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Abstract. The problem of linking entities in heterogeneous and decentralized
data repositories is the driving force behind the data and knowledge integration
effort. In this paper, we describe our probabilistic-logical alignment system CODI
(Combinatorial Optimization for Data Integration). The system provides a declar-
ative framework for the alignment of individuals, concepts, and properties of two
heterogeneous ontologies. CODI leverages both logical schema information and
lexical similarity measures with a well-defined semantics for A-Box and T-Box
matching. The alignments are computed by solving corresponding combinatorial
optimization problems.

1 Presentation of the system

1.1 State, purpose, general statement

CODI (CombinatorialOptimization forDataIntegration) leverages terminological struc-
ture for ontology matching. The current implementation produces mappings between
concepts, properties, and individuals including mappingsbetween object and data type
properties. The system combines lexical similarity measures with schema information
to reduce or completely avoidincoherenceandinconsistencyduring the alignment pro-
cess. The system is based on the syntax and semantics of Markov logic [2] and trans-
forms the alignment problem to a maximum-a-posteriori optimization problem.

1.2 Specific techniques used

Markov logic combines first-order logic and undirected probabilistic graphical mod-
els [11]. A Markov logic network (MLN) is a set of first-order formulae with weights.
Intuitively, the more evidence there is that a formula is true the higher the weight of
this formula. It has been proposed as a possible approach to several problems occur-
ring in the context of the semantic web [2]. We have shown thatMarkov logic provides
a suitable framework for ontology matching as it captures both hard logical axioms
and soft uncertain statements about potential correspondences between entities. The
probabilistic-logical framework we propose for ontology matching essentially adapts
the syntax and semantics of Markov logic. However, we alwaystypepredicates and
we require a strict distinction betweenhard andsoft formulae as well ashiddenand
observablepredicates. Given a set of constants (the classes and objectproperties of



the ontologies) and formulae (the axioms holding between the objects and classes), a
Markov logic network defines a probability distribution over possible alignments. We
refer the reader to [9, 8] for an in-depth discussion of the approach and some compu-
tational challenges. For generating the Marcov logic networks we used the approach
described in [12].

T-Box Matching Formalization Given two ontologiesO1 andO2 and an initial a-
priori similarity measureσ we apply the following formalization. First, we introduce
observable predicatesO to model the structure ofO1 andO2 with respect to both con-
cepts and properties. For the sake of simplicity we use uppercase lettersD,E,R to
refer to individual concepts and properties in the ontologies and lowercase lettersd, e, r
to refer to the corresponding constants inC. In particular, we add ground atoms of
observable predicates toFh for i ∈ {1, 2} according to the following rules1:

Oi |= D ⊑ E 7→ subi(d, e)

Oi |= D ⊑ ¬E 7→ disi(d, e)

Oi |= ∃R.⊤ ⊑ D 7→ sub
d
i (r, d)

Oi |= ∃R.⊤ ⊒ D 7→ sup
d
i (r, d)

Oi |= ∃R.⊤ ⊑ ¬D 7→ dis
d
i (r, d)

The ground atoms of observable predicates are added to the set of hard constraintsFh,
forcing them to hold in computed alignments. The hidden predicatesmc andmp, on the
other hand, model the sought-after concept and property correspondences, respectively.
Given the state of the observable predicates, we are interested in determining the state
of the hidden predicates that maximize the a-posteriori probability of the corresponding
possible world. The ground atoms of these hidden predicatesare assigned the weights
specified by the a-priori similarityσ. The higher this value for a correspondence the
more likely the correspondence is correcta-priori. Hence, the following ground formu-
lae are added toFs:

(mc(c, d), σ(C,D)) if C and D are concepts

(mp(p, r), σ(P,R)) if P and R are properties

Notice that the distinction betweenmc andmp is required since we use typed predicates
and distinguish between theconceptandpropertytype.

