
Improving Awareness during Product Derivation in
Multi-User Multi Product Line Environments

Rick Rabiser Paul Grünbacher Gerald Holl
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University, Linz, Austria
rabiser@ase.jku.at

Abstract—Existing product derivation approaches focus on
support for single users resolving variability based on a single
variability model. However, in practice multiple users perform
product derivation of large-scale systems with system-of-
systems architectures in a distributed and asynchronous man-
ner. It is infeasible to describe the variability of such multi
product lines with one integrated model. Rather, several mod-
els are needed. Existing research mainly focuses on supporting
modeling in multi product lines. The aim of our ongoing re-
search is however to improve awareness for multiple users
involved in product derivation in such environments, i.e., to
make users configuring one subsystem aware of the relevant
configuration decisions made for other subsystems. In this
paper we describe an industrial scenario of a multi product
line and derive requirements for awareness support. We
present a preliminary approach based on the "pub-
lish/subscribe" pattern and a tool prototype that aims at im-
proving awareness in product derivation by sharing decisions
across different derivation projects.

Keywords-multi product lines; product derivation; awareness

I. INTRODUCTION AND MOTIVATION

The fundamental assumption of product line engineering
is that the investments required to set up a product line are
outweighed by accelerating product derivation. During prod-
uct derivation, diverse stakeholders resolve the variability of
the product line which is usually described in variability
models. Product derivation is a complex process and directly
affects the success of adopting product line engineer-
ing [1][2]. In product derivation users make decisions on
different levels ranging from high-level decisions (e.g., lead-
ing to the inclusion of a particular subsystem) to fine-grained
adjustments (e.g., leading to the setting of parameters for
software components). The typical use case in existing prod-
uct derivation approaches and tools [3] is a single user work-
ing on a single variability model of a product line. However,
in practical settings of large and ultra-large-scale systems
there is a strong trend towards multi product lines, system-
of-systems architectures, and software ecosystems [4]. A
multi product line represents a collection of smaller and
interdependent product lines which together form a large-
scale system. In such environments, multiple models
represent different parts of a system and multiple users are

involved in product derivation. As a result multiple product
derivation projects occur concurrently to configure different
subsystems.

Existing research has focused on establishing explicit
links among variability models [6][7] and on composing
variability models to build one integrated model [8] as the
basis for subsequent derivation. This is however often unrea-
listic due to the size, heterogeneity, and complexity of cur-
rent systems. In our collaboration with Siemens VAI Metals
Technologies [9], the world's leading steel-plant building
company, we have learned that for large-scale software-
intensive systems such explicit linking and merging is often
very difficult. Steel plant automation software comprises
different subsystems on different levels such as the machine-
oriented level 1 for basic automation, the process-oriented
automation level 2, the enterprise resource planning level 3,
as well as maintenance and setup systems.

When modeling the variability of such systems and de-
veloping support for product derivation we observed that
while some decisions are relevant across several systems, it
is hard to identify these decisions already during domain
engineering and to establish and maintain explicit dependen-
cies. Also, different technologies used to develop different
subsystems make it infeasible to fully integrate variability
models during domain engineering as there is no modeling
language that could handle all these different cases uniformly
under one umbrella. To support such situations better, we
have thus been working on an approach for communicating
key derivation decisions in multiple concurrent derivation
projects without explicitly integrating the underlying varia-
bility models. In this use case users are “loosely coupled”
and are only made aware about key decisions during product
derivation. We intentionally do not focus on the technical
implications of the configuration decisions (e.g., the actual
configuration of software artifacts) as part of this research.

