
 Statically Defined Dynamic Architecture Evolution
Robert Watson, Sutirtha Bhattacharya, Dewayne E. Perry

Empirical Software Engineering Lab (ESEL)
ECE, The University of Texas at Austin

Austin, TX 78712
rwatson@nextstatecorp.com

sutirtha.bhattacharya@intel.com
perry@mail.utexas.edu

Abstract-There are a variety of contexts where dynamic
architecture evolution is needed. The context we have been
working in is that of providing architecture models of NASA
training simulations for manned space exploration. In this
context, as in many others, we do not need unrestricted dynamic
evolution, but only a limited form of dynamic evolution where
the transitions and boundaries of that evolution are well
understood. We present our approach to this restricted form of
dynamic evolutions in the context of an abstract architecture
model and use an architecture of architectures with transition
connectors as the means of prescribing our statically defined
dynamic architecture evolution. Further, we present an
incremental mechanism for generating the needed architectures
and validate our approach with an implemented prototype.

I. INTRODUCTION

Some system designs benefit from architectures that allow
some flexibility at run time. For example, systems with
clearly defined “modes” may exhibit different architectures in
each operational mode. When these systems are modeled by a
single architecture, that architecture can accurately reflect the
implementation concerns of the end product, but not the
individual behavioral aspects.
We have been working on architectures for software
simulators applied to the simulation of manned exploration
missions. This application domain exhibits architectural
changes as elements of the physical system are assembled,
disassembled, reassembled, and even destroyed as in the case
of a discarded component that burns up on reentry into earth's
atmosphere. This is more than rearranging components to
obtain equivalent functionality. Instead, these changes result
in new and often unique architectures.
The architecture of simulators in this application domain are
strongly influenced by the architecture of the systems being
simulated. Consequently the architecture of the simulator
tends to be very dynamic. Traditionally architectures for
these systems have been composite, with all elements that
may appear in the simulation present in a single architecture.
Such a view is concrete, representing the simulator as it would
be constructed.
Our intent is to construct abstract architectures that allow
designers to work with high level views of the system. We
want to consider the individual architectures as they are
exhibited by the system. In this view of architecture, a system
has a single composite architecture that is the conjunction of a
set of exhibited architectures. An exhibited (or apparent)
architecture being the architecture the system appears to have,

as determined by it's functionality, at some moment of the
systems' operation.
This view of architecture can be obtained by constructing a
complete architecture for each exhibited architecture. In our
work this approach has lead to a proliferation of architecture
specifications having a great deal in common. An undesirable
consequence is that the architecture as a whole contains
considerable redundant specification.
In this paper we propose a simplifying construct, the arch-
transition, that permits the architecture to be specified as a set
of apparent architectures and avoids much of the redundancy
encountered when the apparent architectures must be
individually specified in full.
In section 2 we review related work on dynamic architecture.
In section 3 we discuss the need for separation of concerns.
The approach used for the modeling is described in section 4.
Section 5 discusses the proposed model while section 6
provides an example software architecture that illustrates the
abstract model.
The contributions of this paper are an abstract architectural
model and a statically defined mechanism for limited dynamic
evolution of the architecture. These contributions are
summarized in section 7.

II. RELATED WORK

Existing work with dynamic architecture tends toward
concrete architectures and runtime reconfiguration of the
software implementation. Often architectural change means a
change in configuration that provides the same or similar
functionality, such as in the case of a fault-tolerant system.
An elegant example of this type of dynamic architecture is
described by Grondin, Bouraqadi, and Vercouter [7] who
define a single model of the software system. A runtime
engine uses the model as a goal that it attempts to satisfy in
response to changes in the execution context.
Hirsch, Kramer, Magee, and Uchitel [8] apply modes as a
form dynamic configuration. A mode is a sub-architectural
region of the architecture that can be replaced with another
region in a process called a transition. Mode transitions differ
from the arch-transitions we present in that mode transitions
provide reconfiguration for the purpose of maintaining
existing functionality. That is, given a mode that provides a
service, a transition on that mode will continue to provide the
same service while utilizing different resources.

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

20

Wermelinger [9] describes a method of using chemical
abstract machines to define dynamic architectures. Like many
other dynamic ADLs, his method employs a central
configurator that controls the dynamic aspect of the
architecture. Wermelinger's configurator adjusts the
architecture in response to changes in available components,
equivalent to our effector functions. Not addressed in this
paper is a method to select or restrict specific architectural
changes and it appears that all permissible architectural
changes will be reversible.
In [10] Wermelinger, Lopes, and Fiadeiro describe a language
for architectural reconfiguration. Changes in configuration are
implemented by scripts. Scripts are invoked at runtime by a
user or some automatic trigger mechanism. Consequently
their language is not intended to provide a static description of
the dynamic architecture. Interestingly, the language only
provides a facility add or remove elements but not to move an
element within the architecture. This appears to lose
continuity of element instances during reconfiguration,
comparable to a loss of state in the implementation.
Magee and Kramer [11] describe an approach to dynamic
architecture using the Darwin ADL. Their approach embeds
constraints on dynamic configuration within the component
specifications. Any assembly of components that is consistent
with these constraints is valid. This approaches constrains the
ability of the system to reconfigure to a lesser degree than
ours, and does not contemplate enumeration of the set of
possible configurations.
Le Metayer [12] describes a graph based approach to
describing architectures. A collection of graph rewriting rules
(called the coordinator) define allowable changes that the
architecture may undergo. These changes can be applied
iteratively to define any number of architectures. They apply
graphs to individual architectures but not the architecture-of-
architectures as we describe in this paper.