Cardinality Constraints A method often applied in real-world scenarios is the se-
lection of a functional one-to-one alignment [1]. Within the ML framework, we can
include a set of hard cardinality constraints, restrictingthe alignment to be functional
and one-to-one. In the following we writex, y, z to refer to variables ranging over the
appropriately typed constants and omit the universal quantifiers.

mc(x, y) ∧mc(x, z)⇒ y = z

mc(x, y) ∧mc(z, y)⇒ x = z

Analogously, the same formulae can be included with hidden predicatesmp, restricting
the property alignment to be one-to-one and functional.

1 Due to space considerations the list is incomplete. For instance, predicates modeling range
restrictions are not included.



Coherence Constraints Incoherence occurs when axioms in ontologies lead to log-
ical contradictions. Clearly, it is desirable to avoid incoherence during the alignment
process. All existing approaches to alignment repair remove correspondences after the
computation of the alignment. Within the ML framework we canincorporate incoher-
ence reducing constraintsduring the alignment process for the first time. This is accom-
plished by adding formulae of the following type toFh.

dis1(x, x
′) ∧ sub2(x, x

′)⇒ ¬(mc(x, y) ∧mc(x
′

, y
′))

dis
d
1(x, x

′) ∧ sub
d
2(y, y

′)⇒ ¬(mp(x, y) ∧mc(x
′

, y
′))

Stability Constraints Several approaches to schema and ontology matching propa-
gate alignment evidence derived from structural relationships between concepts and
properties. These methods leverage the fact that existing evidence for the equivalence
of conceptsC andD also makes it more likely that, for example, child concepts of C
and child concepts ofD are equivalent. One such approach to evidence propagation is
similarity flooding[7]. As a reciprocal idea, the general notion of stability was intro-
duced, expressing that an alignment should not introduce new structural knowledge [5].
Thesoft formula below, for instance, decreases the probability of alignments that map
conceptsX to Y andX ′ to Y ′ if X ′ subsumesX butY ′ doesnot subsumeY .

(sub1(x, x
′) ∧ ¬sub2(y, y

′)⇒ mc(x, y) ∧mc(x
′

, y
′), w1)

(subd1(x, x
′) ∧ ¬subd2(y, y

′)⇒ mp(x, y) ∧mc(x
′

, y
′), w2)

Here,w1 andw2 arenegativereal-valued weights, rendering alignments that satisfy the
formulae possible but less likely.

The presented list of cardinality, coherence, and stability constraints could be ex-
tended by additional soft and hard formulae. Other constraints could, for example,
model known correct correspondences or generalize the one-to-one alignment to m-
to-n alignments.

A-Box Matching The current instance matching configuration of CODI leverages ter-
minological structure and combines it with lexical similarity measures. The approach
is presented in more detail in [10]. It uses one T-BoxT but two different A-Boxes
A1 ∈ O1 andA2 ∈ O2. In cases with two different T-Boxes the T-Box matching ap-
proach is applied as a preprocessing step, merge the two aligned T-Boxes and then use
our instance matching algorithm. CODI offers complete conflict elimination meaning
that the resulting alignment is always coherent for OWL DL ontologies. This compo-
nent is based on the work of Meilicke et al. [6]. CODI enforcesthe instance alignment
to be consistent. To this end, we need to introduce observable predicatesO to model
conflicts, that is, a positive assertion of one instance in one ontology and a negative
assertion of the same instance in the other ontology. This isdone for both property and
concept assertions.

Analogous to the concept and property alignment before, we introduce the hidden
predicatemi representing instance correspondences. LetC be a concept andP be a
property of T-BoxT . Further, letA ∈ A1 andB ∈ A2 be individuals in the respective
A-Boxes. Then, using a reasoner, ground atoms are added to the set ofhard constraints



Fh according to the following rules:

T ∪ A1 |= C(A) ∧ T ∪ A2 |= ¬C(B) 7→ ¬mi(a, b)

T ∪ A1 |= ¬C(A) ∧ T ∪ A2 |= C(B) 7→ ¬mi(a, b)

T ∪ A1 |= P (A,A
′) ∧ T ∪ A2 |= ¬P (B,B

′) 7→ ¬mi(a, b) ∨ ¬mi(a
′

, b
′)

