
AWRE’2002 157

A Logic of Actions to Specify and Verify Process Requirements

Carlo Simon

Institute for Management, University Koblenz-Landau
simon@uni-koblenz.de

Abstract
In this paper, Timestamp Petri nets – a special kind of timed Petri nets - and a Logic of
Actions are used to specify process requirements. Petri net implementations of such
specifications are used for a better visualization and to prove whether a given realization is
sound and complete with respect to a given specification. The theory is applied to the
specification of workflow processes. An example shows how to prove that a given workflow
fulfills time constraints required by the management of a company.

Keywords:
(Timestamp) Petri nets, Logic of Actions, Workflow Management

Introduction
A Software Requirements Specification (SRS), as defined in (Davis, 1993), “is a document
containing a complete description of what software will do without describing how it will do
it”. An SRS is the result of an early phase within a software project and builds the base for the
further development. It is a collection of user needs and technical restrictions that must be
considered while the software is being built.

Because of its central importance, many academic and practical work concentrates on the
following problems:

• Which formal techniques and languages exist to define requirements such that they
can be transformed into a formal specification and later on into an implementation?

• If a given formal requirements definition cannot be transformed into an implemen-
tation automatically, is it at least possible to prove whether a realized implementation
fulfills this requirement definition?

In the following, we concentrate on special requirement definitions - specifications of
processes. We use a Logic of Actions proposed in (Simon, 2001a) to formally define process
specifications and realizations. Petri net representations of these definitions are used to
illustrate the represented processes and for proving given realizations against given
specifications within this theory. They will be explained throughout this paper. An example
from Workflow Management Systems will be used to illustrate the application of this logic
within a software development process.

Timestamp Petri Nets
Timestamp Petri Nets (Hanisch, Lautenbach, Simon, and Thieme, 1998) are a special kind of
Petri net (Peterson, 1981, Reisig, 1985) allowing the representation time information. Each
token of a timestamp net carries a timestamp designating the moment the token was put on its

AWRE’2002 158

place. Intervals at the incoming edges of transitions specify their permeability with respect to
the marking of the adjacent place. If all pre-places of a transition are marked and all its
incoming edges are permeable simultaneously, then this transition is able to fire.

Figure 1 shows a timestamp net consisting of five places p1, …, p5 and three transitions a, b,
and c. Place p1 is marked with a token with timestamp three, the token on p2 has a timestamp
seven and the token on p3 has a timestamp of one. Therefore, the token on p2 is the youngest
and that on p3 is the eldest shown in the net. All other places of the net are unmarked.

p1

p2

p3

p4

p5

a

b

c

[;]5 7

[;]3 4

[;]8 11

[;]0 1

[;]1 2

< >3

< >7

< >1

Figure 1: An example of a Timestamp Petri Net

The edge from place p1 to transition a is permeable from eight to ten, i.e. in interval [5+3;
7+3]. Within this interval, transition a is able to fire any moment. If doing so, the resulting
token on place p4 gets a timestamp with value eight to ten dependent on the moment
transition a actually fires.

The edge from p2 to b is permeable from ten to eleven and that from p3 to b from nine to
twelve. Since both edges are only permeable simultaneously from ten to eleven, transition b is
only able to fire within this interval. Afterwards, the resulting token on p5 will carry a token
with a timestamp between ten and eleven.

p1

p2

p3

p4

p5

a

b

c

< >9

< >11

[;]5 7

[;]3 4

[;]8 11

[;]0 1

[;]1 2

Figure 2: Transition c is timewise stuck

Figure 2 shows the follower marking from the situation described above. If transition a fires
at moment nine and transition b fires at moment eleven. Then the edge from place p4 to
transition c is permeable from nine to ten while the edge from p5 to c is permeable from
twelve to thirteen. As a consequence, transition c is not able to fire, since its incoming edges
are not permeable simultaneously at any moment although all pre-places of c are sufficiently
marked. In this situation, we call transition c timewise stuck. We use such situations to specify
undesired behavior.

Timewise stuckness always occurs when one incoming edge of a transition looses its
permeability before another become permeable at all. Hanisch, Lautenbach, Simon, and
Thieme (1998) have presented an analyzing technique that can be used to determine whether
certain transitions in a timestamp net might get timewise stuck. The same analyzing technique

AWRE’2002 159

can be used to determine time parameters within such a net such that certain transitions will
never get timewise stuck.

Until now, applications of timestamp nets have been rather technical (Simon, 2001a, Simon,
2001b), but as we will demonstrate later in this paper, non-technical applications can be found
as well.