The approach presented in this position paper thus em-
phasizes the improvement of awareness in product deriva-
tion meaning that users configuring one system are informed
about the relevant decisions made for other systems. In Sec-
tion 2 we describe a motivating scenario based on an existing
multi product line and specify requirements for awareness
support. In Sections 3 and 4 we present a preliminary ap-
proach and tool support. We discuss related work in Sec-
tion 5 and conclude the paper in Section 6.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 1

II. REQUIREMENTS FOR PRODUCT DERIVATION

AWARENESS SUPPORT

Our industry partner Siemens VAI offers complete solu-
tions for steel plants. Mini-mills for instance are multi prod-
uct line systems supporting the entire steel-making process
starting with melting the raw material to liquid steel, continu-
ing with casting liquid steel to slabs, and ending with rolling
cast steel slabs. Diverse software-intensive systems are part
of a mini-mill such as automation software for casting, roll-
ing, etc. on different levels of automation and granularity
(e.g., machine-oriented automation, process automation,
enterprise resource planning). These systems constitute a
multi product line that is defined in diverse variability mod-
els representing the variability of heterogeneous subsystems.

We present a simple scenario (cf. Figure 1) to analyze
and illustrate required awareness support in multi-user multi
product line derivation using the mini-mill example. We
assume that variability models of the subsystems already
exist. However, as these variability models describe hetero-
geneous reusable assets they can be based on different meta-
models which makes their integration hard if not impossible.
The scenario has been developed based on discussions with
software architects, project managers, and researchers from
our industry partners Siemens VAI and Siemens CT. It is
also based on experiences with applying our DOPLER tool
suite to different industrial use cases.

1) Each individual product derivation project starts when
the responsible stakeholder “instantiates” a variability model
describing a subsystem by preparing it for derivation [10].
This can happen in parallel or sequentially. For example, one
user could start deriving the level 2 automation software for
continuous casting (user 1) while another user starts deriving
the level 1 software for rolling (user 2).

2) The involved users begin making decisions to resolve
variability. For instance, at some point user 2 realizes that
when deciding about the type of rolling required she needs to
know about pending decisions to be made by another user
concerning the number of strands in mini-mill caster.

3) User 1 publishes decisions she regards as relevant for
others. For instance, user 1 might set the number of strands
of the caster (decision c in Figure 1) to two. This directly
affects the second user’s decisions as now rolling of steel
coming from two strands has to be supported. User 1 might
be unaware of the current derivation tasks of user 2 but she
knows the number of strands might be relevant to others.

4) User 2 and all other users participating can query all
publicly shared decisions (like the number of strands) before
making the decisions for their own product line accordingly.

5) If a shared decision is important for one user then the
change of its value by another user might have conse-
quences. Therefore, the user might be interested in "subscrib-
ing" to certain decisions to be informed after changes. For
example, changes to the decision on the number of strands
(cf. decision c in Figure 1) need to be communicated to
user 2 as this affects rolling (cf. decision i in Figure 1).

From the described scenario we derive several initial re-
quirements for awareness support in product derivation:

Distributed and asynchronous derivation support. In
large-scale systems users and work groups need to be able to
derive and configure their subsystems largely independently
and in a distributed and asynchronous manner. It is however
important that there are well-defined communication inter-
faces between the groups responsible for different subsys-
tems. In industrial settings work groups are often distributed
and teams collaborate on a world-wide scale (e.g., there are
regional sales offices that need to collaborate with technical
staff in the configuration process). Support for distributed
work is thus essential.

Mechanisms for sharing decisions with other users. Us-
ers need to be aware of decisions made by others that possi-
bly affect their own configuration tasks. They also need
support to inform others about their own decisions and to
unobtrusively share this information.

Establishing mappings between shared and local deci-
sions. It should be possible for users to define traceability
between subscribed shared decisions and local decisions. If
then a shared decision is changed the trace link can be used
to notify the user about potentially affected local decisions.
This requirement is particularly important to incrementally
develop an understanding of the configuration dependencies
between different subsystems which are typically not com-
pletely known in advance and subject to continuous change.

Integration with existing derivation tools. Existing sup-
port for product derivation shall not be replaced. Instead,
support for awareness in product derivation should be seam-
lessly integrated in existing tools.

III. APPROACH

We have been developing such awareness support in
product derivation based on DOPLER, a decision-oriented
product line approach [8] which has successfully been ap-
plied in different domains such as industrial automa-
tion [9][10] or enterprise resource planning [11].