III. SEPARATION OF CONCERNS

Divide and Conquer has been widely acknowledged as a
fundamental strategy in software engineering and computer
science. We see it in sorting algorithms; it appears in
multiplication of polynomials. In fact it is the seed idea that
has spearheaded progress in operating systems and
programming languages. However, the applicability of this
strategy to architectural design is unclear.
In this context it is important to discuss the Shanley principle
that was highlighted as a rule for efficient design by Arnoul de
Marneffe [3]. The idea behind the Shanley Principle is that
one part can perform multiple functions. It has been
wonderfully explained by Jackson [1] as “the architecture of
the world has been designed with the fullest possible
application of the Shanley Principle”. While efficient design is
definitely our motivation, separation of concerns is not in
contradiction of the Shanley Principle and that it effortlessly
steps from Jackson’s, World (i.e., problem space from which
we derive our requirements) to his Machine (i.e., the solution
space from which we create our system that satisfies these
requirements). Separation of concerns is important when we
build the “machine” for managing complexity of the
interrelationships in an “intransigently informal world”, but

when a solution is actually deployed, the “world” or the
deployment environment may give the implementation
different functions, which are often beyond the control of
even the creators of the solution.
We base our abstract architectural model on a not-so-novel
idea of separation of concerns. Our architectural model is
supported by the three key constructs of: architectural
elements, architectural composition, and architectural regions.
The architectural elements serve to capture the elements of the
architecture i.e., the components and the connectors that
define the component interactions. For each architectural
element we capture the service specifications, dependency
specifications and the general constraints. The general
constraints are categorized into functional and non-functional
constraints. Together with the service and dependency
specifications, the functional constraints captured as part of
general constraints identify the requirements of the “world”
that the architectural element solves i.e., the “What”, while the
non-functional constraints capture the system requirements
that need to be satisfied for delivering the “machine” – i.e.,
the “How”. The architecture composition and architectural
region constructs are intended to capture the form of the
architecture. These two constructs focus on capturing
information that is relevant for performing compositional
analysis – their purpose being quite distinct from capturing
what individual components do or need.

IV. APPROACH FOR SPECIFICATIONS

Our primary goal is to create an abstract model of software
architecture (i) to provide reasoning about component
composition and (ii) to provide a basis for constraint based
architecture evaluation. An important secondary goal is to
support the reasoning about component substitution (i.e.,
component reuse and component evolution).
Software architectures are generally thought of in one of two
ways: as prescriptions or as descriptions. There are good
reasons for both approaches and the need for each is largely
dependent on the use. The differences are as follows: an
architectural prescription defines the important constraints on
the architecture – i.e., it defines important, but not necessarily
all components and connectors, their critical properties
(though again, not necessarily all of them), and the critical
relationships and interactions among the components of that
architecture. What is prescribed is necessary; what is not
mentioned is allowed as needed in completing the remaining
design at both the architectural and the lower levels of design.
An architectural description on the other hand defines the
complete architecture; what is not described is not allowed.
The former is usually under-constrained, while the latter is
precisely constrained (though it may often be over-
constrained). The former is usually described with constraints
while the latter requires a more descriptive (and often simpler)
architectural language.
We use a prescriptive approach for this research as the
constraints provide an extremely useful tie between the system
drivers and the architectural design, and provide a form of
self-documenting rationale. Besides, given that an iterative
development model is fast becoming the norm rather than the
exception in industry, it seems that building a descriptive

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

21

architectural model would not be possible until the very last
iteration, and by then most of the key architectural and design
decisions would already have been made.

V. MODEL FOR SOFTWARE ARCHITECTURE

Our proposal for an architectural model is consistent with the
initial Perry and Wolf definition of software architecture. We
propose three abstract constructs as the basis for our analysis:
o Arch-element: Can be either a component or a connector

(while their structure for purposes of modeling and
analysis is identical, they have distinct logical purposes,
i.e., connectors represent interactions among
components). This construct represents basic elements in
the architecture.

o Arch-composition: An arch-composition represents a sub-
architectural structure. As such it represents the
substructure of an arch-element and must satisfy the
interface constraints of the elements involved. The rules
of compositional completeness govern not only the
support of the arch-element interface, but the internal
interdependencies as well.

o Arch-region: An arch-region is an arbitrary set of arch-
elements or arch-compositions and can overlap, contain
or be contained in other arch-regions. An arch-region
provides a constraint scoping mechanism. As such, it
represents a collection of arch-elements to which a set of
constraints apply.

