Using Cross-lingual Data Extraction Ontology
for Web Service Interaction
-- A Using on Restaurant Web Service

Zhichen Geng and Yuri A. Tijerino
Department of Applied Informatics, Web Science Lab

Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan

Abstract. Dynamic information sites, which are the main focus of this research,
normally consist of a front-end to highly-structured systems, such as database-
oriented web services. Such sites, by nature, tend to be highly formed, since
they require that user queries be input in a specific manner through structured,
form-based, interfaces. Moreover, such web services are, in most cases,
language-dependent, that is, they are specific to a particular language, for which
the database was designed (e.g., English, Japanese, Chinese, etc.). This paper,
describes the initial design, implementation and preliminary experimentation
with a data-extraction ontology methodology to facilitate cross-lingual
interaction with a Japanese-dependent restaurant web service, using cross-
lingual data-extraction ontology to convert free-form queries written in English
or Chinese to Japanese queries, to query a Japanese-specific web service and to
convert the response from Japanese back to the original language in which the
free-form query was made: English or Chinese. Preliminary research data
seems to indicate, that a cross-lingual data-extraction ontology framework is a
prime candidate for developing an effective and efficient ontology-based cross-
lingual system to facilitate interaction between speakers of a language other
than the language for which a particular web service was intended.

Keywords: multi language, cross-lingual ontology, semantic web, semantic
web services

1 Introduction

1.1 Background

In general, people use two kinds of sites to retrieve goal-oriented information about
activities such as travel, dining, entertainment and shopping. That is, static
information sites and dynamic information sites. In the age of information
globalization, it is no longer sufficient to search for information in just one particular
language. Moreover, as the global village becomes smaller as people travel more

across borders, oceans and continents, information in different languages provided by
relevant web services, becomes even more important. Some of these web-services
already provide important relevant information to locals and include web services
such as train-scheduling and reservations, dining information and reservations, online
shopping, traffic, and much more. Most of these web services are based on form-
querying. This means that users need to input or choose optional query conditions in a
structured manner. However, at times these optional query conditions are hard for
users to understand. What is more, the traditional web services usually
provide information in only one language which makes it practically impossible for
speakers of other languages to use such web services. As a result, we desperately need
new approaches to enable interactions with web services in languages other than the
originally intended for such web services [1]. We can think of many situations in
which users need to query web services in a language other than the intended
language by those web services. For example, a Japanese-only speaker might be
looking for a product that is not available in his country, but that is perhaps available
in a web service such as that provided eBay U.S.A.

1.2 Related Works

Of course, today many web services already provide multilingual services, which use
a variety of translation methodologies and technologies. In general we can say that
there are two major cross-lingual retrieval methods: query translation and target data
translation [2]. For example, Figure 1 shows a multilingual interface provided by
"Hyperdia", a web service, which provides ground and air transportation routes and
scheduling for Japan. Currently, it supports web services in three languages:
Japanese, English and Simplified Chinese. Specifically, its web service interface was
localized from Japanese to English and Simplified Chinese. However, the underlying
data stored by the web service has only been localized to Japanese and English. It
supports Simplified Chinese simply by converting Simplified Chinese phonetic input
to Japanese Kanji Characters, which have a one-to-one relationship. However the data
itself comes from the Japanese version of the database. When users use the English
interface, queries are made to the English version of the database.

Almost all web services, which provide multilingual services, use this approach
that is, using different parallel versions of the original database, which is localized to
different languages. For this kind of approach, web service providers simply create a
localized version of the database per language they want to support, which is very
time consuming and inefficient. If the web service provides abundant information,
data input, editing and translation can be particularly time-consuming, inefficient and
even inaccurate. If information in the web service is provided by users, like in the
case of eBayj, it is practically impossible to ask every seller to describe his goods in
several languages. Therefore, users obviously need a more convenient, achievable
approach to enable multilingual interactivity.

