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Abstract 
In this paper, Timestamp Petri nets – a special kind of timed Petri nets - and a Logic of 
Actions are used to specify process requirements. Petri net implementations of such 
specifications are used for a better visualization and to prove whether a given realization is 
sound and complete with respect to a given specification. The theory is applied to the 
specification of workflow processes. An example shows how to prove that a given workflow 
fulfills time constraints required by the management of a company. 

Keywords: 
(Timestamp) Petri nets, Logic of Actions, Workflow Management 

Introduction 
A Software Requirements Specification (SRS), as defined in (Davis, 1993), “is a document 
containing a complete description of what software will do without describing how it will do 
it”. An SRS is the result of an early phase within a software project and builds the base for the 
further development. It is a collection of user needs and technical restrictions that must be 
considered while the software is being built.  

Because of its central importance, many academic and practical work concentrates on the 
following problems: 

• Which formal techniques and languages exist to define requirements such that they 
can be transformed into a formal specification and later on into an implementation? 

• If a given formal requirements definition cannot be transformed into an implemen-
tation automatically, is it at least possible to prove whether a realized implementation 
fulfills this requirement definition? 

In the following, we concentrate on special requirement definitions - specifications of 
processes. We use a Logic of Actions proposed in (Simon, 2001a) to formally define process 
specifications and realizations. Petri net representations of these definitions are used to 
illustrate the represented processes and for proving given realizations against given 
specifications within this theory. They will be explained throughout this paper. An example 
from Workflow Management Systems will be used to illustrate the application of this logic 
within a software development process.  

Timestamp Petri Nets 
Timestamp Petri Nets (Hanisch, Lautenbach, Simon, and Thieme, 1998) are a special kind of 
Petri net (Peterson, 1981, Reisig, 1985) allowing the representation time information. Each 
token of a timestamp net carries a timestamp designating the moment the token was put on its 
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place. Intervals at the incoming edges of transitions specify their permeability with respect to 
the marking of the adjacent place. If all pre-places of a transition are marked and all its 
incoming edges are permeable simultaneously, then this transition is able to fire. 

Figure 1 shows a timestamp net consisting of five places p1, …, p5 and three transitions a, b, 
and c. Place p1 is marked with a token with timestamp three, the token on p2 has a timestamp 
seven and the token on p3 has a timestamp of one. Therefore, the token on p2 is the youngest 
and that on p3 is the eldest shown in the net. All other places of the net are unmarked. 
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Figure 1: An example of a Timestamp Petri Net 

The edge from place p1 to transition a is permeable from eight to ten, i.e. in interval [5+3; 
7+3]. Within this interval, transition a is able to fire any moment. If doing so, the resulting 
token on place p4 gets a timestamp with value eight to ten dependent on the moment 
transition a actually fires. 

The edge from p2 to b is permeable from ten to eleven and that from p3 to b from nine to 
twelve. Since both edges are only permeable simultaneously from ten to eleven, transition b is 
only able to fire within this interval. Afterwards, the resulting token on p5 will carry a token 
with a timestamp between ten and eleven. 
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Figure 2: Transition c is timewise stuck 

Figure 2 shows the follower marking from the situation described above. If transition a fires 
at moment nine and transition b fires at moment eleven. Then the edge from place p4 to 
transition c is permeable from nine to ten while the edge from p5 to c is permeable from 
twelve to thirteen. As a consequence, transition c is not able to fire, since its incoming edges 
are not permeable simultaneously at any moment although all pre-places of c are sufficiently 
marked. In this situation, we call transition c timewise stuck. We use such situations to specify 
undesired behavior. 

Timewise stuckness always occurs when one incoming edge of a transition looses its 
permeability before another become permeable at all. Hanisch, Lautenbach, Simon, and 
Thieme (1998) have presented an analyzing technique that can be used to determine whether 
certain transitions in a timestamp net might get timewise stuck. The same analyzing technique 
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can be used to determine time parameters within such a net such that certain transitions will 
never get timewise stuck. 

