
Automated Derivation of Configurations for the
Integration of Software(+) Engineering Environments

Stefan Biffl, Richard Mordinyi and Thomas Moser
Christian Doppler Laboratory “Software Engineering Integration for Flexible Automation Systems”

Vienna University of Technology
Vienna, Austria

{stefan.biffl, richard.mordinyi, thomas.moser}@tuwien.ac.at

Abstract—Today’s systems integration technologies enable the
integration of (software+) engineering environments to support
engineering processes across domain and tool boundaries. These
engineering processes heavily rely on manual configuration of
integration frameworks, resulting in costly, time-consuming, and
error-prone human work. In this paper, we introduce an
extended model-driven approach for the automated derivation of
integration technology configurations for supporting engineering
processes. This allows both an efficient and effective derivation of
initial configurations, as well as easy adaptations of existing
configurations in case of changed engineering processes. Based
on a standard software engineering process, we show the
feasibility of the proposed approach and discuss the advantages
and limitations for software(+) engineering.

Keywords: engineering domains; systems integration; model-
driven approach; automated configuration

I. INTRODUCTION
Typical large-scale engineering projects, like power plants

or car manufactures, involve the cooperation of a wide range of
engineering systems and tools that use different technical
platforms and heterogeneous data models (e.g., mechanical,
electrical, and software engineering [5]). This kind of
cooperation is called “(software+) engineering projects”, since
software engineering provides additional values to software-
intensive systems and also depends on the seamless
collaboration with other engineering fields. Today’s system
integration technologies are suitable to bridge most of the
technical and semantic gaps between these (software+)
engineering systems and tools. However, error-prone and time-
consuming human work (e.g., manually copying information
from one to another tool) is needed to handle integration
concerns at the interfaces of different engineering disciplines.
An example for reducing the needed human work, and thus for
the integration of heterogeneous engineering disciplines, is the
Engineering Service Bus (EngSB) [6], which is a process-
oriented framework for both technical and semantic integration
of heterogeneous software tools.

The configuration of such system integration technologies
is time-consuming and a complex manual task that can only be
done by designated integration experts (IE) [12]. Complexity
arises from the integration of a high number of distributed and
heterogeneous engineering tools (e.g., different accessibility

methods for each tool), different tool data formats (e.g., open
standards vs. proprietary data formats), and the need for
on/offline capabilities (e.g., high availability of server-based
tools vs. limited availability of end-user tools). The manual
configuration of the used integration technology with respect to
these complexity issues is often inefficient and incorrect. In
order to reduce manual configuration efforts and defects, as
well as to increase the efficiency of integration, automated
derivation of configurations can be used. There exist methods
for the automated derivation of configuration based on the
Model-Driven Architecture (MDA) [15] paradigm, such as the
Model-Driven System Configuration (MDSC) approach [16].
The MDSC approach explicitly models a) the semantics of
integrated engineering tools’ requirements and capabilities
[17]; and b) the connectors and data transformations between
heterogeneous engineering tools [16], to simplify systems
integration. Based on these semantic models, the MDSC
approach is capable of automatically deriving integration
technology configurations.

In this paper, we describe an extended version of the
MDSC approach applied to the integration of heterogeneous
tools originating from (software+) engineering disciplines. In
contrast to the traditional MDSC approach, the extended
MDSC (eMDSC) approach uses semantically modeled
requirements of pre-defined engineering processes to a) select a
set of suitable engineering tools providing the required
capabilities; and b) to derivate configurations for the
integration technology accordingly. The eMDSC approach
consists of two major steps: in the first step, requirements of
engineering processes are matched against capabilities of so-
called tool domains [6], which abstract tools providing similar
functionality. The outcome of this matching is an ordered set of
tool domains required for the execution of a specific
engineering process. In the second step, for each of these
required tool domains a so-called tool instance, i.e., the actual
engineering tool, is selected. Again, the engineering process
requirements regarding a specific engineering domain are
matched against the capabilities of a certain tool instance in
order to identify suitable engineering tools for an engineering
process step.

We evaluate the proposed eMDSC approach using a well-
known software engineering process, the Continuous
Integration & Test (CI&T) process [9]. The results of the

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 6

evaluation show that the proposed approach is efficient and
effective, regarding both the effort needed for setting up the
integration environment as well as the number of error sources.
Furthermore, tool domains enable easy adaptations of existing
integration solutions by allowing the efficient exchange of
similar tools without affecting the existing engineering process.