T ∪ A1 |= ¬P (A,A
′) ∧ T ∪ A2 |= P (B,B

′) 7→ ¬mi(a, b) ∨ ¬mi(a
′

, b
′)

In addition to these formulae we included cardinality constraints analogous to those
used in the concept and property matching of Section 1.2. In the instance matching for-
mulation, the a-priori similarityσc andσp measures thenormalized overlapof concept
and property assertions, respectively. For more details onthese measures, we refer the
reader to [10]. The following formulae are added to the set ofsoft formulaeFs:

(mi(a, b), σc(A,B)) if A and B are instances

(mi(a, b) ∧mi(c, d), σp(A,B,C,D)) if A, B, C, and D are instances

1.3 Adaptations made for the evaluation

The strength of the system is its modularity allowing the incorporation of different simi-
larity measures. The system can be optimized in two major ways: (a) Inclusion of novel
formulae enforcing the logical consistency and (b) the inclusion of additional similarity
measures. There is room for improvement since we used a very simple lexical similar-
ity measure based on the Levenshtein distance [4] for our experiments. It is possible to
apply different aggregation functions like average or maximum and to include specific
properties of an ontology like URIs, labels, and comments.

In all OAEI test cases Algorithm 1 was used for computing the a-priori similarity
σ(entity1, entity2). In the case of concept and property alignments, the a-priori simi-
larity is computed by taking the maximal similarity betweenthe URIs, labels andOBO
to OWLconstructs. In case of instance matching the algorithm goesthrough all data
properties and takes the average of the similarity scores.

1.4 Link to the System and Parameters File

CODI can be downloaded fromhttp://codi-matcher.googlecode.com.

1.5 Link to the Set of Provided Alignments

The alignments for the tracksBenchmarkand Conferencehas been made with the
SEALS platform. ForAnatomy, IIMB, andRestaurantthe alignments can be found
athttp://code.google.com/p/codi-matcher/downloads/list

2 Results

In the following section, we present the results of the CODI system for the individual
OAEI tracks. Due to space considerations, we do not explain the different benchmarks
in more detail.



Algorithm 1 σ(entity1, entity2)

if entity1 andentity2 are either concepts or propertiesthen
value← 0
for all Valuess1 of URI, labels, and OBOtoOWL constructs inentity1 do

for all Valuess2 of URI, labels, and OBOtoOWL constructs inentity1 do
value←Max(value, sim(s1, s2))

end for
end for
return value

end if
if entity1 andentity2 are individualsthen

Map〈URI, double〉 similarities← null

for all datapropertiesdp1 of entity1 do
uri1 ← URI of dp1
for all datapropertiesdp2 of entity2 do

if uri1 equals URI ofdp2 then
value← sim(valueofdp1, valueofdp2)
if uri1 is entailed insimilarities then

update entry〈uri1, old value〉 to 〈uri1, Minimum (old value+ value, 1)〉 in
similarities

else
add new entry pair〈uri1, value〉 in similarities

end if
end if

end for
end for
return (sum of all values insimilarities)/(length ofsimilarities)

end if



Benchmark Track While our system’s strength is its modularity and adaptability to
different ontologies we used theexact same settingfor all ontology matching tracks.
Hence, the performance on thebenchmarktrack is rather poor. This is primarily due
to the high threshold of 0.85 for the Levenshtein similaritymeasure that we applied in
each of the ontology matching tracks. The results are shown in Table 1.

Table 1.Benchmark results

1xx 2xx 3xx Average
Precision 1 0.70 0.92 0.72
Recall 0.99 0.42 0.43 0.44
F1 score 1 0.49 0.56 0.51

Conference Track On the real-world conference dataset CODI achieves very good
results since it employs logical reasoning to avoid incoherences. The execution time is
between 2 and 4 minutes per test case2. Table 2 summarizes the overall results.