A (Timed) Logic of Actions
In Simon, (2001a), a Logic of Actions (LA) is proposed. Process is the central term in LA.
Processes consist of actions which might occur or are forbidden and which are ordered in
sequence or might occur coincidentally. Timestamps assigned to actions are used to determine
their moment of occurrence. The extension of LA by time is called Timestamp Logic of
Actions (TiLA) .

Modules, the formulas of LA and TiLA, are used to specify process sets. Before (<), after (>),
coincident (=), forbid (¬), and (∧), xor (+), and iteration operators are used to combine sub
modules to complex ones.

[[3;4] a < [[6;7] b + [5;8] c]]

is an example for a TiLA module. It specifies processes where action a occurs 3 to 4 time
units after process start. Afterwards, either action b occurs after 6 to 7 time units or c occurs
after 5 to 8 units of time and the processes end. A Petri net implementation of this module is
shown in figure 3.

a

b

c

[;]0 ∞
s g[;]3 4

[;]6 7

[;]5 8

Figure 3: Petri net implementation of [[3;4] a < [[6;7] b + [5;8] c]]

In a Petri net implementation of a module, the same processes can be realized as are specified
by the module. A process in such a net is a firing sequence reproducing the empty initial
marking and in which the start transition s and the goal transition g, used to specify the
beginning and the end of each process, occur exactly once. Actions are represented by equally
named transitions. The symbol ∞ designates that the respective edge never looses its
permeability after it has been marked as long as the token stays on the adjacent place.

Petri nets are not only a means to visualize TiLA modules but rather are used to simplify
proving within this theory. The aim of verification within TiLA is to prove whether a given
realization of processes fulfills a given process specification. A realization can be proven to
be sound and complete with respect to a specification.

Definition: Fulfill
Let M1, M2 be TiLA modules over a set of actions A.

M1 fulfills M2 (M1 →→ M2) iff P[CM2(M1)] ⊆ P[CM1(M2)]

Within this definition, the operator C is used to mutually complete the modules in order to
make them comparable. In all processes of completed modules each action of this module

AWRE’2002 160

either occurs or is forbidden. M1 fulfills M2, if the set of completed processes realized by M1
is a subset of those specified by M2.

A realization is called sound if it only realizes specified processes. In terms of our logic, it
fulfills its specification. If all specified processes are realized then the realization is complete.

Definition: Sound, Complete
Let S be a specification given as a TiLA module over a set of actions A, and R a realization
also given as a TiLA module over the same set of actions A.:

• R is sound with respect to S iff R →→ S

• R is complete with respect to S iff S →→ R

This definition of sound and complete is based on counting the processes specified by
modules. However, in the case of TiLA modules the number of specified processes is
infinitely large. Therefore, we will consider an alternative approach to proving in the
following section.

Proving within the Logic of Actions
Instead of comparing the process sets of a specification S and a realization R, we do
verification by conjoining S and R and determining whether this rules out processes specified
by R. In this case, R defines processes not specified by S and therefore R does not fulfill S.

Theorem 1
Let M1, M2 be TiLA modules over a set of actions A.

M1 →→ M2 ⇔ P[M1 ∧ M2] = P[CM2(M1)]

We use theorem 2 instead, if undesirable behavior is specified instead of desired behavior, i.e.
if ¬S and not S is given.

Theorem 2
Let M1, M2 be TiLA modules over a set of actions A.

M1 →→ M2 ⇔ |P[M1 ∧ ¬M2]| = 0

Both theorems have been proven in (Simon, 2001a). We use theorem 1 for direct proving and
theorem 2 for indirect proving.

For given Petri net implementations of modules M1 and M2, we can realize M1 ∧ M2 by
joining (×) the completed implementations N (CM2(M1)) and N (CM1(M2)). Joining identifies
equally named transitions of both participating nets (including s and g) and fuses them. All
places of the participating nets also occur in the result of the join except those which cause
redundant structures. Additionally, places are added to prevent transitions representing a
certain action and others representing its prohibition from occurring both in processes.

AWRE’2002 161

The effect of joining Petri net implementations of modules is that the resulting net realizes
only such processes specified by each participating module or its Petri net implementation,
respectively. The completion step is responsible for making the participated processes
comparable. This observation leads to the following theorem that is central in (Simon, 2001a).

Theorem 3
Let M1, M2 be TiLA modules over a set of actions A, N (CM2(M1)) and N (CM1(M2)) Petri net
implementations of their completions.