It is obvious that system integration is an inherently complex
process and there are no silver bullets for the problem.
However there is a lot that can be done to facilitate this
difficult process. We propose to use the rationale in our
architectural model to document the assumptions about the
components, the connectors and the global architecture
structure so that the information is available to the system
integrator for making optimal decisions. Besides, the form in
our model will provide insight into the global architecture
structure that could potentially provide guidelines to
component developers. The non-functional aspects specified
in our model would also capture information that would be
useful during system composition.
For the overall organization of the architecture, we introduce
the notion of an architectural region. Essentially it represents
a collection of architectural elements and/or compositions to
which a set of constraints apply. The concept of regions
facilitates the specification of targeted rules for a sub-
architecture. These rules could be compositional rules such as
architectural styles or design patterns, as well as domain
specific constraints. They help localize constraints and make
system instantiation easier, as they can potentially help
promote a loose form of packaging of a set of components.
Regions influence the form of an architecture and will be
elaborated further in section 5.2.
In the next two sub-sections we discuss the models for the
different aspects of our architecture prescriptions.

A. The Elements: Components and Connectors
A software architecture specification is partitioned into several
arch-elements. These arch-elements are driven initially by

functional partitioning and also introduce the notion of object
orientation that helps identify the implementation classes later
during development. The elements of an architecture are the
data, processing and connecting elements that have a physical
existence and deliver some services that are either functional
or non functional in nature. In this model we have not
differentiated data, processing and connecting elements but
conflated them all into arch-elements.
There is one issue however that may require structural
differences: multiple connecting connectors. Connectors
have been usually thought of as point to point mechanisms
that provide the abstractions for communication interactions.
However, that is not their only use. They may be used as
coordinators and mediators as well. For example, one could
imagine a very complex connector that serves as a coordinator
of fault handling mechanism and instead of just one to one
connectors, there are obvious uses for many to one (multiple
clients, one server), one to many (broadcast), and many to
many (cooperating components negotiating or reaching
consensus) connectors, either with a fixed set of connections
or an open-ended set of them. This is an important research
issue that will need to be solved to complete our architecture
model. And of course, connectors can be the subjects of
architectural composition just as processing and data elements
are.
The abstract model captures architectural elements as

arch-element =
(name, {service specifications },{dependency
specifications}, {general constraints })

As mentioned previously, an arch-element is qualified by the
service specifications, the dependency specifications and the
general constraints. The service specifications essentially
capture the interface information so that other arch-elements
can integrate and leverage the capabilities provided by the
arch-element being specified. The dependency specifications
help capture the ‘needs’ of an arch-element i.e. services that a
given arch-element depends on. The general constraints
capture all the functional and non-functional constraint that
the arch-element needs to satisfy.
A service specification has a name, a set of input, output and
general constraints associated with that service. Input and
output constraints may define the information itself or
constraints on that information that is needed or provided by
the specified service. Example I/O constraints might include
things like sorted lists of faculty descriptions, etc (of course in
a semi-formal notation). The service specification construct is
shown below.

service specification =
(name,{input constraints },{output constraints },
{general service constraints })

We separate out the dependency specifications from service
specifications even though dependencies are basically the
same except they are usually not named. These dependency
specifications must be satisfied by the service specifications of
the supporting architectural elements. This separates the
formal service interface constraints from an arch-element’s
dependency interface constraints. The representation of the
dependency-specification is shown below.

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

22

dependency specification =
 ({input constraints}, {output constraints}, {general
dependency constraints })

The Input Constraints for the Service and Dependency
specifications include the Input Data, Input Event and the Pre-
Condition constraints, while the Output constraints include the
Output Data, Output Events and the Post-Condition
constraints. The Pre-Condition Constraints capture the set of
conditions (as captured by the arch-element state) that need to
be satisfied for the service to begin execution while the Post-
Condition Constraints capture the arch-element’s state that
should be satisfied upon execution of the service.
General constraints can be functional constraints or non-
functional constraints, such as performance, fault tolerance,
etc. They may also be topological constraints indicating
placement in a distributed system. Obligations entailed by
using a particular arch-element may also be represented. The
general constraints are shown below:

general constraints =
({functional constraints}, {non-functional constraints})

As part of general constraints, the functional constraints are
intended to lump together different kinds of constraints that
are associated with the delivery of end user functional
requirements. As the data managed by an arch-element is
fundamental to the kinds of services that it supports, we
capture the data associated with an arch-element using the
attribute constraints. Behavioral constraints ensure that the
arch-element specifications comprehend the various states
associated with the arch-element. It is common experience
that architectural mismatches often happen when integration is
done just by considering the API and not the implementation
logic of the associated methods. The functional constraints
construct is shown below.

functional-constraints =
({attribute constraints }, {behavioral constraints }

The non-functional constraints are captured in terms of the
Quality Attribute Constraints and the Deployment
Constraints. The Quality Attribute Constraints specifies
the constraints on the quality attributes for the architectural
element. These constraints on the quality attributes are
over and above the arch-element’s services, dependencies
and the functional constraints. It is important to capture
these constraints as part of the architectural specification
because it has often been seen that systems need to be re-
designed not because of any deficiency in supported
functionality, but because they fail to satisfy requirements
associated with certain quality attributes such as reliability,
availability and performance. Thus explicit knowledge of
these constraints would help in avoiding unacceptable
system configurations. The Deployment Constraints on the
other hand capture an architectural element’s deployment
related constraints such as installation requirements,
platform dependencies etc. The non-functional constraints
construct is shown below.

non-functional constraints =
({quality attribute constraints }, {deployment
constraints })

In the rest of this section we elaborate the details associated
with some of the additional constructs mentioned previously.