The remainder of this paper is structured as the following:
Section II reports related work regarding common technical
and semantic integration approaches as well as the MDSC.
Section III presents research issues concerning the integration
in (software+) engineering domains, while section IV describes
an industrial use case. Section V explains the eMDSC approach
applied for (software+) engineering domains. Section VI
presents evaluation results and section VII discusses them.
Finally, section VIII concludes the paper and presents future
work.

II. RELATED WORK
This section summarizes related work on system integration

technologies for technical and semantic integration as well as
for software and systems integration in automation systems
engineering, and on model-driven system configuration.

A. System Integration Technologies
Current developers of software systems use a wide range of

tools from software vendors, open source communities, and in-
house developers. Getting these tools to work together to
support a development process in an engineering environment
remains challenging as there is a wide variety of standards
these tools follow [13]. Any integration approach has to
address the levels of technical heterogeneity, i.e., how to
connect systems that use different platforms, protocols, etc., so
they can exchange messages [7, 12]; and semantic
heterogeneity, i.e., how to translate the content of the messages
between systems that use different local terminologies for
common concepts in their domain of discourse, so these
systems can understand each other and conduct a meaningful
conversation [1, 11, 17].

Basics of technical integration. Technical integration
follows message-based patterns [12] to connect a series of
technically heterogeneous and distributed systems. The
communication between these systems is in many cases event-
based and sometimes request/response-based. Message-
oriented middleware (MoM) and an “Enterprise Service Bus”
(ESB) [7] provide the infrastructure for physically and
logically connecting technically heterogeneous systems with
technical integration features such as message processing (like
routing, filtering and enriching messages) and a service registry
(a directory of currently available services, their names,
interface and behavior descriptions, and location to bind and
invoke) [2], and thus are the foundation for engineering process
services on domain level. To efficiently embed these infra-
structure tools an engineering project with resource-
constrained, mobile, and low-cost environments, there are
several lightweight open source ESB and related middleware
products available [21].

Basics of semantic integration. Semantic integration is
defined as the solving of problems resulting from the intent to

share data across disparate and semantically heterogeneous
data [10]. These problems include the matching of ontologies
or schemas, the detection of duplicate entries, the reconciliation
of inconsistencies, and the modeling of complex relations in
different data sources [20]. One of the most important and most
actively studied problems in semantic integration is
establishing semantic correspondences (also called mappings)
between vocabularies of different data sources [8]. The
application of ontologies as semantic web technologies for
managing knowledge in specific domains is desirable. Moser et
al. [17] introduced the Engineering Knowledge Base (EKB)
framework as a semantic web technology approach for
addressing challenges originating from data heterogeneity that
can be applied for a range of domains, e.g., in the production
automation domain [17] and also Software Engineering.

Software and Systems integration in Automation
Systems Engineering. Integration of engineering systems is a
challenge as (particularly in the automation industry) typically
a broad range of engineering tools from different vendors are
used to solve specific problems [22]. Tools within one vendor
are sometimes integrated to exchange data, but hardly between
vendors. APIs and exchange formats often do not follow
established (open) standards. Therefore the AutomationML 1

project provides a standardized XML data exchange basis for
data integration between multi-vendor automation systems
engineering tools as foundation systematic information ex-
change between engineering models. The Medeia 2

 project
develops an automation component model concept as
foundation for knowledge exchange between semantically
heterogeneous domain-specific engineering models [14]. The
results of these projects become essential for engineering teams
that have a technically well-integrated environment but need to
reconcile different semantic approaches in the engineering
team.

Figure 1. Overview EngSB platform [6].

Engineering Service Bus (EngSB) platform. Biffl and

Schatten proposed a platform called Engineering Service Bus
(EngSB) which integrates not only different tools and systems
but also different steps in the software development lifecycle
[5, 6]. Figure 1 shows an overview of the EngSB platform. The

1 http://www.automationml.org
2 http://www.medeia.eu

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 7

successful development of modern software-based systems,
such as industrial automation systems, depends on the
cooperation of several engineering disciplines, e.g.,
mechanical, electrical and software engineering, so-called
(software+) engineering environments. The EngSB addresses
requirements such as the capability to integrate a mix of user-
centered tools and backend systems, mobile work stations that
may go offline, and flexible and efficient configuration of new
project environments and SE processes.