In the case of the Simplified Chinese interface of Hyperdia, it first converts Chinese
phonetic input into Japanese characters at the interface level (i.e., it uses Chinese
Character pronunciation to input Japanese Kanji), and then uses the Japanese database
to deal with the query. Hyperdia shows two general approaches of cross-lingual web

Skt Timetable and Route Search Fra - E S

BEE English | hEIF(ER) | | Japansse English | Chiness H#:E | Engish | hEES(EE)
O g=xh B searen cenarion D ®sih
Frar izt
e — | a
AT e & A a ™ Sl
TR EwmTHE pats Ful2i10 [=] [03[=] BEl 20107028 | (038 [+]
Bt [20t0%c2A =] (28][=] fne Oiam[z] e4[=] eiA (03 [2] 425 [
W[4 Ty | =zpadure -] #al |-
wn (LS [e] e Seavrhlars 1s I et
. _ Fazzl fie FEL
= R RE
GEI Paszt ik
gF2 o ks
wrs deder | Time =] ATIR | REET [=]
k| g - ErEa = e o
Folk | Bzl [+ 5 [[-]
s Rl [Fanzmkm
_ = EE L
3 IZ’::“.%EFE’-"' = - dcpucl _shulL]_e. Dow m . m-ﬁ'ﬁ‘iﬁ% Wu{’#‘tEfT
Rlsfizm [Rwra ¥l e~ Lraim (51 _BRENSLH biee [y
wyy DRAER FesE Fiwaonr Eahises EEEST
T Ofle e [Tk [0 1el Bague-sm Pl
FgEgks F=gaT toste [YEeress . _
HginFF [l irer e FIRIE=#E
[Flma i1 - [l R 5 s O
. v
=it e R [#lz1zeper Lin-ted Esprzes .
P [#l51zepes Enpuzur | HE

[#hrznary Train
e, an Te_luvay (T3

SorE.
[#lpriwaze Kai way

Figure 1. A multilingual web service interface

service interaction, database level and interface level. Both of the two methods have
common drawbacks. For example, regardless of the language, users have to fill many
blanks and choose many options even if they do not understand or care about these
optional conditions.

It is clear that users need simple-to-invoke-and-use web services [3]. One
possible solution to this problem is to use semantic web services. For example, Hallot
[4] implemented a multilingual semantic web [5] service system using NLP (Natural
Language Processing). NLP is an area of research and application that explores how
computers can be used to understand and manipulate natural language text or speech
to achieve simple tasks [6]. Paper [11] shows how to combine ontologies and NLP
technology to accomplish cross-lingual interaction with web-services. NLP has
significant overlap with the field of computational linguistics, and is often considered
a sub-field of artificial intelligence. The term natural language is used to distinguish
human languages (such as Spanish, Swahili or Swedish) from formal or computer
languages (such as C++, Java or Lisp)[7]. And [8] have presented an ontology-based
approach to enable web-principled services via OBWSs (Ontology-Based Web
Services) in English only.

1.3 Data-Extraction Ontology Approach for Web Service Interaction

An alternative method to query unilingual web services in multiple languages is based
on cross-lingual data-extraction ontologies.

This method relies on the fundamental component of data-extraction ontologies [9],
that is, data frames [10] to enable cross-lingual interactions at the interface level. This
paper describes this alternative method, that is, using a cross-lingual data-extraction
ontologies to query a web service API exchange agent to interact with traditional web
services. As opposed to NLP approaches, this approach enables multi-lingual
interaction with traditional web services using free-form, natural-language-like
interaction.

The paper describes an implementation of the approach using a popular Japanese-
only web-service, Hotpepper', for finding restaurants, which can be queried in
English and Simplified Chinese, without the need to make any modifications at the
interface or web-service level.

1.4 Data-Extraction Ontology Approach for Web Service Interaction

Section 2 will show more detail of the difference between the cross-lingual data-
extraction approach and the ontology + NLP approach.. Section 3 will show summary
of the cross-lingual data-extraction ontology approach. Section 3.1 shows an example
of cross-lingual, free-form, natural-language-like input interface. Section 3.2 details
the principle of data-extraction ontology-based cross-lingual transactions. Section 3.3
will demonstrates how the free-form queries are converted into API request messages.
Section 4 presents an evaluation of this work. And at last, section 5 summarizes the
approach and identifies its weaknesses and strengths.

