
Bytecode Analysis for
Checking Java Access
Modifiers
Andreas Müller
Institute for System Software
Johannes Kepler University Linz
Linz, Austria
mueller@ssw.jku.at

ABSTRACT

When compiling a Java program, too restrictive access modifiers immediately lead to compi-
lation errors. However, developers do not even get informed, if an access modifier could be
more restrictive. We developed a tool called AccessModifierAnalyzer (AMA) that reports in-
sufficiently restrictive Java access modifiers based on a static bytecode analysis. AMA anal-
yses fields and methods and reports on visibility modifiers, the static modifier, and the final
modifier. It can either be used as a stand-alone application, as part of an Apache Ant script,
or as a NetBeans plug-in. In this paper, we motivate the need for a report on insufficiently
restrictive access modifiers and give an overview of the architecture and usage of AMA.

1 Introduction

Java modifiers define the way in which types, methods, and fields are accessed in a
Java virtual machine (JVM). They are defined in the Java VM specification [1]. Visi-
bility modifiers for class members define whether another class is able to use a field
or method. Members declared public can be accessed from everywhere, members de-
clared protected only from subclasses and classes in the same package, and members
declared private only from the class they are defined in. If no access modifier is spec-
ified, a member is said to have default access. It can only be accessed from classes in
the same package. The static modifier defines that a field or method is per class and
not per instance. The final modifier defines that a field cannot change its value despite
a single initialization in the constructor.

An access modifier is more restrictive if it disallows more operations on the class
member. For visibility modifiers, the sorting based on increased restrictiveness is as
follows: public, protected, default, private. A field with a final modifier is restricted, be-
cause its value cannot be changed. A method with a static modifier is restricted, be-
cause it cannot access instance members of its class.

If a class member has an access modifier that is too restrictive, the Java compiler
will not produce a class file and output an error message. In contrast, if a class mem-
ber could be more restrictive, the compiler does not produce any warning. Therefore,

1



PPPJ’10 WiP Poster Abstract

Figure 1: Overview of the AccessModifierAnalyzer (AMA) tool.

during development it is likely that access modifiers are declared less restrictive than
possible. Declaring class members with more restrictive access modifiers has several
advantages:

• Code Readability: If the access modifiers are accurate, they also provide most
information to a programmer reading the code. For example, when looking at a
field declaration, the developer will immediately see whether this field is mod-
ified in methods of the class or only in its constructors.

• Runtime Performance: The virtual machine can take advantage of the addi-
tional information restrictive modifiers provide. The compiler can make special
assumptions about fields that are declared as final. Additionally, declaring a
method private will result in a smaller virtual method table of the containing
class. A call to such a method will no longer need a virtual method dispatch,
but can be performed as a direct call.

• Modularity: Restrictive access modifiers help focusing on modularity. A well-
known Java idiom states “create privately, publish later” [2]. The general idea
behind this strategy is to increase the visibility of a class member only if it is
really necessary and not because it might be necessary later.

In this paper, we present a tool that performs a global bytecode analysis for finding
unrestrictive modifiers. We deal with the visibility modifiers for fields and methods,
the final modifier for fields, and the static modifier for methods. The tool generates a
report about class members, whose modifiers could be more restrictive. It is also able
to perform a binary rewriting of the class files that changes the modifiers automati-
cally.

2 Architecture

Figure 1 shows an overview of our tool. The AccessModifierAnalyzer (AMA) can
be started from the command line, via an Apache Ant [3] task, or from within the
NetBeans IDE [4]. It uses the two bytecode analysis frameworks BCEL [5] and ASM
[6] for analysing and rewriting the bytecode.

During the analysis, it maintains a type universe and distinguishes between oc-
curred classes, known classes, processed classes, and analysed classes. The Java byte-
code for processed classes and analysed classes is available to the tool. The instruc-
tions of methods of those classes are processed and used to define the sufficient mod-

2



PPPJ’10 WiP Poster Abstract

ifiers. The Java bytecode instructions relevant for deciding on the modifiers are the
invoke instructions and the instructions for accessing fields (getfield, getstatic,
putfield, and putstatic). Reports about improvable modifiers are only gener-
ated for analysed classes.

When the bytecode for a class is not available, but it is found on the classpath, then
it is a known class. If a class is not found on the classpath, but nevertheless occurs in
the bytecode of the processed classes, the tool makes conservative assumptions about
it. In particular, if it is a super class of an analysed class, we preserve the modifiers of
its methods, because we do not know whether a method overrides a method in the
occurred class.