Tool Domain concept. The EngSB platform introduces the
concept of tool types that provide interfaces for solving a
common problem, independent of the specific tool instance
used. This seems possible since different tools, developed to
solve the same problem have, more or less, similar interfaces.
For example, the source code management (SCM) tools
Subversion and CVS both provide similar functionality, which
allows describing these tools as instances of the SCM tool
domain. Figure 2 illustrates the SCM tool domain and other
possible domains in the context of the EngSB. We call the
concept of tool types is in this work “tool domains” [5]. This
concept allows the EngSB to interact with a tool domain
without knowing which specific tool instances are actually
present. Note that tool domains do not implement tool
instances but provide the abstract description of events and
services, which have to be provided by concrete connectors of
tool instances to the EngSB.

Figure 2. Tool Domain Concept of the EngSB.

B. Model-driven System Configuration
The major goal of the Model Driven Architecture (MDA)

approach is the separation of system functionality specification
and implementation [11]. The advantages [10] of the MDA
framework are (1) automated generation of results improving
productivity, development duration, and cost; (2) focusing on
the creation of conceptual models rather than on logical and
technical details. In contrast to the MDA approach, the Model-
driven System Configuration (MDSC) [5, 16] automatically
derives integration technology configurations from business
requirements rather than implementation code. Based on
requirement and capability models which represent documents,
integration expert knowledge and estimation/measurements of
the integration network capabilities [12], a logical solution
model which represents the set of suitable integration partners
(i.e. business services) is derived automatically [13]. Based on
described network capability models and the derived

integration partners the logical solution model is transformed
into a technical solution model that represents the specific
integration configuration for the underlying integration
network technologies. The configuration specifies routing
tables for efficient communication, backup routes for a fault-
tolerant behavior, transformation instructions to enable data
exchange between heterogeneous business services, and
installation instructions for the deployment of middleware
technologies to cope with heterogeneous network technologies.

In contrast to MDSC, the eMDSC approach focuses on
specifying the proper communication sequence between tool
instances based on a description of an engineering process. The
configuration therefore focuses on the efficient integration of
too

ous engineering domains and tools, which need to
be integrat gineering
process su aries. However,

cap

le without the need for manual intervention. Discuss
the

 of con-
figu

l instances rather than on configuring the integration
platform regarding efficient routing and effective fault-
tolerance.

III. RESEARCH ISSUES
Typical (software+) engineering processes involve a set of

heterogene
ed to allow seamless cooperation and en
pport across domain- and tool-bound

the configuration of IT technologies suitable for addressing
these integration challenges often requires manual and
therefore time-consuming and error-prone configuration tasks.

In this paper, we propose an extended model-driven
approach for the automated derivation of integration
technology configurations based on explicit semantic models
of engineering process requirements and engineering tool

abilities. Based on these semantic models, the proposed
approach is capable of efficiently and effectively deriving
integration technology configurations. In order to investigate
the feasibility and applicability of the proposed extended
model-driven approach, we derive the following research
issues:

RI-1: Efficient derivation of integration technology
configurations. Investigate to what extent an automated
derivation of integration technology configurations is
achievab

 required additional effort needed before executing the
automated derivation, such as the effort for modeling
engineering process requirements and engineering tool
capabilities. Evaluate the effort needed for the adaptation of
existing integration technology configurations in case of
changed engineering processes, such as the exchange of
existing and the deployment of new engineering tools.

RI-2: Effective management of defects in the process of
configuring integration technologies. Discuss the advantages
and limitations of the proposed extended model-driven ap-
proach regarding the handling of defects in the process

ring integration technologies. To what extent can the pro-
posed approach transform the explicit engineering process re-
quirement models into correct and valid integration technology
configurations without significant sources of defects like
manual interaction; better quality measurement and feedback
on intermediate models during configuration derivation?

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 8

We discuss the extended model-driven approach based on a
standard software engineering process. We show the feasibility
of

This section describes the use case of the standard
Continuous In process. We selected

the proposed approach and discuss the advantages and
limitations in the context of software(+) engineering. For
empirical evaluation we determine the integration effort needed
for each configuration process step to compare the steps in the
proposed extended model-driven approach with both the
traditional model-driven approach as well as the manual
approach.