The Attribute Constraints capture the data supported by the
arch-element. An individual attribute constraint is qualified by
its name, the data elements associated with it and any
additional constraints that may be applicable. Information
about the data elements are captured in the data element
specification while general attribute constraints capture
additional constraints on the data element or the attribute. As
an example, the data entity ‘Address’ which is captured as an
attribute may be further qualified by the associated data
elements such as street name, city, zip code and country.
attribute constraints =

(name, { data element specifications }, { general
attribute constraints })

The Behavioral Constraints capture the behavioral aspects of
an architectural element and is modeled using a state chart
representation. The dynamic behavior of a component is
modeled by the following quintuple and is termed as a
behavioral unit which essentially represents a “unit of
behavior”.

Behavioral unit =
(state, trigger, guard, effects, target)

The Quality Attribute Constraints specifies the constraints on
the quality attributes for the arch-element. These constraints
on the quality attributes are over and above the system’s
capabilities, services and behavior captured in the model. It is
important to capture these constraints as a part of the
specifications because it has often been seen that systems need
to be re-designed because it fails to satisfy certain quality
attributes. Hence explicit knowledge of a component’s
constraints would help in avoiding unacceptable system
configurations.
The Quality Attribute Constraints are composed of the
Runtime Constraints and the Static Constraints. The Runtime
Constraints captures the constraints of the arch-element that
are relevant/observable during the execution of the element.
On the contrary, the Static Constraints captures the constraints
on the quality attributes of the arch-element that are not
affected by the runtime characteristics. Obviously these
constraints are optional for an arch-element as all of these
together may not make sense in different contexts.
The Runtime Constraints captures the Performance, Security,
Availability, Usability and Reliability related constraints. The
Performance Constraints are responsible for capturing the
responsiveness of the system related to transactions per unit
time, arrival rates and distribution of service request,
processing times, queue sizes and latency. The Security
Constraints captures the element’s ability to resist
unauthorized usage while continuing to provide its services to
authorized users. The Availability Constraints captures the
constraints on the availability of the architectural element. The
usability related constraints are captured in the Usability
Constraints. The Usability constraints are related to
Learnability, Efficiency, Memorability, Error Avoidance and
Error Handling. The Reliability Constraints captures the
constraints of the component related to its consistent
performance as per specifications.
The Static Constraints captures Modifiability, Portability,
Reusability, Integrability and Testability constraints of the
architectural element. The Modifiability Constraints captures
issues related to the ease of changing or extending

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

23

capabilities, ease of deleting capabilities, adapting to new
operating environments, and restructuring the internals of the
component. The support for the system’s ability to run under
different computing environment is captured in the Portability
Constraints. The Reusability Constraints help specify the
ability of the component to be used in different contexts. The
requirements related to the integration of components is
captured in the Integrability Constraints while the Testability
Constraints captures the testability related constraints. The
testability related constraints are typically tied to the arch-
element’s observability and controllability.
The Deployment Constraints captures an arch-element’s
deployment related constraints. The Deployment Constraints
are partitioned into the Core Infrastructure Constraints and
Interaction Constraints.
The Core Infrastructure Constraints for an arch-element
captures the requirements for installation of the element on its
base platform. It specifies the basic installation requirements
for the component without consideration for its interaction
with other system components. Hence, satisfaction of the Core
Infrastructure Constraints specification does not imply proper
functional operation of an arch-element. The Interaction
Constraints on the other hand, captures the information about
how an arch-element interacts with other elements in the
architecture. Satisfaction of all the Deployment Constraint
specifications, which includes both the Core Infrastructure
Constraint and the Interaction Constraint specification, implies
proper deployment of the component in the context of the
overall architecture. The division of the Deployment
Constraint into Core Infrastructure Constraints and Interaction
Constraints was motivated by the goal of separately
addressing the issues of an arch-element’s own installation
requirements versus its requirements for interaction with other
arch-elements. The information captured in these two sets of
constraints would help in reasoning over the deployment
requirements of the arch-element from these two distinct
perspectives. These constraints are optional and should be
used as needed for capturing the non-functional specifications.