The report for all analysed classes is sent to a report generator that is capable of
producing HTML or text output. Additionally, the AMA can automatically apply the
proposed modifications and create class files with new modifiers for the members
of analysed classes. We use this feature for verifying the correctness of the reports
generated by AMA, i.e. this can be used to check that no access modifier is made
more restrictive than allowed.

3 Usage

The AMA can either be started from the command line, as an Ant task, or from within
the NetBeans IDE.

The source attribute defines the input directory in which the tool searches for
Java class and jar files. Any Java class whose bytecode is found in this directory is pro-
cessed. The two subelements analyze and ignore help to define the classes that are
actually analysed and therefore included in the generated report. The analyze ele-
ment includes all classes whose full name (including the package name) start with the
specified identifier. The ignore element excludes classes from the analysis. If an out-
put directory is specified as the destination attribute, then the binary rewriter is
used to produce modified bytecode and write the new class and jar files. The report
attribute can be used to produce either HTML or text output.

There is a custom fine-grained way to control the analysis based on annotations.
Classes, methods and fields marked with an @API annotation are not analysed. The
@MinAccess annotation specifies the minimum visibility level for a field or method.
The AMA will not suggest a stricter visibility modifier in its report. The @Mutable
annotation is only applicable for fields to prevent the suggestion of a final modifier.
Similarly, the @NotStatic annotation specifies that a method should not be declared
static even if this is possible.

The report includes detailed suggestions for fields and methods as well as statis-
tics about the whole program and about packages. The tool reports on the following
issues:

Visibility Modifiers: Our tool checks visibility modifiers of both fields and methods.
The AMA inspects accesses on fields or methods and determines the strictest
possible visibility modifier taking possible overrides into account. Furthermore,
it is separately reported when a field or method is never accessed.

Final Modifier: The final modifier requires the analysis of methods and constructors
of classes. If a field is only set once and only in a constructor, the field should be
declared as final.

A method can possibly be declared as static if it does not access the this pointer,
does not override another method and is not overridden itself. If these con-

3



PPPJ’10 WiP Poster Abstract

ditions hold and the method is not declared as static, the AMA reports this
method.

Wrong Class: An experimental feature of our tool is to generate hints whether a
method should be declared in a different class. For generating this suggestion,
we analyse which class members are accessed by the method. If the method ac-
cesses significantly more class members of a different class than it was declared
in, it is suggested to move it to a different class.

4 Future Work

In future work, we want to improve the tool in case of programs with extensive reflec-
tion usage. The bytecode analysis does not find calls to methods using the reflection
API. One possible solution would be to intercept reflection calls and make methods
accessible for the reflection API before calling them.

Another possible direction for future work is to find a better algorithm for deter-
mining whether a method should be declared in another class. Currently this feature
is experimental and the generated reports are not accurate enough. We believe that
the automatic analysis of this property of an object oriented program could be useful
for enhancing its design.

5 Conclusions

We presented a tool that performs a bytecode analysis for finding insufficiently re-
strictive access modifiers. We believe that having restricted modifiers is beneficial for
code readability and program modularity. Additionally, it can improve runtime per-
formance of Java programs.

Acknowledgments

I would like to thank Thomas Wuerthinger for supporting and contributing ideas to
this work.

References

[1] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

[2] Create Privately Publish Later, 2010.
http://c2.com/ppr/wiki/JavaIdioms/CreatePrivatelyPublishLater.
html.

[3] The Apache Software Foundation. The Apache Ant Project, 2010. http://ant.
apache.org.

[4] Oracle Corporation. NetBeans IDE, 2010.
http://www.netbeans.org.

[5] The Apache Software Foundation. Byte Code Engineering Library, 2010. http:
//jakarta.apache.org/bcel.

[6] OW2 Consortium. ASM, 2010. http://asm.ow2.org.

4

http://c2.com/ppr/wiki/JavaIdioms/CreatePrivatelyPublishLater.html
http://c2.com/ppr/wiki/JavaIdioms/CreatePrivatelyPublishLater.html
http://ant.apache.org
http://ant.apache.org
http://www.netbeans.org
http://jakarta.apache.org/bcel
http://jakarta.apache.org/bcel
http://asm.ow2.org

	Introduction
	Architecture
	Usage
	Future Work
	Conclusions