N (CM2(M1)) × N (CM1(M2)) implements M1 ∧ M2

As an example, let us consider a specification

S = [[3;4] a < [[6;7] b + [5;8] c]]

and a realization

R = [[[4;4] a < [6;7] c] ∧ [0; ∞]¬b].

Specification S describes processes where a occurs three to four units of time after process
start. Afterwards, either b occurs six to seven units of time later, or c occurs five to eight units
of time later. Realization R describes processes where a occurs exactly after four units of time
after process start. Six to seven units of time later, c occurs. In addition, b is forbidden.

Figure 3 shows an implementation of S and figure 4 shows an implementation of R.

a

¬b

c
[;]6 7[;]4 4 [;]0 ∞

s g

[;]0 ∞ [;]0 ∞

Figure 4: Implementation of R

For proving whether R fulfills S, we first have to mutually complete their implementations.
Figure 5 shows this step with respect to the implementation of R. Although the result of this
completion looks quite complex this is only a problem of visualization. The operation itself is
linear dependent on the number of transitions in the net.

a

b

c
[;]6 7[;]4 4 [;]0 ∞s g

[;]0 ∞

¬a

¬c

¬b

[;]0 ∞

[;]0 ∞

[;]0 ∞
[;]0 ∞

[;]0 ∞
[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

Figure 5: Implementation of C S(R)

AWRE’2002 162

As we mentioned above, completion is responsible for making the process sets of modules
comparable. Therefore, this completion step, as demonstrated above, is also important on the
Petri net level (cf. Simon, 2002). However, in Petri net implementations we can make an
observation that simplifies further calculations: Processes of such a Petri net implementation
are firing sequences reproducing the empty initial marking. Thus, only such firing sequences
can be realized which are also realizable in the same Petri net without time information. In
such a Petri net without time information, such firing sequences reproducing the empty initial
marking must be covered by T-invariants. Therefore, each transition that is not included in
any T-invariant cannot occur in any realizable process of such a Petri net implementation. In
other words: the corresponding action does not occur or is forbidden in any process of the
implemented completed module.

If we consider the Petri net in figure 5 without time information, we only find one T-invariant
covering transitions s, a, ¬b, c, and g. No one of the transitions added throughout the
completion step is participated in any process. Therefore, we can immediately role back our
completion step and can conclude that in our realization already each specified process must
have been complete.

Completing the Petri net implementation of the specification S and reducing this result with
the aid of the T-invariant method described above results in the implementation shown in
figure 6.

a

b

c[;]5 8

[;]3 4
[;]6 7

[;]0 ∞s g

¬b

¬c

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

Figure 6: Reduced implementation of C R(S)

Figure 7 shows the result of joining these intermediary results.

AWRE’2002 163

a

b

c
[;]5 8

[;]3 4
[;]6 7

[;]0 ∞s g

¬b

¬c

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞[;]6 7
[;]4 4

Figure 7: Join of completed specification and realization

Comparable to our reductions of the completed modules, we can also simplify this result
using the T-invariant method. This time, we can rule out transitions ¬a, b, and ¬c from
occurring in any process. This leads to the Petri net implementation of S ∧ R as shown in
figure 8.

a

¬b

c
[;]6 7[;]4 4 [;]0 ∞

s g

[;]0 ∞ [;]0 ∞

[;]5 8[;]3 4

Figure 8: Reduction of the join result with the aid of T-invariants

In all firing sequences beginning with start transition s, both pre-places of transition a get
marked at the same moment. Three to four time units later the first incoming edge of a is
permeable. The second one is permeable exactly after four time units. Since transition a can
only fire if all its incoming edges are permeable simultaneously, the permeability of both
edges results from the intersection of interval [3;4] and [4;4]. As a result, we get the net
shown in figure 9.

a

¬b

c
[;]6 7[;]4 4 [;]0 ∞

s g

[;]0 ∞ [;]0 ∞

[;]5 8

Figure 9: First reduction based on time considerations

AWRE’2002 164

In the same way we can proceed with the incoming edges of transition c. The result is the
Petri net implementation of our realization R as shown in figure 4. With the aid of theorems 1
and 3 we conclude that the realization fulfills the specification.

In the following sections, we show an application of this theory to the field of Workflow
Management Systems.

Workflow Management Systems
The development of Workflow Management Systems (WfMC, 1996) arose with Electronic
Document Management Systems. Offices appeared to be drowning in paper. However, merely
changing a paper representation of a business issue into an electronic representation was no
solution (Koulopulos, Frappaolo, 1995). The main benefit of Electronic Document
Management Systems arises from integrating them into a Workflow Management System
identifying the documents needed for conducting a certain task and retrieving them from
document archive.