Until now, applications of timestamp nets have been rather technical (Simon, 2001a, Simon, 
2001b), but as we will demonstrate later in this paper, non-technical applications can be found 
as well. 

A (Timed) Logic of Actions 
In Simon, (2001a), a Logic of Actions (LA)  is proposed. Process is the central term in LA. 
Processes consist of actions which might occur or are forbidden and which are ordered in 
sequence or might occur coincidentally. Timestamps assigned to actions are used to determine 
their moment of occurrence. The extension of LA by time is called Timestamp Logic of 
Actions (TiLA) . 

Modules, the formulas of LA and TiLA, are used to specify process sets. Before (<), after (>), 
coincident (=), forbid (¬), and (∧), xor (+), and iteration operators are used to combine sub 
modules to complex ones. 

[[3;4] a < [[6;7] b + [5;8] c]] 

is an example for a TiLA module. It specifies processes where action a occurs 3 to 4 time 
units after process start. Afterwards, either action b occurs after 6 to 7 time units or c occurs 
after 5 to 8 units of time and the processes end. A Petri net implementation of this module is 
shown in figure 3. 

a

b

c

[ ; ]0 ∞
s g[ ; ]3 4

[ ; ]6 7

[ ; ]5 8
 

Figure 3: Petri net implementation of  [[3;4] a < [[6;7] b + [5;8] c]] 

In a Petri net implementation of a module, the same processes can be realized as are specified 
by the module. A process in such a net is a firing sequence reproducing the empty initial 
marking and in which the start transition s and the goal transition g, used to specify the 
beginning and the end of each process, occur exactly once. Actions are represented by equally 
named transitions. The symbol ∞ designates that the respective edge never looses its 
permeability after it has been marked as long as the token stays on the adjacent place. 

Petri nets are not only a means to visualize TiLA modules but rather are used to simplify 
proving within this theory. The aim of verification within TiLA is to prove whether a given 
realization of processes fulfills a given process specification. A realization can be proven to 
be sound and complete with respect to a specification. 

Definition: Fulfill 
Let M1, M2 be TiLA modules over a set of actions A.  

M1 fulfills M2 (M1 →→ M2) iff P[CM2(M1)] ⊆ P[CM1(M2)] 
 

Within this definition, the operator C is used to mutually complete the modules in order to 
make them comparable. In all processes of completed modules each action of this module 
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either occurs or is forbidden. M1 fulfills M2, if the set of completed processes realized by M1 
is a subset of those specified by M2. 

A realization is called sound if it only realizes specified processes. In terms of our logic, it 
fulfills its specification. If all specified processes are realized then the realization is complete. 

Definition: Sound, Complete 
Let S be a specification given as a TiLA module over a set of actions A, and R a realization 
also given as a TiLA module over the same set of actions A.: 

• R is sound with respect to S iff R →→ S 

• R is complete with respect to S iff S →→ R 

 

This definition of sound and complete is based on counting the processes specified by 
modules. However, in the case of TiLA modules the number of specified processes is 
infinitely large. Therefore, we will consider an alternative approach to proving in the 
following section. 

Proving within the Logic of Actions 
Instead of comparing the process sets of a specification S and a realization R, we do 
verification by conjoining S and R and determining whether this rules out processes specified 
by R. In this case, R defines processes not specified by S and therefore R does not fulfill S. 

Theorem 1 
Let M1, M2 be TiLA modules over a set of actions A. 

M1 →→  M2 ⇔ P[M1 ∧ M2] = P[CM2(M1)] 

 

We use theorem 2 instead, if undesirable behavior is specified instead of desired behavior, i.e. 
if ¬S and not S is given. 

Theorem 2 
Let M1, M2 be TiLA modules over a set of actions A. 