2 Data-Extraction Ontology vs. Natural-Language Processing

As is stated above, there are several ways to implement multilingual web services.
Our goal is to develop a methodology that is not based on manual human-translation
and that is simple from the interaction point of view, yet practical. Our methodology
employs cross-lingual data-extraction ontologies to provide effective and efficient
alternative for multilingual, free-form, natural-language-like interaction with single-
language web services. As opposed to NLP approaches, which rely on
computationally expensive analysis of linguistic rules [12], our approach combines
simpler structural rules with keyword search, i.e., data frames, which have proven to
be more efficient and precise. Data-extraction ontologies are highly efficient because
they are based on keywords lexicons, external textual representations that captured by
regular expressions [13] and functional transformations. Although the ontology is in
general language-independent, only the associated data-frames, which consist of the
lexicon, external textual representations and functional transformations, are language
dependent. This is what makes it possible to realize multilingual web service

1 7R h_—,3— the biggest gourmet web service in Japan. http://www.hotpepper.jp/

Interface Cross-Lingual Transaction with
Transaction Existing Weh
Services
Iultilingual, Multiingual According to the
Free Form Ontologies, AP reference that
Natural-Language- Data Frame, weh Service
Like Regular provider gives,
Input System Expression, || agent conwerts user Existing Weh
Functions, queries to web Services
Multilingual service APT request. (Mo matter
Kevwords what the
Show results in Translation to user %ML Results)
user language o language @l Exirachion

Figure 2. Principle of Cross-lingual data extraction ontology for web service

interactions, if designed carefully for each particular language. Although, data-
frames are not based on NLP methods and do poorly in analyzing linguistic
structures, they suffice for most kind of queries, since normally users do not use
“proper language” when doing most web query. However, within a given specific
domain, the precision and recall for most task-oriented free-form queries can
outperform that of the most sophisticated NLP-based approaches, which tend to be
computational expensive and inaccurate.

3 Cross-Lingual Data Extraction Ontology Processing

Figure 2 shows the operational principle of Cross-lingual data extraction ontology
conversion to web service API transactions. We first type a language-specific, form-
free, natural-language-like query. The agent analyzes the query by using the cross-
lingual ontology. (Section 3.1 will show the details.) Then it changes the query
language into the language that the target web service provider specifies. After that, it
pairs the keywords to the ontological concept properties to convert the free-form
query into a formed API message that the target web service provider requires. The
agent uses the API message to query information from the target web service and gets
a response. After decoding the response, the agent translates the response into the
original natural language used in the free-form query. Finally, it shows the results to
the user.

FreeFormQuery

Find me a SUSAiI restaurant near [Umeda
that provides FNT=yoUSCAR=driAK and
has = price range Tess than S30 per

person.

HHhEXER

LIRS EENE | FIETE300057T.

Figure 3. A multilingual, free-form, natural-language-like input interface

3.1 Multilingual, Free-From, Natural-Language-Like Input Interface

In a traditional web service, users might be asked to choose a lot of options or enter
keywords. Those options are normally required in a single natural language. If the
user cannot understand the target language, he is not able to use web service. Figure 3
shows a multilingual, free-form, natural-language-like input interface. For example, in
this system if the user wants to find a restaurant in Japan, an English-speaking user
might type a query like "Find me a sushi restaurant near Umeda that provides all-you-
can-drink and has a price range less than $30 per person.” And an Chinese user
might ask “7ELAFHFIIEE W E B, TETE 3000 HIt” (loosely translated: find
me a grill buffet near Shinsaibashi, my budget is under 3000 yen.).

3.2 Ontology based Cross-Lingual Transaction

Each object set in a semantic data model has an associated data frame, which
describes the peculiarities of the associable instances for the object set. Data frames
capture the information about object-set instances in terms of internal and external

r

i
i
i
L

i Name H Telephone i iServiceLanguage i

Pay-per-dish

ISBuffet | isetCourse! iA-la-Carte !

iAIIYouCanDrink i | AllYouCanEat i

Figure 4. An example of frame based restaurant ontology

representations, context keywords or phrases that may indicate their presence,
functional operations that convert between internal and external representations, and
other manipulation operations that can apply to instances of the object set along with
context keywords or phrases that indicate the applicability of an operation and
operands in an operation.[7] Figure 5 shows sample (partial) data frames for several
object sets in Figure 4.

When receiving a multilingual, free-form, natural-language-like query, the agent
first recognizes the keywords in the query according to the ontology in Figure 4 and
the data frames in Figure 5, and then highlights the keywords like Figure 2. After that,
the agent translates the keywords into the target language by using the multilingual
keywords dictionaries. In this case, the query language is either English or Simplified
Chinese, while the target language is Japanese. This demo uses UTF8 coding to
encode and decode data because UTFS8 is the standard encoding method on the
Internet and Hotpepper also uses UTFS.