IV. USE CASE

tegration and Test (CI&T)
the CI&T process approach because of the involvement of a set
of various tools (build, automated tests, and deployment) as a
representative best-practice approach from the agile software
engineering. Nevertheless, this use case seems appropriate for
illustrating the proposed eMDSC approach.

start check in build-start

build-
successful

test-
start

test-
successfull

deploy-start

deploy-successfull

end

deploy-failed

test-failed

build-failed
Build System

Run Tests

Deploy

Task
Start Intermediate End

Activity Connection

Sequence Flow

Event

Legend

Send Report

Error

Figure 3. Continuous Integration and Test (CI&T) Process.

represented in Figure 3 using Business Process Modeling
No 3

The expected SE process model for the CI&T use case is

tation (BPMN) notation. The model consists of a set of
activities for the CI&T process implementation: building the
system, running tests, deploy activities, and finally reporting
test and deployment results. The CI&T use case shows a key
feature of an iterative software development process: if parts of
a system or engineering model get changed, the system has to
be rebuilt and tested in order to identify defects early and to
provide fast feedback on the implementation progress to the
project manager and the owners of the changed system parts. In
modern SE environments this part is done by Continuous
Integration (CI) servers like Continuum4 or Hudson5. For a

typical Java project a Maven6 or Ant7 script will guide the CI
process [5].

M
es

sa
ge

Pr

oc
es

si
ng

logi.CAD

Python
Testframework

Test RTS

Testcase

Test
Adapter

Test
Connector

Issue
Adapter

Issue
Tracker

Chat
Server

Mail
Server

XML-RPC

SMTP

XMPP

SMTP

2

1

3

4

5

6

6

8

9

10

107

Logger

Figure 4. Overview and Sample Tools for CI&I Process.

As shown in Figure 4, a typical execution of the CI&T

Process may be performed as follows. (1) an updated version
of a software component is put into the archive using a client
tool such as logi.CAD8. This leads to (2) the execution of the
testing process, i.e., a service call to the test adapter. This test
adapter then executes the test, e.g., using the shown Python test
framework. After the tests are finished, the test results are put
back into the Engineering Service Bus (EngSB) (3). If the tests
resulted in one or more errors, for each of these errors an issue
(e.g., an email or a ticket) is generated (4) using the issue
adapter of the EngSB. The EngSB is then notified (5) about
each of these newly created issues and (6) notifies all interested
roles/persons, e.g., by using a chat server. After the errors of
the originally checked-in component have been resolved, the
component is checked-in again (7), again the tests are executed
(8) and the, now error-free, test results are put back into the
EngSB (9). Finally, all interested roles are notified (10) about
the successful updated of the software component.

V. AUTOMATED DERIVATION OF CONFIGURATIONS
The automated derivation of configuration for the

integration of tools across engineering boundaries is described
in Figure 5. The process of configuration derivation consists of
4 main processing components and 4 QA steps described in the
following.

6 http://maven.apache.org 3 http://www.bpmn.org

e.org
7 http://ant.apache.org 4 http://continuum.apach
8 http://www.logicals.com 5 http://hudson-ci.org

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 9

Figure 5: The process of configuration derivation for tool integration in (software+) engineering domains.

Step 1. In the first processing step engineering tool experts
from each engineering domain independently model the
capabilities of used tool instances (e.g., issue tracker) within
their domain as well as tool domain requirements and
capabilities. Furthermore, engineering process experts model
the requirements of the engineering process requiring the
integration of several engineering disciplines. A way of
modeling capabilities and requirements based on ontologies is
described in [17]. The result of this step is semantically
described models.

Step 2. In the second processing step first QA steps are
deployed to check models automatically for correctness and
syntax validity [3, 4]. The QA step may make use of reasoning
capabilities provided by e.g., protégé to assure certain model
constraints (e.g., security properties). In case of errors models
described in step 1 need to be refined.

Step 3. In the third processing step a matching between
modeled engineering process requirements and modeled tool
domain capabilities is performed. The approach of matching
capabilities and requirements using ontologies is described in
[18, 19]. The result of this step is a possible set of integration
partners where engineering process requirements are matched
by several tool domain capabilities. In such case engineering
process experts need to perform a manual selection of suitable
tool domains based on characteristics of the derived tool
domains which were not explicitly used in the matching
process or cannot be explicitly modeled, like the confidence of
the experts into the tool instances within the tool domain. The
outcome of this processing step, i.e. Logical Solution Model, is
an engineering process with well defined and explicitly
referred tool domains capable of satisfying the process’
requirements.

