reference Manua., Prentice Hall, (1989)
6. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press,

(1996)

22

7. Gruber, T.R.: Toward Principles for the Design of Ontologies Used for Knowledge
Sharing. I. J. Human Computer Studies 43-(5/6), 907--928 (1995)

8. Gómez-Pérez, A., Fernández-López, M, Corcho, O.: Ontological Engineering with
Examples from the Areas of Knowledge Management, e-Commerce and the Semantic Web,
Springer, (2004)

9. Uschold, M., Grüninger, M.: Ontologies: Principles, Methods and Applications. Knowledge
Engineering Review 11(2), 93–155 (1996)

10. Farquhar, A., Fikes, R, Rice, J.: The Ontolingua Server: A Tool for Collaborative Ontology
Construction. I. J. Human Computer Studies 46(6), 707–727, (1997)

11. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Working Draft.
http://www.w3.org/TR/owl-ref/ (2003)

12. Protegé: http://protege.stanford.edu/
13. Noguera, M., Hurtado, V, Garrido, J.L.: An Ontology-Based Scheme Enabling the

Modeling of Cooperation in Business Processes. In; Meersman, R., Tari, Z., Herrero, P.
(eds.) OTM Workshops 2006. LNCS vol. 4277, pp. 863—872. Springer, Heidelberg (2006)

14. Erl, T.: SOA: Concepts, Technology and Design. Prentice-Hall, (2005)
15. Howard, S., Fingar, P.: Business Process Management: The Third Wave, Meghan-Kiffer,

(2003)
16. May, M.: Business Process Management: Integration in a Web-Enabled Environment,

Prentice Hall, (2003)
17. Hepp, M., Roman, D.: An Ontology Framework for Semantic Business Process

Management, In: 8th International Conference on Wirtschafts Informatik, Vol. 1 pp. 42--
440, (2007)

23