The expression workflow is used to describe human work and the basic terms on this area are
defined by the Workflow Management Coalition (WfMC). A workflow is "the automation of a
business process, in whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of procedural rules". A
Workflow Management System "defines, creates and manages the execution of workflows
through the use of software, running on one or more workflow engines, which is able to
interpret the process definition, interact with workflow participants and, where required,
invoke the use of IT tools and applications" (WfMC, 1996).

These fundamental definitions by the WfMC highlight the most important parts of workflow
systems from the point of view of automation:

• Workflow participants who perform the work. The term workflow participant "is
normally applied to a human resource but it could conceptually include machine based
resources such as an intelligent agent" (WfMC, 1996).

An organizational role specifies a group of employees "exhibiting a specific set of
attributes, qualifications and/or skills" (WfMC, 1996). Instead of "workflow
participant" the term "role player" is used. This highlights the fact that when a
workflow is planned one does not think of individuals, but of tasks and of positions in
an organizational structure which are implemented to fulfill this task. The assignment
of a certain task to a specific individual is done while a process instance is executed.

• Activities are definitions of the elementary pieces of work of which a workflow is
composed. The structure of a workflow specifies sequences, alternatives, and parallel
occurrences of activities.

An activity can be performed manually (by humans) or automatically (by the
Workflow Management System or by elementary tools for business automation).

A process instance is a workflow in execution, while an activity instance is an activity
in execution.

The diagram in figure 10 illustrates the relationships between these elementary terms
according to the WfMC (WfMC, 1996).

AWRE’2002 165

Process Definition
(a represenation of what
is intended to happen)

Business Process
(i.e. what is intended to happen)

Workflow Management System
(controls automated aspects

of the business process)

Activities

Process Instances
(a representation of what

is actually happening)

Sub-
Processes

Manual Activities
(which are not

 managed as part of
 the Workflow System)

Automated
Activities

Activity Instances

Work Items
(tasks allocated to a

workflow participant)

Invoked
Applications

(computer tools/
applications used

to support an
activity)

is defined in a is managed by a

composed of used to create
& manage

via

include one
or more

which may be

or

during execution
are represented by which

include

and/or

Figure 10: Relationships between basic workflow terminologies

Obviously, processes are central in the definition of Workflow Management Systems. They
are detailed in nature because they cover both, the usual business process as well as
exceptions from this process in the case of faults. However, a first specification of such a
business process might come along without such details. In the following section we consider
the question how to prove whether a workflow definition fulfills such a previously made
specification.

Applying TiLA to Workflow Management System
In the following, we use TiLA to answer the question: Is every process of a complex
realization conforming a given specification?

To demonstrate this, we consider an exemplary workflow described in (Aalst, Hee, 2002).
They use Petri nets to specify workflow models (Aalst, 1998). As a use case, they consider an
insurance company. Figure 11 shows the process “handle complaint”. Numbers in transitions
are used to indicate the average processing time per task. We leave out assessment cycles,
because in the following we want to concentrate on a typical process.

AWRE’2002 166

contact client

contact department

c1

start

record
collect

send letter

pay

file

assess

end

c2

c3

c4

c5

c6

c7

c8

10

15

20

25

10

Figure 11: Process “handle complaint”

We want to introduce the following abbreviations: r ≅ record, cc ≅ contact client, cd ≅ contact
department, c ≅ collect, a ≅ assess, p ≅ pay, sl ≅ send letter, and f ≅ file. The following
module describes the workflow shown in figure 11 where the time information is interpreted
as the moment the respective task ends:

[[0] r < [[0] cc ∧ [0] cd] < [0] c < [0] a < [[0] p + [0] sl] < [0] f]

We abbreviate intervals specifying a single moment like [15;15] by [15]. Figure 12 shows a
Petri net implementation of this module.

cc

cd

s r c

sl

p

fa g

[]10

[]15

[]20

[]25

[]0 []0

[]10

[;
]

0 ∞

[;]0 ∞

[;]0 ∞

Figure 12: Petri net implementation of “handle complaint”

As one can imagine, the module only specifies a very simple workflow. However, for a
manager of an insurance company this already might be too complex. S/he might mostly be
interested in the maximal duration of the entire process. A typical question s/he could ask for
is: Does it take no longer than 55 units of time after process start until all process data and all
used documents are filed?

In the Logic of Action, the formulation of this question is rather simple. [[55] f] is a
specification of the question. Figure 13 shows the implementation of this module.

s f g[;]0 55 [;
]

0 ∞

Figure 13: Petri net implementation of [[55] f]

For verifying whether our business process fulfills this specification, we join the
implementations of both modules. Figure 14 shows the result of this join.