Table 2.Conference results

Average
Precision 0.87
Recall 0.51
F1 score 0.64

Anatomy Track The results on the anatomy track are also convincing. The results
shown in Table 3 are en par with the 2009 results of state-of-the-art matching applica-
tions. TheF1 scores are between 0.79 and 0.73 for all subtasks, even for the two tasks
Focus on PrecisionandFocus on Recall. Thus, our algorithm achieves satisfiable pre-
cision and recall values without sacrifices on theF1 score. For the last task, where a
partial reference alignment was given, we could gain almost5 % on theF1 score. This
is because incorporating a partial reference alignment in our system is straight-forward.
The reference alignment becomes a direct part of the optimization problem, enforcing
good correspondences while ruling out contradicting ones.However, since our algo-
rithm uses logical reasoning and has to solve an NP-hard optimization problem, the
execution times are quite high3.

Table 3.Anatomy results

Focus on Focus on Focus on Partial
F1 score Precision Recall Alignment

Precision 0.954 0.964 0.782 0.969
Recall 0.680 0.663 0.695 0.742
F1 score 0.794 0.784 0.736 0.840
Execution Time (min) 88 60 157 95

2 All experiments are executed on a Desktop PC with 2 GB RAM and aIntel Core2 Duo 2.4
GHz processor.

3 This forces us to submit the solutions without the seals platform because of a timeout after 45
minutes.



IIMB Track The instance matching benchmark IIMB consists of 80 transformations
divided in four transformation categories containing 20 transformations each. We ap-
plied the full A-Box matching functionality described above with a threshold on the
a-priori similarity of 0.1. The average execution time on the IIMB small (large) dataset
is 2.6 (35.1) minutes. Table 4 summarizes the different results of the CODI system.
The values without brackets are the results for the small IIMB dataset and the values in
brackets for the large one.

Table 4. IIMB results

Transformations 0-20 21-40 41-60 61-804 overall
Precision 0.99 (0.98) 0.95 (0.94) 0.96 (0.99) 0.86 (0.86)0.94 (0.95)
Recall 0.93 (0.87) 0.83 (0.79) 0.97 (0.99) 0.54 (0.53)0.83 (0.80)
F1 score 0.96 (0.91) 0.88 (0.85) 0.97 (0.99) 0.65 (0.63)0.87 (0.85)

PR Track For this track consisting of small files about persons and restaurants, we
used a simple one to one alignment only based on lexical similarity scores since no
significant structural information is available. Thus, theruntime was with less than 5
seconds per test case very short. The results of the CODI system are depicted in Table 5.

Table 5.PR results

Person1 Person2 Restaurant
Precision 0.87 0.83 0.71
Recall 0.96 0.22 0.72
F1-score 0.91 0.36 0.72

3 General comments

3.1 Discussions on the way to improve the proposed system

CODI is a very young system and does not yet provide a user interface. Hence, im-
provements in usability by designing a suitable user interface will be one of the next
steps. In case of the quality of the alignments, more sophisticated lexical similarity mea-
sures will be tested and integrated. We are also working on novel algorithms solving the
optimization problems more efficiently.

3.2 Comments on the OAEI 2010 procedure

The SEALS evaluation campaign is very beneficial since it is the first time that the
matchers must have a standardized interface which could possibly be used by everyone.

3.3 Comments on the OAEI 2010 measures

We encorage the organizers to use semantic precision and recall measures as described
in [3].



4 Conclusion

CODI performs concept, property, and instance alignments.It combines logical and
structural information with a-priori similarity measuresin a well-defined way by using
the syntax and semantics of Markov logic. The system therefore not only aligns the en-
tities with the highest lexical similarity but also enforces the coherence and consistency
of the resulting alignment.

The overall results of the young system are very promising. Especially when con-
sidering the fact that there are many optimization possibilities with respect to the lexical
similarity measures that have not yet been investigated. The strength of the CODI sys-
tem is the combination of lexical and structural information and the declarative nature
that allows easy experimentation. We will continue the development of the CODI sys-
tem and hope that our approach inspires other researchers toleverage terminological
structure for ontology matching.
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