The Core Infrastructure Constraint is composed of the
Computing Platform Constraint, the Dynamic Display
Constraint, Operating System Constraint, Runtime
Environment Constraint, Runtime Libraries Constraint, User
Interface Constraint, Installation Constraint and the
Performance Monitor Constraint. The Computing Platform
Constraint captures information about the base platform on
which the arch-element needs to be installed. For example,
these constraints would specify that an arch-element should be
deployed on an Intel Core 2 Duo series machine at a certain
clock frequency with 1GB of memory and 80 GB of hard disk
space. The Dynamic Display Constraint captures information
about the display requirement of the arch-element. It captures
information like the screen size, the vertical and horizontal
scan frequency and viewing angle of the display for optimal
viewing of the arch-element. These constraints are particularly
important for graphics based arch-elements where display
with a high resolution is required for proper viewing. The
Operating Systems Constraint captures the possible operating
systems in which the arch-element can be installed and
executed. For example, this constraint specifies whether a
particular software should execute on Windows 2000 as well

as Windows XP. The Runtime Environment Constraint details
the runtime environment information of the arch-elements
while the Runtime Libraries Constraint captures information
about the runtime libraries required for correct operation. The
User Interface Constraint specifies the UI features that should
be supported by the arch-element. The Installation Constraint
captures the information of the installation requirements. It
specifies information about the directory where the arch-
element is to be installed, the system files that are modified,
the files that are placed in the system directory, the registry
changes (in the case of Windows applications) made, etc. The
Performance Monitor Constraint helps specify the details
about performance monitors for the arch-element.
The Interaction Constraints are an aggregate of the Peripheral
Constraints, the Network Support Constraints, the Database
Constraints, the COTS Package Constraints, the Architectural
Element Constraints and the Data Transport Constraints. The
Peripheral Constraints details the peripheral dependencies of
the arch-element. For example, if an arch-element transmits
real-time data from a wireless computing platform, it would
require a wireless modem. The Network Support Constraints
captures information about bandwidth, throughput and other
network related requirements for proper operation while the
Database Constraints specifies the database(s) that the arch-
element needs to interact with. The Middleware Constraints
specifies the middleware requirements for the arch element
and the COTS Package Constraints captures the dependencies
on COTS packages. The Architecture Elements Constraints
identifies the other arch-elements that the arch-element being
specified interacts with. Finally, the Data Transport
Constraints captures information about the way data is
transported from the arch-element being specified to other
arch-elements.

B. Form
By the Perry Wolf definition, the form is a set of weighted
properties and relationships among components and
connectors. A form defines constraints on the components and
connectors and how they are placed relative to each other and
how they interact.
Research and experience with building software over the years
has resulted in the codification of collective experience of
skilled designers, architects and software engineers. These
proven solutions to recurring design problems are popularly
known as patterns. Different kinds of patterns have been
proposed – Architectural Patterns [5], Design Patterns [4] and
Idioms. These help define the relationship between different
components under given constraints and is relevant to the
form of a software architecture. They generally impose a rule
on the architecture that specifies how the system will handle a
given aspect of functionality [2]. Architectural Style is another
concept that is relevant to the form of an architecture. Styles
essentially abstract archelement and the formal aspects from
various architectures. They are often less constrained than
specific architectures. Different architectural styles such as the
pipe and filter, layered or blackboard promotes different
quality attributes for a software system when they are defined
at a global level. Several architectural styles can also be
merged in a software architecture as long as the constraints of
the two styles do not conflict. Examples of styles in an

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

24

architecture are provided in Perry and Wolf [2] and by Perry
in [6]. Application of architectural styles helps define the form
of an architecture.
The key constructs of our model that are relevant to the form
of an architecture are architectural composition and
architectural region. As explained previously, architecture
composition represents the subarchitectural structure of an
archelement while architectural region provides a construct
scoping mechanism and represents a collection of arch
element to which a set of constraints apply. These two
constructs are demonstrated below

arch-composition =
(name, { arch-elements }, { mappings })
arch-region = (Descriptor, { arch-elements | arch-
compositions }, { general constraints })

While archcomposition and archregion are the two
fundamental scooping concepts of our model, we also provide
a construct for capturing the generic form of an architecture.
The purpose of this construct is to capture in a granular
fashion the elements that make up form.
The form of an architecture can be influenced by both
functional as well as nonfunctional requirements. For a
given software architecture model, the form needs to be
specified at a global level and/or at a local level i.e. for an
architectural region or subarchitecture , as for complex
systems it may be impossible to specify the form at a global
level.
A given style or a pattern is represented as a Form Unit in our
model. Thus a subject observer pattern is a form unit with
multiple Form Unit Mappings, where each form unit is
represented by an Architectural Element Pair, the Rule for the
relationship between the pair and the Cardinality between the
pair. One arch-element is common across all the Form Unit
Mappings for the subject observer pattern and serves as the
Subject. The second component in the Arch Element Pair for
the form unit mappings represents the Observers.