Step 4. The following QA step is capable of simulating
engineering processes using selected tool domains by means of
pre-defined test scenarios. The simulation shows whether the
engineering process is capable of working as originally
intended. In this step tool domains emulate tool instance
functionality as defined in the test scenario. In case of errors or
an invalid engineering process either the selection process has
to be restarted and new tool domains found, or tool domain
capabilities and engineering process models have to be
redefined in more detail.

Step 5. Once proper tool domains have been found and
tested for the given engineering process, appropriate
engineering tool instances need to be derived by matching tool
domain requirements and tool instance capabilities [18, 19].
The process of matching capabilities and requirements is the
same as in step 3. The result is a set of tool instances matching
tool domain requirements. Tool domain requirements represent
the capabilities the tool domain promises the engineering
process. In case there are several tool instances matching the
specified requirements a further selection of suitable tool
instances has to be performed. Criteria for final selection may
base on non-functional requirements which may also be
optional. The result of this processing step, i.e. Technical
Solution Model, is a set of tool instances each matching the
requirements of the tool domain they belong to.

Step 6. The derived tool-instances are tested based on test
scenarios pre-defined in tool domains. Such scenarios check
proper functionalities of engineering tools and therefore
consistency between real tool capabilities and tool capability
models. In case of inconsistencies either bugs in the
engineering tool have to be fixed or the model updated
accordingly. In the latter case the process of configuration
derivation has to be restarted since initial conditions have
changed.

Step 7. In the next processing step the technical solution
model, representing selected tool instances and tool domains, is
transformed into real configuration parameters. The generated
configuration is useable by the underlying integration
technology and represents the original engineering process.
The described process creates configuration solution for the
proposed EngSB. A more general approach taking into account
technology specific aspects is explained in [16].

Step 8. Finally, in the last QA processing step the generated
configuration solution is evaluated by means of consistency
and syntax checks.

VI. EVALUATION
The evaluation of the E-MDSC approach was conducted by

means of a standard software engineering process regarding a
set of evaluation criteria. We compare the proposed E-MDSC
with both the traditional MDSC as well as with a primarily
manual way of configuration. We derived the used evaluation

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 10

criteria together with experts from our industry partner in the
field of automation systems engineering. The evaluation is
based on two scenarios. The first scenario determines the
results based on an integration project from the scratch. The
second scenario assumes that an initial integration project has
been accomplished providing a first integration solution, but
due to changing business requirements some system
adaptations have to be performed, like the need to exchange of
a tool instance. Table 1 summarizes the initial results of our
evaluation with respect to the derived criteria.

Configuration Knowledge. The results of the evaluation
show that the main difference between the two MDSC variants
and a manual configuration approach is the type of sources
used for the derivation of the configuration. On the one hand
side, human-readable documents or other implicit knowledge is
used by experts to manually generate the configuration. On the
other hand side, this knowledge is externalized in machine-
understandable models which enable and act as input for an
automated derivation of configuration parameters.

Initial Effort. The initial effort (i.e., an integration scenario
starting from the scratch) needed for the manual derivation of
configurations is lower than in case of automated derivation.
The reason for this is that in case of MDSC, documented
knowledge still needs to be transferred into explicit and
machine-understandable format (e.g., ontologies), while in case
of manual derivation this step is done implicitly by experts.
Furthermore, the eMDSC variant requires slightly more effort
than the traditional MDSC variant, since tool domains need to
be described additionally.

Adaptation Effort. In case of adaptation, the MDSC
variants have proven to be more efficient than the manual
approach, since once the knowledge has been externalized, it
can be reused with little extra effort, while for the manual
approach this knowledge exists implicitly only. In addition,
both MDSC variants report errors or missing information
immediately due to in-time consistency and completeness
checks based on ontology reasoning. In case of manual
derivation, documents may be changed with the risk that other
related documents are not updated accordingly, resulting in
inconsistent and therefore erroneous knowledge. The eMDSC
variant requires less adaption than the traditional MDSC
variant, since there is an additional separation between tool
instances and tool domains. The tool domain concept of the
eMDSC allows more efficient modeling of new or updated
engineering tool instances by providing templates for the core
functionalities of each used tool domain. Additionally, the
separation into engineering processes, tool domains and tool
instances allows experts to entirely focus on specific parts of
the model, rather than taking into account the entire model
(e.g., in case of new or updated tool instances, the process of
selecting the appropriate instance is limited to the tool domain
the tool instanced belong to).