M1 →→  M2 ⇔ |P[M1 ∧ ¬M2]| = 0 

 

Both theorems have been proven in (Simon, 2001a). We use theorem 1 for direct proving and 
theorem 2 for indirect proving. 

For given Petri net implementations of modules M1 and M2, we can realize M1 ∧ M2 by 
joining (×) the completed implementations N (CM2(M1)) and N (CM1(M2)). Joining identifies 
equally named transitions of both participating nets (including s and g) and fuses them. All 
places of the participating nets also occur in the result of the join except those which cause 
redundant structures. Additionally, places are added to prevent transitions representing a 
certain action and others representing its prohibition from occurring both in processes. 
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The effect of joining Petri net implementations of modules is that the resulting net realizes 
only such processes specified by each participating module or its Petri net implementation, 
respectively. The completion step is responsible for making the participated processes 
comparable. This observation leads to the following theorem that is central in (Simon, 2001a). 

Theorem 3 
Let M1, M2 be TiLA modules over a set of actions A, N (CM2(M1)) and N (CM1(M2)) Petri net 
implementations of their completions. 

N (CM2(M1)) × N (CM1(M2)) implements M1 ∧ M2 

 

As an example, let us consider a specification 

S = [[3;4] a < [[6;7] b + [5;8] c]] 

and a realization  

R = [[[4;4] a < [6;7] c] ∧ [0; ∞]¬b]. 

Specification S describes processes where a occurs three to four units of time after process 
start. Afterwards, either b occurs six to seven units of time later, or c occurs five to eight units 
of time later. Realization R describes processes where a occurs exactly after four units of time 
after process start. Six to seven units of time later, c occurs. In addition, b is forbidden. 

Figure 3 shows an implementation of S and figure 4 shows an implementation of R.  
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[ ; ]0 ∞ [ ; ]0 ∞

 

Figure 4: Implementation of R 

For proving whether R fulfills S, we first have to mutually complete their implementations. 
Figure 5 shows this step with respect to the implementation of R. Although the result of this 
completion looks quite complex this is only a problem of visualization. The operation itself is 
linear dependent on the number of transitions in the net. 
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Figure 5: Implementation of C S(R) 
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As we mentioned above, completion is responsible for making the process sets of modules 
comparable. Therefore, this completion step, as demonstrated above, is also important on the 
Petri net level (cf. Simon, 2002). However, in Petri net implementations we can make an 
observation that simplifies further calculations: Processes of such a Petri net implementation 
are firing sequences reproducing the empty initial marking. Thus, only such firing sequences 
can be realized which are also realizable in the same Petri net without time information. In 
such a Petri net without time information, such firing sequences reproducing the empty initial 
marking must be covered by T-invariants. Therefore, each transition that is not included in 
any T-invariant cannot occur in any realizable process of such a Petri net implementation. In 
other words: the corresponding action does not occur or is forbidden in any process of the 
implemented completed module. 

If we consider the Petri net in figure 5 without time information, we only find one T-invariant 
covering transitions s, a, ¬b, c, and g. No one of the transitions added throughout the 
completion step is participated in any process. Therefore, we can immediately role back our 
completion step and can conclude that in our realization already each specified process must 
have been complete. 

Completing the Petri net implementation of the specification S and reducing this result with 
the aid of the T-invariant method described above results in the implementation shown in 
figure 6. 
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Figure 6: Reduced implementation of C R(S) 

 

Figure 7 shows the result of joining these intermediary results. 
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Figure 7: Join of completed specification and realization 

Comparable to our reductions of the completed modules, we can also simplify this result 
using the T-invariant method. This time, we can rule out transitions ¬a, b, and ¬c from 
occurring in any process. This leads to the Petri net implementation of S ∧ R as shown in 
figure 8. 

a

¬b

c
[ ; ]6 7[ ; ]4 4 [ ; ]0 ∞

s g

[ ; ]0 ∞ [ ; ]0 ∞

[ ; ]5 8[ ; ]3 4

 