C. Architecture-of-architectures
When many architectures are developed having a large
number of elements in common, it is convenient to merge
them into a single architecture-of-architectures. An individual
architecture within the composite is an arch-configuration and
is represented by an arch-region. Utilizing arch-
configurations reduces redundancy by allowing a single arch-
element definition to appear in multiple architectures (arch-
configurations). Additionally, corrections or improvements to
an arch-element immediately benefit all dependent
architectures.
In some architectures, specifically the NASA simulator
architectures we have been developing, significant
redundancy remains among the arch-configurations. The
redundancy is a consequence of having distinct arch-
configurations that are closely related. These arch-
configurations have a large portion of their substructure in
common with differences limited to a few areas. We address
this redundancy by describing differences among arch-
configurations rather than providing complete descriptions of
each arch-configuration. We assume that at least one arch-
configuration exists and is fully described. Additional arch-
configurations can be described by the differences between

new (derived) arch-configurations and existing (source) arch-
configurations. Of course the derivation of arch-
configurations can be carried out to any number of levels.
Moreover, derivation need not be idempotent, so performing a
single derivation repeatedly could yield many new
configurations.
We represent the derivation of one arch-configuration from
another by introducing connectors among arch-configurations.
Connectors in this role consist of two constraints, a predicate
and an effector function. The predicate restricts the source
arch-configuration and the effector defines how the derived
arch-configuration will differ from the source.
Using connectors among arch-configurations in this way, an
architecture consists of one or more explicit arch-
configurations plus some number of derived arch-
configurations obtained by applying connectors to explicit and
derived arch-configurations. A directed graph can be formed
from the resulting architecture-of-architectures, where the
vertices of the graph are arch-configurations and the edges are
connectors. Provided that the description of the differences
between pairs of arch-configurations is simpler than the arch-
configurations themselves, the architecture as a whole is
simplified.
We use arch-configurations to capture various apparent
architectures exhibited by a highly dynamic system. A single
arch-configuration captures the apparent architecture of the
system over one or more intervals of time. At points where
two such intervals are adjacent there exists a transition from
one apparent architecture to another. Since the architecture of
each interval is captured by an arch-configuration, the
transition is naturally represented by a connector, and in the
context of dynamic architectures we refer to these connectors
as arch-transitions. Arch-transitions then, capture changes in
the apparent architecture of the system, and in our work with
simulators, a change in the physical architecture of the
simulated system. Thus many arch-transitions are ultimately
determined by the physics and design of the system being
simulated.
Our approach to an architecture-of-architectures
accommodates dynamic properties by introducing new
architectures where implied by explicitly defined arch-
configurations and arch-transitions. To add a bit of formality
to this statement, assume an architecture a which has an arch-
configuration c and arch-transition connector t. Let p and e be
the predicate and effector of t. c' is an arch-configuration of
architecture a if p(c) holds and c' is the configuration obtained
by applying e to c.
This extension to architecture allows for many (possibly
infinitely many) architectures to be specified in a very
compact form. The intuitive justification for this extension is
that the arch-transitions are capturing those changes that the
physical system is capable of performing, thus limiting the
possible arch-configurations to precisely those mandated by
the physics and design of the physical system. This is
precisely the behavior desired from a simulator. Although we
have introduced the possibility of an infinitely varying
architecture, the limitations of the physical system has
constrained this set to be finite.

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

25

D. Rationale
The rationale in our architecture model is the set of
justifications for the choice of elements and formal aspects of
the architecture. A rationale ties architectural design decisions
to various system drivers – for example decisions may be tied
to functionality requirements from the user, non functional
system constraints, market requirements and business
strategies. In fact the constraints mentioned earlier in this
paper provide an extremely useful tie between system drivers
and the architectural design; they provide a form of self-
documenting rationale.
In our model we treat rationale as atomic units that may be
associated with any aspect of our specification. They are
sprinkled over every facet of our architecture. Off course
these can be later categorized into convenient groups but we
do not model rationale using either a hierarchy or
decomposition to reinforce the fact that justifications for an
architectural decision is often independent of the level of
abstraction for which a design decision is needed.

VI. APPLICATION OF ABSTRACT MODEL

We have constructed a prototype application to read and
analyze architectures. This prototype can evaluate the
derivation of selected arch-configurations and show the
architecture that is produced.
In the examples that follow it will be apparent that the
language accepted by the prototype adds some flexibility to
the description of arch-transitions, beyond what was described
in section 5. Specifically, arch-transitions are not limited to a
single predicate and effector function. Instead, both tasks are
carried out incrementally by a sequence of statements in
procedural fashion. The examples that follow illustrate how
these statements are used.
Our prototype has been applied to the specification of
architectures for simulators used in NASA's manned space
exploration. Much of these simulator architectures reflect the
architecture of the physical systems being simulated. These
physical systems undergo architectural changes as the vehicles
reassemble into new configurations during operation.
Additionally, some elements cease to exist as missions
progress, either because the element has been destroyed (such
as during reentry), because a reconfiguration causes a physical
element to no longer have a physical embodiment (such as
fullstack discussed below), or because an element can no
longer contribute usefully to the simulation and is removed for
simplicity (such as a discarded booster engine). Our example
has been simplified for space and to focus on our use of arch-
transitions.