Table 1: Evaluation results of manual, MDSC, and eMDSC approach.
 Manual Traditional MDSC eMDSC

Configuration
knowledge

Configuration knowledge has to be
derived from human-readable
documents or implicitly known by
integration experts

Configuration knowledge is
externalized in a machine-readable
ontology by integration experts

similar to traditional MDSC

Initial effort medium high slightly higher

Adaptation
effort

high medium low

Duration
high low medium - duration is longer due

to additional abstraction (tool
domains need also to be modeled)

QA efficiency

Low - Manual checks of documents
and models needed

Medium - Automated ontology
reasoning allows quickly locating
inconsistent knowledge in the model

High – additionally to MDSC tool
domains allow tool domain-
specific integration tests of tool
instances

Model
complexity

High and distributed Medium and centralized Low and centralized

Level of
automation

support

Low - Exhaustive communication
of engineering tool experts needed
to clarify configuration

Medium - Semantic models of
engineering process requirements
and engineering tool capabilities
with ontology-based reasoning
allows the automated derivation of
configuration

High – additionally to MDSC,
already modeled engineering
processes can be efficiently
reused because of their explicit
modeling in the eMDSC approach

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 11

Duration. The duration of the manual approach is higher
due to error-prone mainly manual process steps resulting in
additional efforts to discuss error sources and possible
solutions. In case of describing systems, parallel processing is
possible in both approaches. However, the MDSC processing
steps are running mainly automated, while the manual
approach is still human-driven resulting in time consuming and
error-prone processing steps. Therefore, the duration depends
strongly on the automation support. The eMDSC variant
requires a slightly longer duration, since the tool domains need
to be described before the actual tool instances can be modeled.

QA Efficiency. Since the manual approach focuses on
manual validity checks, it is therefore more time consuming
and error-prone. This also results in the fact that missing
information is often detected probably only in later process
steps. The MDSC variants use ontology-based reasoning. This
allows performing consistency and completeness checks in-
time automatically, resulting in a lower failure rate and in-time
notification of experts about missing/incorrect information.
Furthermore, based on tool domains the eMDSC variant is
capable of additionally executing integration tests to check
whether all published functionalities of tool domains are
correctly supported by tool instances. The tool domain
abstraction allows experts to define tests on the engineering
process level, rather than on the engineering tool instance level.
This allows testing the engineering process even before tool
instances have been modeled.

Model Complexity. The complexity of the manual
approach is high because the process requires the cooperation
of experts from the different engineering disciplines, as well as
because of heterogeneous and distributed knowledge sources
(e.g., documents) which have to be kept consistent all the time.
The traditional MDSC variant is less complex because the
knowledge is kept centralized in an explicit format. Each
expert is responsible for maintaining the model of his/her
engineering tool instances without the need for cooperation
with other experts. However, the links between the different
engineering disciplines (i.e., the link between tool instances
belonging to different engineering disciplines) have to be
modeled and kept consistent by designated engineering process
experts. The complexity of the eMDSC variant is even lower
because of the distinction between tool domains and tool
instances. This even allows experts of the individual
engineering disciplines to separately model either engineering
processes, tool domains and tool instances without requiring
knowledge of the entire engineering discipline.

Level of Automation Support. Besides supporting the
engineering tool experts while modeling engineering tool
instances with consistency and completeness checks, the
traditional MDSC variant automatically suggests an
engineering process to be verified by the engineering process
expert. In contrast the manual approach requires exhaustive
communication of engineering tool experts and manual update
of knowledge sources to derive a valid configuration. The
proposed eMDSC variant has a higher level of automation
support, since it enables the reuse of already modeled
engineering processes, resulting in the appropriate tool
domains to be selected automatically for the new (or adapted)
engineering process.

VII. DISCUSSION
This section discusses the proposed eMDSC approach, as

well as the initial results of the evaluation with regard to the
defined research issues.