In the English query “Find me a sushi restaurant near Umeda that provides all-you-
can-drink and has a price range less than $30 per person.” The agent recognized
"sushi" as a Food, "Umeda" as a CityArea, "all-you-can-drink" as a DrinkBar, “price
range" as a Budget and “less than $30" as a functional Budget operation. It also
canonicalizes the U.S. dollars to Japanese Yen, and translates the keywords into
Japanese according to an English-Japanese lexicon.

In the Chinese query "7E.OraMFiks R EBIE, THEAE 3000 Hw.", agent
recognized " DFEHF" as a CityArea, "REA" as a Genre, " B)ZE" as a FoodBuffet,
"FREAE 3000 HIT" as a Budget and "7E 3000 HJL" as a method in Budget
functions. And then converts the keywords into Japanese according to a Chinese-
Japanese dictionary.

This scenario uses two different ways to recognize CityArea. In the English query,
it matches the query keyword via the following regular expression:

(?<=\b(nearbylatlaroundlbesidelnear)\b\s)\w+.

Restaurant

—] {GenreEN}S{pub, bbg, Japanese..}
H[Genre i {GenreCNIC{IE, M, BEHE.)
"""""""""""""" Accordingto httpy//api.hotpepper jp/Genre/v110/

{FoodEN}S{sushi, noodle, steak...}
—>[Food i {FoodcNIC{FE, &, $H.}
--------------------------- d Accordingto http://api.hotpepper.jp/Food/V110/

1 English text representation:
i (2<=\b(nearby|at|arcund|beside|near)\b\s)\w+
Chinese: {SeviceAreaCN}S{BH, 5 H, L.

text representation:

value expression: [1-8].d{0.2}

left context expression: \S

right context expression: (dollars dollar)
keywords phrases: (budgetprice range)
text representation:

value expression: [1-8]\d{2.4}

left context expression: \ ¥

right context expression: (yven/H)
keywords phrases: (budzetprice range FiE)
text representation:

wvalue expression: [1-9]\.d{1.4}

right context expression: (rmb/7T)
keywords phrases: fiE

Canonicalization : (Ex: USD:JPY=100 RMEB:.JPY=14)
515 — 1500, 3kwyen — 3000, 100mb — 1400
Functions:
(cheaper less) thanBUDGET — <= BUDGET :integer
(isunder) BEUDGET — <= BUDGET :integer
(greater than over) BUDGET — »= BUDGET:integer
(7f #F) BUDGET — <= BUDGET integer

{FreeDrinkEN} S {bottomless cup, freedrink, all-yvou-can-drink. ..}
{FreeDrinkCN}c {#AlR. FEEIS, HFRILLIS.}

Figure 5. Sample (partial) data frame for restaurant

It gets keyword behind "nearby, at, around etc.". And then uses the keywords to query
the specific area code from Hotpepper by using "http://api.hotpepper.jp/MiddleArea
/V110/7key=[key]&MiddleAreaName=[CityArea]".

In the Chinese case, it uses a multilingual dictionary that is prepared beforehand
based on "http://api.hotpepper.jp

/MiddleArea/V110/?key=[key]".

| snsxy—Faprt

* AP —ELT, UD)L—bilieb B DAPEE- (b EEASHRIFHERL THEA . iEkDeuestb SEMOB_ EAISINET.

URLT

hitp//apihotpepper o GourmetSsarch/\ 110/

BEITU T

iR
S TSF -5

key M- O ko UL = Febt —EADAPE—, +1
} HECEMLTANEBSTHALET, [k, HEE
SR [CNBE TR ShopldFront=J4099990088ShopldFront= JU909080980D F3I 85,
’Eﬁ’;%‘ = = e E¥, T SURLTY = F)
Shopame wwss O UTTER s —gLE T, UTRURLIA-R)
ShopTel T FEOEEESTERLLT. EREEO L)
Shophddress fP FEOEATRRESA-RLET, UTFRURLTIa—F)
oresBerviatieads 1 54 TUTISBMSTINEERERELE T, TUPTRAAPER
Soviootroncy | TEATY TUTICEME O BE TRALE T
7D <@BETIEET
rveoiestn emrop TV TUTCIS O BSERAELE T, 1ypoaanm

MiddleAreaCD

SmallfreacD

Keyword

Latitude.