A. Architecture-of-architectures Graph
Fig. 1 shows a graph of arch-configurations within an
architecture. This architecture describes a simulator for an
Apollo-like vehicle from launch through docking with the ISS
(International Space Station) and return to earth. Nodes in
this graph are arch-configurations and edges are arch-
transitions. Configuration onpad is an explicitly specified
arch-configuration. All other configurations are derived from
onpad by the application of arch-transitions.

Fig. 1. Example Arch-Configuration Graph

B. Explicit Arch-configurations
Fig. 2 is an excerpt from the architectural specification that
produces the graph in Fig. 1. Configuration onpad is an
explicit arch-configuration for the pre-launch configuration of
the system. We can derive most other arch-configurations that
are needed from this initial arch-configuration. All of the
components needed to perform pre-launch simulation are
referenced here, the most important of which is fullstack, the
component that represents the complete vehicle assembly at
the time of launch. Additional simulation components and
their functions are: ISS (International Space Station);
environment, the physical properties of space, planets,
moon(s), stars, etc.; simulator, those aspects of the system
which are not being simulated, including the simulation
system itself. A trivial constraint onpad uniquely identifies
this configuration to be situated on the launch pad (i.e. it is a
pre-launch configuration).

C. Arch-transitions
It can be seen from Fig. 1 that transition launch can be applied
to configuration onpad to obtain the post-launch architecture
stage1. The difference between architectures onpad and
stage1 is subtle and mostly consists of the fact that fullstack is
not rigidly attached to the earth in configuration stage1. The
specification for arch-transition launch is shown in Fig. 2.
Most arch-transitions will declare a global variable conf.
When the evaluation of an arch-transition begins, the value of
conf is an arch-configuration identical to the source
configuration. The work of the effector function is
accomplished by assigning new values to conf. Multiple
assignments may be made, with each assignment prior to the
final one providing an unfinished intermediate configuration.
The derived configuration produced by the transition is the
value of conf when evaluation of the transition is complete.

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

26

In the case of transition launch, there is one significant step in
the derivation, removing the onpad constraint.
Statement return(false) indicates a condition where the arch-
transition predicate does not hold and therefore the arch-
transition is not valid for the source configuration. Statement
return(true) indicates the predicate holds and the production
of a new derived arch-configuration is complete.
Transition LAS_abort captures the change that occurs when
the LAS (Launch Abort System) is activated. This transition
applies to several configurations and has the effect of making

the combined CM/LAS assembly a separate vehicle. The
rename function specifies a new name for a configuration in
the architecture-of-architectures graph.
Validity checks are performed to ensure that the transition is
appropriate, given the source configuration. These checks
include: the CM/LAS assembly must not be an element of the
configuration, that would indicate that an LAS abort transition
has already occurred; the LAS must exist somewhere in the
configuration, otherwise it has been jettisoned and dropped
from the simulation; the LAS must not be an independent
element in the configuration, that would indicate that the LAS
has been jettisoned.
The effector function is accomplished in four steps. First, the
CM and LAS are moved to become children of the
configuration (as if they were no longer part of any larger
assembly). This is a convenience that avoids the need to
specify exactly where in the source architecture these
elements appear. A subsequent step combines the CM and
LAS (from their now known locations) into a new composite
element cm_las. Lastly a trivial constraint is added indicating
that the derived configuration will represent an aborting
configuration.
Transition LAS_abort is interesting because, generally, the
LAS can be used to effect an abort procedure anytime prior to
being jettisoned. This includes the pre-launch configuration
and extends usually sometime into the second stage burn.
This period spans several arch-configurations. Activating the
LAS from each of these source configurations produces a
unique new architecture. Without arch-transitions, several
explicit arch-configurations are needed to capture each
possible resulting architecture. Here we use just one arch-
transition that captures only the changes that need to be
applied to each source configuration. By applying this
transition to each applicable source configuration (a process
automated by our prototype), all consequent arch-
configurations are included in the architecture.
Note that the graph in Fig. 1 shows launch_abort to be the
only arch-configuration resulting from the application of
LAS_abort. This is a simplification in the graph
representation indicating that the architecture that results from
each application of LAS_abort is logically the same even
though details may differ depending on the source
configuration. Thus, launch_abort is actually a composite of
three arch-configurations.
Our prototype analysis tool can evaluate an architecture and
produce an architecture-of-architectures graph. These graphs
can be useful to check for errors in the architecture. Problems
in the specification of transitions may introduce erroneous
configurations, transitions in unexpected locations, or missing
configurations and transitions. In our work with simulators,
the nature of the system being simulated makes this kind of
validation easy to perform. The expected form of the graph is
easily compared to expected system behavior.
The prototype can also synthesize an explicit arch-
configuration from any derived configuration. This allows
designers to obtain a full view of any arch-configuration even
though the information is not directly available from the
specification. This is a useful feature that allows designers to
easily explore and validate the ramifications of their design
decisions.