AWRE’2002 167

cc

cd

s r c

sl

p

fa g

[]10

[]15

[]20

[]25

[]0 []0

[]10

[;
]

0 ∞

[;]0 ∞

[;]0 ∞

¬p

¬sl

[;]0 55

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;]0 ∞

[;
]

0 ∞
[

;
]

0 ∞

p1

p3

p2

p4

p5

p6

p7

p8

p9 p10

p11

p12

p13

p14

Figure 14: Join of the workflow and its specification

Now we have to examine whether the net in figure 14 represents the same processes as the net
in figure 12. If it represents less, this can only be caused by transition f getting timewise stuck.
We use symbolic analysis to verify this.

Firing transition s produces tokens with timestamp α on p1, p2, p3, and p4. After firing
transition r, places p2, p3, p4, p5, and p6 are marked. The tokens on p2, p3, and p4 have
timestamp α, those on p5 and p6 have timestamp β = α + 0 = α. By firing cc and cd, places
p5 and p6 get unmarked, p7 gets a token with timestamp γ = β + 10 = α + 10, and p8 gets a
token with timestamp δ = β + 15 = α + 15. The tokens on places p2, p3, and p4 still have
timestamp α. Assuming transition c fires as soon as possible, p7 and p8 get unmarked and p9
gets a token with timestamp ε = min{γ, δ} = α + 15. Firing transition a causes a marking
where p10 has a token with timestamp ζ = ε + 20 = α + 35, and where p2, p3, and p4 are still
marked by tokens with timestamp α. Now, we have the possibility either to fire transition p or
to fire transition sl.

• Firing transition p marks p11 and p12 by tokens with timestamp θ = ζ + 10 = α + 45.
Under this situation, transition f does not get timewise stuck and can fire at moment θ.
Independent from the moment transition ¬sl fires, we can finish the process
afterwards by firing g.

• Firing transition sl marks p12 and p13 by tokens with timestamp λ = ζ + 25 = α + 60.
In the same moment, the edge from p12 to f is permeable. However, the other
incoming edge of f (from place p4 to f) has already lost its permeability. Therefore,
transition f is timewise stuck and the process cannot be finished.

Consequently, the realization of our business process does not fulfill the manager’s
specification. Moreover, we observe that we have to optimize our business process such that it

AWRE’2002 168

is 5 units of time faster. This can be achieved by optimizing action contact department,
assess, or send letter.

Conclusion
In this paper, we have used a Logic of Actions to specify process requirements. Petri net
implementations of the formulas of our logic are used for visualization and for proving. As an
application, we chose the verification of workflows. We demonstrated our approach with the
aid of an example.

Our models and proving techniques are rather formal. As a consequence, they allow precise
descriptions of the systems under examination. However, especially in a business
environment these descriptions must be substituted by less formal ones, i.e. our mathematical
methodology must be hidden from a possible user. Our future work will focus on this
problem.

References
Davis, A. M. (1993): Software Requirements - Revision, Prentice Hall, Englewood Cliffs

Hanisch, H.-M., Lautenbach, K., Simon, C., and Thieme, J. (1998): Timestamp Nets in
Technical Applications, In IEEE International Workshop on Discrete Event Systems,
San Diego, CA; USA

Koulopulos, T. M. and Frappaolo, C (1995): Electronic Document Management Systems – A
Protable Consulting, McGraw-Hill, New York

Peterson, J. L. (1981): Petri Net Theory and the Modeling of Systems, Englewood Cliffs:
Prentice Hall

Reisig, W. (1985): Petri Nets: An Introduction, volume 4 of EATCS Monographs in
Theoretical Computer Science, Springer-Verlag

Simon, C. (2001a): A Logic of Actions and Its Application to the Development of
Programmable Controllers, Verlag Fölbach, Koblenz, Germany

Simon, C. (2001b): Developing Software Controllers with Petri Nets and a Logic of Actions,
in IEEE International Conference on Robotics and Automation, ICRA 2001, Seoul,
Korea

van der Aalst, W., van Hee, K. (2002): Workflow Management – Models, Methods, and
Systems, The MIT Press, Cambridge, Massachusetts

van der Aalst, W. (1998): The Application of Petri Nets to Workflow Management, The
Journal of Circuits, Systems and Computers

Workflow Management Coalition, WfMC (1996): Terminology & Glossary, issue 2.0,
http://www.wfmc.org/