Longitude

Ranee.
Datum

KtaiGoupon

GenreGD

FoodCD

BudestOD

PartyCapacity

Wedding

Gaurse

FreeDrink

FresFaod

PrivateRoom

Horigotatsu

Tatami

Gocktail

Shochu

Sake

Wine

Gard

(3B THEETT)
IUTIEMETAN L FETHRALE T,
(SiEE TIEET)
IUFIEME TN EETRELET,
(5B TIEED
TR, [EE. (2. BB BED L
FouF. FoyFOI - T FERER
—BOMERTT,
BEWENSOBENDEEDRFETD

PIUTOD

hTUTOD

B

EEETEN) SServiceAreal D=5 A 18Service Areal D=S A 12003
=

UTFE(URLT 3~

B2 - AT TANDIR BN T AL,

E BEOEETT. deeree({#1)35 669220 72646455
= BEOBRT. 1oTH
e g T FIAIES
s AT EROMFAEETIES. world BB, “toyo (BB AR, (DHE Sworkd
s A O RR TS AT .
= T TASORRCTIIBAIEIE sty L, 01587 LIRS
B B THEABETSENELE 27427 R AP, (BRI dGerraCD=G00 EGerveC0-G012
oo +. oM T DR
= RS TS SOEELET. (5 BT RSAPIS, HEHEEH 3Fond00-RIDIEFood0D-RINDLD
s T o
wEBTE FETUABESENENELET. (2l TR SARISH, MR
cD ETIEET BudeetCD=B001&BudeetCD=B0020D.L3I THEE.
[BANBANTHUALC N TEET, HANT
D2 BT SAREORRL EDEIET S
e e DEURERLGTRD. 1AL
FAm 2B, AT -,
=2 DT DRI s (I8, 1R
] IR DR THRIBLIENE o0 g (i), 4idts
WELET.
P TRAHBLOORRTRIDEIENE b g ammie). 152
WELET.
=] BRI DRFTRIBLOENE b g \ammiD). 52
#ELET.
(A=) TRUZ TS0 I, DRATERURLIES -
SRIBER G . 1AL
i e ORI 1AL
e TEEBUIL DR THIBEDEINE oo gl D). 1RU5AE
BELET.
IR TP IERIL SARTRALRES | -
SRIBER G . 1AL
e e ORI 1AL
AR TEEITERIM AR TRIBLIEINE (s s vmmiim. 1eints
pRLET.
rB4E SEMTHUBEREIM -
BEE BREERIADEHTIIBEDEID oo gt I, HRUAE
RS,
%R [OA/RRIN DR TRIBEIEIN, o0 g AT AR
RS,
h—far TP SARTRIMEDEINE o0 s, DI, R
wELET.

Figure 6. APIs provided by Hotpepper web service

3.3

Free-Form Query to Web Service API Request Message Conversion

Almost all of the traditional web services afford APIs for third party developers. This
demo transforms the multilingual, free-form, natural-language-like query to a
particular API message, and uses the API message to interact with the target web

service.

Figure 6 shows the APIs provided by Hotpepper web service
(http://api.hotpepper.jp/reference.html). The agent pairs the keywords in the query

partial result data for the English query in Japanese partial result data for the Chinese query in Japanese

FEATINIAUBT A< K
00 SREE 3L B1F</Shophdar,

175 8l
WE SR HERTR TR

TELOE S TS

<Capacity>S0</Capacity>
<access>MTHWEMSBER #Fsh / RARR {EHss / MBBAR #FsH</acces

SRLFBRTELO#S S </Rraia

Figure 7. Original result data is in Japanese

with the category in the API request message. The agent recognizes the data and
converts them into an API request message. In the English query it is paired as table 1
and in the Chinese query it is paired as table 2.

API request message will be automatically generated from the API schema (i.e.,
parameters specified on the API). Then, the agent sends the API request message to
the Web service enabled web site with the parameters needed for a search and
receives an XML-formatted document with the resulting data

In this scenario, as described above, Hotpepper needs several API-specific
parameters such as FoodCD, GenreCD and BudgetCD, which in this case are specific
to the Hotpepper API.

For example, FoodCD in this demo is used
"http://api.hotpepper.jp/Genre/V 110/?%key=[key] &FoodName=75 &]". For which
Hotpepper returns "FoodCD=R011".