Figure 8: Reduction of the join result with the aid of T-invariants 

In all firing sequences beginning with start transition s, both pre-places of transition a get 
marked at the same moment. Three to four time units later the first incoming edge of a is 
permeable. The second one is permeable exactly after four time units. Since transition a can 
only fire if all its incoming edges are permeable simultaneously, the permeability of both 
edges results from the intersection of interval [3;4] and [4;4]. As a result, we get the net 
shown in figure 9. 
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Figure 9: First reduction based on time considerations 
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In the same way we can proceed with the incoming edges of transition c. The result is the 
Petri net implementation of our realization R as shown in figure 4. With the aid of theorems 1 
and 3 we conclude that the realization fulfills the specification. 

In the following sections, we show an application of this theory to the field of Workflow 
Management Systems. 

Workflow Management Systems 
The development of Workflow Management Systems (WfMC, 1996) arose with Electronic 
Document Management Systems. Offices appeared to be drowning in paper. However, merely 
changing a paper representation of a business issue into an electronic representation was no 
solution (Koulopulos, Frappaolo, 1995). The main benefit of Electronic Document 
Management Systems arises from integrating them into a Workflow Management System 
identifying the documents needed for conducting a certain task and retrieving them from 
document archive. 

The expression workflow is used to describe human work and the basic terms on this area are 
defined by the Workflow Management Coalition (WfMC). A workflow is "the automation of a 
business process, in whole or part, during which documents, information or tasks are passed 
from one participant to another for action, according to a set of procedural rules". A 
Workflow Management System "defines, creates and manages the execution of workflows 
through the use of software, running on one or more workflow engines, which is able to 
interpret the process definition, interact with workflow participants and, where required, 
invoke the use of IT tools and applications" (WfMC, 1996). 

These fundamental definitions by the WfMC highlight the most important parts of workflow 
systems from the point of view of automation: 

• Workflow participants who perform the work. The term workflow participant "is 
normally applied to a human resource but it could conceptually include machine based        
resources such as an intelligent agent" (WfMC, 1996). 

An organizational role specifies a group of employees "exhibiting a specific set of 
attributes, qualifications and/or skills" (WfMC, 1996). Instead of "workflow        
participant" the term "role player" is used.  This highlights the fact that when a 
workflow is planned one does not think of individuals, but of tasks and of positions in 
an organizational structure which are implemented to fulfill this task. The assignment 
of a certain task to a specific individual is done while a process instance is executed. 

• Activities are definitions of the elementary pieces of work of which a workflow is 
composed. The structure of a workflow specifies sequences, alternatives, and parallel 
occurrences of activities. 

An activity can be performed manually (by humans) or automatically (by the 
Workflow Management System or by elementary tools for business automation). 

A process instance is a workflow in execution, while an activity instance is an activity 
in execution. 

The diagram in figure 10 illustrates the relationships between these elementary terms 
according to the WfMC (WfMC, 1996). 
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Figure 10: Relationships between basic workflow terminologies 

Obviously, processes are central in the definition of Workflow Management Systems. They 
are detailed in nature because they cover both, the usual business process as well as 
exceptions from this process in the case of faults. However, a first specification of such a 
business process might come along without such details. In the following section we consider 
the question how to prove whether a workflow definition fulfills such a previously made 
specification.  

Applying TiLA to Workflow Management System 
In the following, we use TiLA to answer the question: Is every process of a complex 
realization conforming a given specification? 