configuration onpad {
 component fullstack;
 component ISS;
 component environment;
 component simulator;
 constraint onpad;
}

composition fullstack {
 component cm;
 component sm;
 component stage1;
 component stage2;
 component las;
}

transition launch {
 global var conf;
 conf = rename(conf, stage1);
 if (!has_constraint(conf, onpad)) return(false);
 conf = remove_constraint(conf, onpad);
 return(true);
}

transition stage1_separation {
 global var conf;
 conf = rename(conf, stage2);
 if (!has_component(conf, fullstack)) return(false);
 if (has_constraint(conf, onpad)) return(false);
 conf = replace(fullstack, {..stack_stage_two, ..stage1});
 return (true);
}

transition LAS_abort {
 global var conf;
 conf = rename(conf, launch_abort);
 if (exists(conf, cm_las)) return(false);
 if (!exists(conf, las)) return(false);
 if (find_parent(conf, las) != conf)
 return (false);
 conf = move(las, conf);
 conf = move(cm, conf);
 conf = add_element(conf.cm_las, conf.cm, conf.las);
 conf = add_constraint(conf, aborting);
 return(true);
}

Fig. 2. Example Architectural Specification

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

27

VII. SUMMARY

In this paper we propose an architectural model for
documenting the specifications of architectural elements, the
form of the architecture as well as the justifications for the
different design decisions. Our intent is to provide an abstract
model sufficiently rich to support the compositional
requirements of architectures and to be able to reason about,
analyze, and evaluate architectures described in our abstract
model. To better realize this intent we have utilized an
architecture-of-architectures so that we can construct separate
architectures to independently specify the transient behaviors
of the system. We introduce connectors among these several
architectural configurations so that we can specify one
architecture as a variation, evolution, or modification of
another. In our work with simulators we find it is natural to
think of the system architectures in this way, by what changes
from one architecture to the next. We have validated our
approach using existing simulators and have constructed a
prototype architecture analysis tool to support them.

VIII. FUTURE WORK

We are currently expanding the scope of our example
architecture in space exploration to model a larger portion of
the system. From this detailed model we are exploring the
possibility of generating executable simulators. In addition,
our current work indicates that the composite configurations
displayed in Fig. 1 are a useful feature that benefits
understandability. That introduces a need to consider the
analytical implications of arch-configuration that represent
sets of unique configurations united by arbitrary semantic
(user) considerations. We are also evaluating the need for
additional architectural constructs. In particular, a construct to
act as a modifier of architectural transitions much like
transitions are modifiers of arch-configurations.

ACKNOWLEDGEMENT

The research described here was funded in part by NASA
grant NNX08AC48G under the direction of Toby Martin, and

 NSF CISE grants SRS Grant CCF-0820251 and SOD IIS-
0438967.

REFERENCES

[1] Jackson, M, “The World and the Machine”, Proceedings of the
17th International Conference of Software Engineering, Seattle,
WA, 1995

[2] Perry, D. E., Wolf, A. L., “Foundations for the Study of Software
Architectures”, ACM Software Engineering Notes, 17, 4,
October 1992, 40-52

[3] de Marneffe, P. A., “Holon programming: A Survey”, Universite
de Liege, Service Informatique, 1973

[4] Gamma E., Helm R., Johnson R., Vlissides J., “Design Patterns
Elements of Reusable Object-Oriented Software”, Addison-
Wesley, 2002

[5] Buschmann F., Meunier R., Rohnert H., Sommerlad P., Stal M.,
“Pattern Oriented Software Architecture”, Wiley Series in
Software Design patterns, 2001

[6] Perry, D. E., “A Product Line Architecture for a Network
Product”, ARES III: Software Architectures for Product
Families 2000, Los Palmos, Gran Canaria, Spain, March 2000,
Springer-Verlag, LNCS 1951, p39-52

[7] G. Grondin, N. Bouraqadi, and L. Vercouter, “Madcar: an
abstract model for dynamic and automatic (re-)assembling of
component-based applications,” in 9th Int. SIGSOFT
Symposium on Component-Based Software Engineering
(CBSE2006), No 4063, LNCS. Springer, 2006, pp. 360–367.

[8] D. Hirsch, J. Kramer, J. Magee, and S. Uchitel, “Modes for
software architectures,” in of Lecture Notes in Computer
Science. Springer, 2006, pp. 113–126.

[9] M. Wermelinger, “A simple description language for dynamic
architectures,” in ISAW ’98: Proceedings of the third
international workshop on Software architecture. New York,
NY, USA: ACM, 1998, pp. 159–162.

[10] M. Wermelinger, A. Lopes, and J. L. Fiadeiro, “A graph based
architectural (re)configuration language,” SIGSOFT Softw.
Eng. Notes, vol. 26, no. 5, pp. 21–32, 2001.

[11] J. Magee and J. Kramer, “Dynamic structure in software
architectures,” SIGSOFT Softw. Eng. Notes, vol. 21, no. 6, pp.
3–14, 1996.

[12] D. Le Metayer, “Software architecture styles as graph
grammars,” SIGSOFT Softw. Eng. Notes, vol. 21, no. 6, pp.
15–23, 1996.

ACoTA First International Workshop on Automated Tailoring and Configuration of Applications

28