The generated request message for the English query is:
"http://api.hotpepper.jp/GourmetSearch/V110/?key=[key]&FoodCD=R011&BudgetC
D=B003&MiddleAreaCD=Y330&FreeDrink=1", while for the Chinese query the
generated request is:

"http://api.hotpepper.jp/GourmetSearch/V110/7key=[key] &GenreCD=G008 &Budget
CD=B002&MiddleAreaCD=Y315&FreeFood=1".

Figure 7 shows the result XML data from Hotpepper. Originally, the result data is
in Japanese. Therefore, it still needs to be translated into the user input language.
For the reason of the natural language expression in the result data, it is hard to
translate by our keywords based dictionary. So using an existing translation web
service may be a better choice. This demo used Google Translation to translate result
data into user language as Figure 8.

Table 1. the English query To API parameter

Query Cross-Lingual Data Category in API
Frame
sushi Food F# 5] FoodCD=RO11
Umeda CityArea - H MiddleAreaCD=Y300
all-you-can- DrinkBar yes FreeDrink=1
drink
budget is $30 Budget <3000 BudgetCD=B003

Table 2. the Simplified Chinese query To API parameter

Query Cross-Lingual Data Frame Category in API

L CityArea IR MiddleAreaCD=Y315

peyea Genre BFEA GenreCD=G008

B Bhas FoodBuffet yes FreeFood=1

W E A 3000 Budget < 3000 BudgetCD=B003
Hot

4 Evaluation and Limitations

Evaluation is an important area in any system development activity, and information
science researchers have long been struggling to come up with appropriate evaluation
mechanisms for large-scale information systems. [4] We have tried several queries in
English and Chinese. Preliminary evaluation results seem to indicate that the system
performs well for simple queries. However, we still need to perform more in-depth
evaluation in order to calculate precision and recall. Nevertheless, for most of our
simple free-form queries, the results from the Hotpepper API are very promising.
Currently, were developing an evaluation platform on the iPhone, on which we plan
to perform more strict evaluation.

Of course, there are many limitations on our cross-lingual ontology approach for
multilingual web-services. First, the system uses a restaurant ontology to interact with
only one specific web service (Hotpepper). Although this restaurant ontology is
designed for most restaurant web services, it cannot suit for every restaurant web
service, especially these web services which need special parameter. Second, More
idioms should be considered in advance. When some words unexpected, for
example, in the English query, using "in Umeda" instead of "near Umeda", the
keyword "Umeda" could not be recognized as CityArea because there is no "in" in the
regular expression of the CityArea in data frame. Third, the resulting translation is not
precise. If the result data is in a formed way, which is based on keywords, it can be

partial result data for the English query in English

- <Results>

<NumberofResuits >3</NumberofResuits>
<DisplayPerPage>10</DisplayPerPage>
<DisplayFrom>1</DisplayFrom>
<APIVersion>1.11</APIVersion>
- <shop>
<ShopldFront>)000012979 </ShopldFront>
<shopName >Karen Flowers, Osaka Ekimae Bldg 3</Shopiame >

partial result data for the Chinese query in Chinese
* <wesults>
<NumberOfResults >4 </NumberOfResults>
<DisplayPerPage >10</DisplayPerPage>
<DisplayFrom>— </DisplayFrom>
<APIVersion>1.11</APIVersion>
- <Shop>
<ShopldFront>)000746878 </ShopldFront>
<ShopName >t # R # # 3£ </ShopName>
& » HERLLY

<ShopNameKana>What's Biruten Hana Saki sushi is oh I shalt be maple s Kit

<ShopAddress>1 Umeda, Kita-ku, Osaka-1-3-B100 Station 3 Building

<StationName >Umeda </StationName >
<KtaiCoupon>Zero</KtaiCoupon>
<LargeserviceAreaCD>8520</LargeServiceAreaCD>

g
<ServiceAreaCD>SA23 </ServiceAreaCD>

<LargeAreaCD>Z023</LargeAreaCD>
<LargeAreaName>Osaka</LargeAreaName >
<MiddleAreaCD>Y300</MiddleAreaCD>

Nishi Umeda >
<SmallAreaCD>X300</SmallAreaCD>

<Latitude>34.6988317616 </Latitude>
<Longitude>135.4992432627 </Longitude>
<GenreCD>G004</GenreCD>
<GenreName>Japanese food</GenreName>
<F00dCD>R011</FoodCD>