A. Background: The DOPLER Approach

DOPLER variability models contain Assets and Deci-
sions. Assets represent the reusable product line artifacts
(e.g., components, subsystems). Variation points are defined
and presented as decisions. Important attributes of decisions
are a unique id, a question that is asked to a user during
product derivation, and a decision type (Boolean, enumera-
tion, string, or number). Decisions can depend on each other
hierarchically (if a decision needs to be made before another
decision) or logically (if making a decision changes the an-
swer to another decision). The decision type describes the
range of possible answers which can be further constrained
with validity conditions. In DOPLER, assets are linked to
decisions via inclusion conditions defining when a particular
asset is included in a derived product. Asset attributes can
also depend on decisions to enable customization of assets.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 2

Decisions in DOPLER can be private (default) or public.
Originally this attribute has been introduced to support
integrating variability model fragments in domain engineer-
ing (merging them to one integrated model). The DOPLER
model merging approach [8] allows defining model elements
such as decisions or assets as placeholders by only defining
their name and type. Later, the placeholders are resolved
with concrete public decisions and assets from other models
based on name and type matching. Merging models with this
approach works well for single product lines if all models to
be merged are based on the same meta-model. However, this
assumption does not hold in the multi product line scenario.
For the approach outlined in this paper we benefit from
DOPLER’s concept of public and private model elements.
Our focus however is not on merging models during domain
engineering. Instead, we aim at making users aware of public
decisions during derivation independent of the meta-models
or technical solution assets used in the different subsystems.
We try to make our approach as simple as possible as it is
common that domain experts with no deep technical know-
ledge in variability modeling are involved in derivation.

B. DecisionBoard Approach

We thus propose a decision board realized as a shared
repository that allows the participating users to publish their
decisions in the repository and to subscribe to decisions in
order to be aware about other projects. When users first
connect to the repository, decisions already set as public
during variability modeling are published automatically.
Users can however decide to publish additional decisions
during product derivation. Furthermore, users can define
links from their local private decisions to shared public deci-

sions. These links are used to notify users as soon as the
value of a shared relevant decision changes.

Figure 1 depicts the basic idea of our approach in relation
to the scenario described in Section 2 and shows the partici-
pating components of our approach (multi product line, mul-
tiple users, decision board, shared and local decisions).

IV. TOOL PROTOTYPE

We have implemented the approach as an extension to
the existing DOPLER product derivation tool Configura-
tionWizard [9][10]. This tool enacts product line models and
is used during product derivation by domain experts and
engineers to interactively derive a concrete product from a
product line. The tool presents decisions to responsible users
in different views based on their roles and tasks. Visualiza-
tion and filtering capabilities allow working with large prod-
uct line models. The tool explains dependencies to ease na-
vigation in the model. As soon as users make decisions, the
ConfigurationWizard gives immediate visual feedback about
the consequences. The ConfigurationWizard provides sever-
al extension points. For example, one extension point is for
integrating product configuration and documentation genera-
tors. Using the Eclipse extension point mechanism, addition-
al views can be integrated in the ConfigurationWizard tool.
We have implemented our DecisionBoard by developing
such an additional view (cf. Figure 2). The decisions are
stored in a shared repository at an arbitrary URL. They are
organized and grouped by their originating variability mod-
els of the involved subsystems.

Figure 1. The DecisionBoard enables awareness in product derivation in multi product lines. In the example two users perform product derivation for
two (sub-)systems defined by two variability models that are based on different meta-models. They make decisions locally and publish selected

decisions to the decision board. Users can consult the decision board about decisions shared by others. For instance, user 2 creates a mapping from
decision i (e.g., rolling mode in the mini-mill) to c (e.g., number of strands in the caster) to be notified after changes to the number of strands.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 3

Figure 2. DecisionBoard extension in the ConfigurationWizard derivation
tool. The view on the lower half shows shared decisions and their mappings

to local decisions shown in the upper half, if any. The user is notified if a
shared decision mapped with a local decision changes.