To demonstrate this, we consider an exemplary workflow described in (Aalst, Hee, 2002). 
They use Petri nets to specify workflow models (Aalst, 1998). As a use case, they consider an 
insurance company. Figure 11 shows the process “handle complaint”. Numbers in transitions 
are used to indicate the average processing time per task. We leave out assessment cycles, 
because in the following we want to concentrate on a typical process. 
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Figure 11: Process “handle complaint” 

 

We want to introduce the following abbreviations: r ≅ record, cc ≅ contact client, cd ≅ contact 
department, c ≅ collect, a ≅ assess, p ≅ pay, sl ≅ send letter, and f ≅ file. The following 
module describes the workflow shown in figure 11 where the time information is interpreted 
as the moment the respective task ends: 

[[0] r < [[0] cc ∧ [0] cd] < [0] c < [0] a < [[0] p + [0] sl] < [0] f] 

We abbreviate intervals specifying a single moment like [15;15] by [15]. Figure 12 shows a 
Petri net implementation of this module. 
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Figure 12: Petri net implementation of “handle complaint” 

As one can imagine, the module only specifies a very simple workflow. However, for a 
manager of an insurance company this already might be too complex. S/he might mostly be 
interested in the maximal duration of the entire process. A typical question s/he could ask for 
is: Does it take no longer than 55 units of time after process start until all process data and all 
used documents are filed? 

In the Logic of Action, the formulation of this question is rather simple. [[55] f] is a 
specification of the question. Figure 13 shows the implementation of this module. 

s f g[ ; ]0 55 [ ;
]

0 ∞

 

Figure 13: Petri net implementation of [[55] f] 

For verifying whether our business process fulfills this specification, we join the 
implementations of both modules. Figure 14 shows the result of this join. 
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Figure 14: Join of the workflow and its specification 

Now we have to examine whether the net in figure 14 represents the same processes as the net 
in figure 12. If it represents less, this can only be caused by transition f getting timewise stuck. 
We use symbolic analysis to verify this. 

Firing transition s produces tokens with timestamp α on p1, p2, p3, and p4. After firing 
transition r, places p2, p3, p4, p5, and p6 are marked. The tokens on p2, p3, and p4 have 
timestamp α, those on p5 and p6 have timestamp β = α + 0 = α. By firing cc and cd, places 
p5 and p6 get unmarked, p7 gets a token with timestamp γ = β + 10 = α + 10, and p8 gets a 
token with timestamp δ = β + 15 = α + 15. The tokens on places p2, p3, and p4 still have 
timestamp α. Assuming transition c fires as soon as possible, p7 and p8 get unmarked and p9 
gets a token with timestamp ε = min{γ, δ} = α + 15. Firing transition a causes a marking 
where p10 has a token with timestamp ζ = ε + 20 = α + 35, and where p2, p3, and p4 are still 
marked by tokens with timestamp α. Now, we have the possibility either to fire transition p or 
to fire transition sl. 

• Firing transition p marks p11 and p12 by tokens with timestamp θ = ζ + 10 = α + 45. 
Under this situation, transition f does not get timewise stuck and can fire at moment θ. 
Independent from the moment transition ¬sl fires, we can finish the process 
afterwards by firing g. 

• Firing transition sl marks p12 and p13 by tokens with timestamp λ = ζ + 25 = α + 60. 
In the same moment, the edge from p12 to f is permeable. However, the other 
incoming edge of f (from place p4 to f) has already lost its permeability. Therefore, 
transition f is timewise stuck and the process cannot be finished. 

Consequently, the realization of our business process does not fulfill the manager’s 
specification. Moreover, we observe that we have to optimize our business process such that it 
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is 5 units of time faster. This can be achieved by optimizing action contact department, 
assess, or send letter. 

Conclusion 
In this paper, we have used a Logic of Actions to specify process requirements. Petri net 
implementations of the formulas of our logic are used for visualization and for proving. As an 
application, we chose the verification of workflows. We demonstrated our approach with the 
aid of an example. 

Our models and proving techniques are rather formal. As a consequence, they allow precise 
descriptions of the systems under examination. However, especially in a business 
environment these descriptions must be substituted by less formal ones, i.e. our mathematical 
methodology must be hidden from a possible user. Our future work will focus on this 
problem. 
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