<FoodName >Sushi</FoodName>
<BudgetCD>B003</BudgetCD>

» ABR1-6-14
<StationName 4% 8 </StationName>
<KtaiCoupon>% </KtaiCoupon>
<LargeServiceAreaCD>$520</LargeServiceAreacD>
<Larg: % </Larg
<ServiceAreaCD>SA23</ServiceAreaCD>

<serviceAreaName >k </ServiceAreaName:>
<LargeAreaCD>Z023</LargeAreacD>,
<LargeAreaName>ABg </LargeAreaName>
<MiddleAreaCD>Y315 </MiddleAreacD>
<MiddleAreaName >4 & </MiddieAreaName >
<SmallAreaCD>X350</SmallAreacD>
<SmallareaName >4 % ¥ </SmallareaName >
<Latitude >34.6721903385 </Latitude>
<Longitude >135.4988719748 </Longitude>
<GenreCD>GO08</GenreCD>
<GenreName >{& % E#HE </ GenreName>
<F00dCD>R040</F00dCD>

<FoodName >5k & 5 # W WK </FoodName >
<BudgetCD>B002</BudgetcD>

600
<GenreCatch>With China in space, creating vivid floral sushi</GenreCatch>
<ShopCatch>Women at work drinking Sushi Edo style sushi you can eat cute /</ShopCatch>
<Capacity >Fifty </Capacity >

<GenreCatch: FHHA /e atch>
<ShopCatch>Hi# 7l EL 4 M ST 17 8., 8 </ShopCatch>
<Capacity >84</Capacity>

<Access>5 minutes walk from Umeda station Midosuji subway / JR Osaka station 5 minutes. <Access>3HHH N7 S DR IE W,

st/ 3B BAS SO /1055 M

Figure 8. Final result data for user

translated accurately. But if there are natural language expressions, the precision of
translation cannot be handled so far. [2].

5 Conclusion and Future Work

This paper has presented a cross-lingual ontology-based approach to interact with web
service which provides information in a different language from the free-form,
natural-language-like query. It only needs a cross-lingual ontology data frame and
several keywords dictionaries of the languages between the free-form, natural-
language-like queries and the target web services. Although it has many limitations
that were discussed in Section 4, it works well for simple queries.

There are at least three important areas of research remaining for future
consideration. First, can our approach be expanded to handle user requests that
require the agent to query more than one web service? Second, can our cross-lingual
ontologies be automatically mapped and reused by agents on other, same-domain, and
web services? Third, is it possible for the agent to automatically map the data-frames
in the ontologies to same-domain web services? In the system described in this paper,
we chose the web service manually, and hand-mapped the relationships between
ontology and the web APIs architecture.

References

11

13.

14.

. T. Declerck, P. Buitelaar, N. Calzolari and A. Lenci, Towards A Language Infrastructure

for the Semantic Web, 2004

. OXUEE IR AR, BE SRR P LA BT R 0 N AR (Application and Advance of

Machine Translation Technology in Information Retrieval), 2006

M. J. Al-Muhamme ontology aware software service agents: meeting ordinary user needs
on the semantic web, July 2007

F. Hallot, Multilingual Semantic Web Services, October 2005

B. L. Tim, J. Hendler and O. Lassila, The Semantic Web, Scientific American Magazine,
May 2001

G. G. Chowdhury, Natural Language Processing, ARIST 2003

E. Charniak, D. Eugene, Introduction to artificial intelligence, page 2. Addison-Wesley,
1984.

. M. J. Al-Muhammed, D.W. Embley, S.W. Liddle and Y. A. Tijerino Bringing Web

Principles to Services: Ontology-Based Web Services SWSP 2007, April 2007
T. R. Gruber, A Translation Approach to Portable Ontology Specificationsm, April 1993

.D.W. Embley. Programming with data frames for everyday data items. In AFIPS National

Computer Conference (NCC'80), Page 301-305, May 1980.

. P. Buitelaar, NLP in a data-driven approach to the ontology life-cycle, TALNO7, June 2007
12.

AH ET, BRASHLAEEEHAL A > 7V Y2y by =V Fa—K—
(Intelligent Language Tutor Using Natural Language Processing), 2004

M. J. Al-Muhammed and D. W. Embley, Ontology-Based Constraint Recognition for Free-
Form Service Requests, ICDE 2007 (submitted manuscript), July 2006.

D. W. Lonsdale, D. W. Embley and S. W. Liddle, Ontologies for Multilingual Extraction,
March 2010