Efficient derivation of integration technology
configurations. The explicit and machine-understandable
knowledge of the eMDSC approach, as well as the explicit
distinction between engineering process, engineering tool
domain and engineering tool instance allows a derivation of
integration technology configurations with a high level of
automation. This results in an efficient configuration of
integration solutions for engineering processes across various
engineering disciplines. The level of automation and modeling
methodology enables effective modeling (i.e., modeling of
either engineering processes, engineering tool domains or
engineering tool instances) and supports the reuse of particular
parts of engineering processes for new automation systems
engineering projects with minimal adaptation effort. Although
the process of deriving configurations from the described
models is more complex than in the traditional MDSC variant,
the cognitive complexity of modeling is lower for the particular
experts because of the explicit distinction between engineering
processes, engineering tool domains and engineering tool
instances.

Effective management of defects in the process of
configuring integration technologies. In contrast to the
manual approach and the traditional MDSC variant, the
eMDSC variant provides a higher level of QA support for the
process of integration technology configuration derivation.
This higher level of support results from the explicit and
machine-understandable modeling of knowledge sources and
the distinction between engineering processes, engineering tool
domains and engineering tool instances. These two aspects
allow automated consistency and completeness checks for all
types of used models (i.e., engineering process requirements,
tool domain requirements and capabilities, tool instance
capabilities, logical solution model, and technical solution
model). Furthermore, the tool domain concept enable experts
predefining tests on an engineering process level, even before
suitable engineering tool instances have been modeled or
identified. Manual intervention is still necessary, however
limited to the selection of engineering tool domains and
engineering tool instances out of a set of suitable candidates.
Nevertheless, this manual intervention does not introduce
additional sources of defects, since only valid candidates can
be chosen.

The evaluation scenarios supported the feasibility of the
eMDSC approach and provided promising initial results.
However, practical issues such as effort and defect rates for
setting up and using eMDSC within larger-scale need to be
explored in settings with industrial experts.

VIII. CONCLUSION AND FURTHER WORK
(Software+) engineering, such as the engineering of power

plants, typically involves the cooperation of a set of both
technically and semantically heterogeneous engineering tools.
The configuration of technologies enabling the integration of
these engineering tools originating from various engineering

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 12

disciplines is usually a manual and therefore time-consuming
and error-prone task.

In this paper, we introduced the so-called eMDSC
(extended Model-Driven Systems Configuration) approach for
the automate derivation of integration technology
configurations based on explicit and machine-understandable
models of engineering process requirements, engineering tool
domain requirements and capabilities, as well as engineering
tool instance capabilities. The eMDSC is based on the Mode-
Driven Architecture (MDA) paradigm and therefore enables an
efficient, less complex, and less error-prone configuration
derivation process.

We evaluated the proposed eMDSC approach by using a
well-known software engineering process, the Continuous
Integration & Test (CI&T) process. Major results of the
evaluation were a) that the proposed approach has proven to be
efficient and effective, regarding both the effort needed for
setting up the integration environment as well as the number of
error sources; and b) that tool domains enable easy adaptations
of existing integration solutions by allowing the efficient
exchange of similar tools without affecting the existing
engineering process.

Future work will include investigation of the eMDSC
approach in large-scale industry projects regarding practical
issues such as effort and defect rates. In addition, the usability
of the eMDSC approach will be evaluated in settings with
industrial experts.

ACKNOWLEDGMENT
This work has been supported by the Christian Doppler

Forschungsgesellschaft and the BMWFJ, Austria.

REFERENCES

[1] L. Aldred, W. van der Aalst, and M. Dumas, “Understanding the
Challenges in Getting Together: The Semantics of Decoupling in
Middleware,” BPM Center, Eindhoven, The Netherlands, 2006.
[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services:
concepts, architectures and applications, Springer Verlag, 2004.
[3] S. Biffl, R. Mordinyi, T. Moser, and D. Wahyudin, “Ontology-
supported quality assurance for component-based systems
configuration,” Proceedings of the 6th international Workshop on
Software Quality, ACM, 2008, pp. 59--64.
[4] S. Biffl, R. Mordinyi, and A. Schatten, “A Model-Driven
Architecture Approach Using Explicit Stakeholder Quality
Requirement Models for Building Dependable Information Systems,”
Software Quality, 2007. WoSQ'07: ICSE Workshops 2007. Fifth
International Workshop on, 2007, pp. 6-6.
[5] S. Biffl, and A. Schatten, “A Platform for Service-Oriented
Integration of Software Engineering Environments,” Eight
Conference on New Trends in Software Methodologies, Tools and
Techniques (SoMeT 09), 2009, pp. 75 - 92.
[6] S. Biffl, A. Schatten, and A. Zoitl, “Integration of
Heterogeneous Engineering Environments for the Automation