V. RELATED WORK

The approach presented in this paper is related to existing
work on coordinating complex configuration processes dur-
ing product derivation. For instance, Mendonca and Co-
wan [12] propose a collaborative product configuration ap-
proach that aims to support coordinating teamwork decision-
making in the context of product derivation. Our approach in
contrast follows the asynchronous concept of pub-
lish/subscribe to coordinate teams. Czarnecki et al. [13],
present a staged approach based on the idea of stepwise
specialization of feature models. Our approach does not
specialize models over time but aims to enable sharing deci-
sions from multiple models. In [6], Reiser et al. address the
problem of feature modeling in large-scale embedded sys-
tems and propose product sets and configuration links to
define dependencies between different feature models to be
evaluated at the time of their selection. This approach re-
quires to pre-define explicit links which we wanted to avoid
with our approach. Hubaux et al. [14] propose feature confi-
guration workflows (defined in a workflow language) as a
new formalism for supporting configuration of large-scale
systems based on feature models. We do not define such a
workflow but rather let the users decide when to share/use
which decision. The issue of derivation in multi product lines
is also addressed in our earlier work [11] where we demon-
strated how decision models can be used to support the con-
figuration of complex systems across multiple levels of
software vendor, customers, and end-users. In this earlier
work, we however assumed explicit dependencies among the
different levels. Elsner et al. [15] propose an approach for
product configuration that works across the boundaries of
multi product lines. Their framework converts meta-models
of the different product lines into a common meta-model
format (Eclipse EMF Ecore). It provides real-time constraint
checking in product configuration based on constraints de-
fined by domain experts for the different product lines. Our
approach does not require the meta-models to be converted
as it focuses on the configuration level only, i.e., sharing
decisions.

Our work is also related to the field of collaborative de-
sign. For instance, Wang et al. [17] evaluate different ap-
proaches for collaborative design and conclude that conven-
tional approaches for sharing design decisions are insuffi-
cient. They propose web-based or agent-based collaborative
design spaces to for publishing information needed during
collaboration in the design process. Pahng et al. [16] propose
a web-based collaborative design framework where design-
ers can model a system in a distributed way. It enables the
designer to see the remote effects of a local decision.

VI. CONCLUSIONS AND FUTURE WORK

In multi product line environments it is important to en-
sure knowledge transfer across multiple concurrent product
derivation projects with regard to different decisions made.
In this paper, we have thus presented an approach and initial
tool support for awareness in product derivation based on a
motivating scenario from a real-world multi product line.
Although the approach is intentionally simple we are confi-
dent that it can improve awareness about important configu-
ration decisions in multi product line scenarios without the
need to explicitly integrate diverse variability models that are
hard, infeasible, or even impossible to integrate.

In future work we will refine and validate the approach in
user studies. An important research issues is to explore the
trade-off between sharing information early and often (thus
risking information overload) vs following a more restrictive
policy. It is important to understand the balancing between
the early propagation and likelihood of the information
changing. We also expect that the user studies will contribute
to a deeper understanding of the high-level requirements
discussed in Section 2.

Furthermore, we plan to address several issues related to
the tool prototype: it is important to avoid the deterioration
of the decision board after continuous updates and we will
develop filtering and search features for the decision board.
Another challenge lies in detecting inconsistencies in the
decision board (e.g., caused by different users publishing the
same decision from two copies of the same model). Finally,
we will investigate the integration of the decision board
approach with our model merging approach [8] (e.g., by
analyzing and exploiting mapping links set by users). We
plan to evaluate and improve the approach in case studies
with industrial users.

ACKNOWLEDGMENT

This work has been conducted in cooperation with Sie-
mens VAI Metals Technologies and Siemens Corporate
Technology and has been supported by the Christian Doppler
Forschungsgesellschaft, Austria.

REFERENCES
[1] S. Deelstra, M. Sinnema, and J. Bosch, "Product derivation in

software product families: a case study," Journal of Systems and
Software, vol. 74(2), pp. 173-194, 2005.

[2] P. O'Leary, R. Rabiser, I. Richardson, and S. Thiel, "Important Issues
and Key Activities in Product Derivation: Experiences from Two
Independent Research Projects, "Proc. of the 13th International
Software Product Line Conference (SPLC 2009), San Francisco, CA,
USA, ACM ICPS, CarnegieMellon University, 2009, pp. 121-130.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 4

[3] R. Rabiser, P. Grünbacher, and D. Dhungana, "Requirements for
Product Derivation Support: Results from a Systematic Literature
Review and an Expert Survey," Information and Software
Technology, vol. 52(3), pp. 324-346, 2010.

[4] J. Bosch and P. Bosch-Sijtsema, "From integration to composition:
On the impact of software product lines, global development and
ecosystems," Journal of Systems and Software, vol. 83(1), pp. 67-76,
2010.

[5] C. W. Krueger, “New Methods in Software Product Line Deve-
lopment”, Proc. of the 10th International Software Product Line
Conference (SPLC 2006), Baltimore, Maryland, 2006.

[6] M.-O. Reiser, R. T. Kolagari, and M. Weber, "Compositional
Variability—Concepts and Patterns, "Proc. of the 42nd Hawaii
International Conference on System Sciences (HICSS-42), Waikoloa,
Hawaii, USA, IEEE Computer Society, 2009.

[7] R. van Ommering, "Software reuse in product populations," IEEE
Transactions on Software Engineering, vol. 31(7), pp. 537-550, 2005.

[8] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer,
"Structuring the Modeling Space and Supporting Evolution in
Software Product Line Engineering," Journal of Systems and
Software, vol. 83(7), pp. 1108-1122, 2010.

[9] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer, "Model-
based Customization and Deployment of Eclipse-Based Tools:
Industrial Experiences, "Proc. of the 24th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2009),
Auckland, New Zealand, IEEE/ACM, 2009, pp. 247-256.

[10] R. Rabiser, P. Grünbacher, and D. Dhungana, "Supporting Product
Derivation by Adapting and Augmenting Variability Models, "Proc.
of the 11th International Software Product Line Conference (SPLC
2007), Kyoto, Japan, IEEE Computer Society, 2007, pp. 141-150.

[11] R. Rabiser, R. Wolfinger, and P. Grünbacher, "Three-level
Customization of Software Products Using a Product Line Approach,
"Proc. of the 42nd Annual Hawaii International Conference on
System Sciences, Waikoloa, HI, USA, IEEE CS, 2009.

[12] M. Mendonca and D. Cowan, "Decision-making coordination and
efficient reasoning techniques for feature-based configuration,"
Science of Computer Programming, vol. 75(5), pp. 311-332, 2009.

[13] K. Czarnecki, S. Helson, and U. W. Eisenecker, "Staged
configuration using feature models, "Proc. of the 3rd International
Software Product Line Conference (SPLC 2004), Boston, MA, USA,
Springer Berlin Heidelberg, 2004, pp. 266-283.

[14] A. Hubaux, A. Classen, and P. Heymans, "Formal modelling of
feature configuration workflows, "Proc. of the 13th International
Software Product Line Conference (SPLC 2009), San Francisco, CA,
USA, ACM International Conference Proceeding Series; Vol. 446,
CarnegieMellon University, 2009, pp. 221-230.

[15] C. Elsner, P. Ulbrich, D. Lohmann, and W. Schröder-Preikschat,
"Consistent Product Line Configuration Across File Type and
Product Line Boundaries., "Proc. of the 14th International Software
Product Line Conference (SPLC 2010), Jeju Island, South Korea,
2010 (to appear).

[16] G.-D. Pahng, S. Bae, D. Wallace, “Web-based collaborative design
modeling and decision support”, Proc. of the ASME Design
Engineering Technical Conferences (DETC 1998), Atlanta, Georgia,
1998

[17] L. Wang, W. Shen, H. Xie, J. Neelamkavil A.Pardasani, “Colla-
borative conceptual design—state of the art and future trends”,
Computer-Aided Design, vol. 34, pp. 981-996, 2002

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 5