Systems Lifecycle,” Proc. IEEE Industrial Informatics (IndIn)
Conference, 2009, pp. 576 - 581.
[7] D. Chappell, Enterprise Service Bus, O'Reilly Media, Inc., 2004.
[8] A. Doan, N.F. Noy, and A.Y. Halevy, “Introduction to the
special issue on semantic integration,” SIGMOD Rec., vol. 33, no. 4,
2004, pp. 11-13.
[9] P. Duvall, S. Matyas, and A. Glover, Continuous Integration:
Improving Software Quality and Reducing Risk, Addison-Wesley,
2007.
[10] A. Halevy, “Why your data won't mix,” Queue, vol. 3, no. 8,
2005, pp. 50-58.
[11] G. Hohpe, “Conversation Patterns,” Dagstuhl Workshop Report,
2006.
[12] G. Hohpe, and B. Woolf, Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions, Addison-
Wesley Longman Publishing Co., Inc., 2003.
[13] IEEE, “IEEE Recommended Practice for CASE Tool
Interconnection: Characterization of Interconnections,” IEEE
Standard 1175.2-2006, 2007, pp. c1-36.
[14] Medeia-Consortium, “Requirements Analysis and Technology
Review,” Medeia, 2008.
[15] S.J. Mellor, K. Scott, and D. Weise, MDA distilled: principles of
model-driven architecture, Addison-Wesley Professional, 2004.
[16] R. Mordinyi, T. Moser, E. Kühn, S. Biffl, and A. Mikula,
“Foundations for a Model-Driven Integration of Business Services in
a Safety-Critical Application Domain,” 35th Euromicro Conference
on Software Engineering and Advanced Applications, IEEE, 2009,
pp. 267-274.
[17] T. Moser, R. Mordinyi, A. Mikula, and S. Biffl, “Making Expert
Knowledge Explicit to Facilitate Tool Support for Integrating
Complex Information Systems in the ATM Domain,” Intl. Conf. on
Complex, Intelligent and Software Intensive Systems (CISIS 2009),
IEEE, 2009, pp. 90-97.
[18] T. Moser, R. Mordinyi, W.D. Sunindyo, and S. Biffl, “Semantic
Service Matchmaking in the ATM Domain Considering
Infrastructure Capability Constraints,” 21st International Conference
on Software Engineering and Knowledge Engineering (SEKE 2009),
2009, pp. 222-227.
[19] T. Moser, K. Schimper, R. Mordinyi, and A. Anjomshoaa,
“SAMOA - A Semi-Automated Ontology Alignment Method for
Systems Integration in Safety-Critical Environments,” Complex,
Intelligent and Software Intensive Systems, 2009. CISIS '09.
International Conference on, 2009, pp. 724-729.
[20] N.F. Noy, A.H. Doan, and A.Y. Halevy, “Semantic Integration,”
AI Magazine, vol. 26, no. 1, 2005, pp. 7-10.
[21] T. Rademakers, and J. Dirksen, “Open-source ESBs in action,”
Manning Publications, 2008.
[22] R.M. Rangan, S.M. Rohde, R. Peak, B. Chadha, and P.
Bliznakov, “Streamlining Product Lifecycle Processes: A Survey of
Product Lifecycle Management Implementations, Directions, and
Challenges,” Journal of Computing and Information Science in
Engineering, vol. 5, 2005, pp. 227-237.

ACoTA 2010 First International Workshop on Automated Tailoring and Configuration of Applications

 13

	I. Introduction
	II. Related work
	A. System Integration Technologies
	B. Model-driven System Configuration

	III. Research Issues
	IV. Use case
	V. Automated Derivation Of Configurations
	VI. Evaluation
	VII. discussion
	VIII. Conclusion And Further Work
	Acknowledgment
	References

