
Scala
?≡ Java mod JVM —

On the Performance
Characteristics of Scala
Programs on the Java
Virtual Machine
Andreas Sewe
Software Techology Group
Technische Universität Darmstadt
Darmstadt, Germany
sewe@st.informatik.tu-darmstadt.de

ABSTRACT

In recent years, the Java Virtual Machine has become an attractive target for a multitude of
programming languages, one of which is Scala. But while the Scala compiler emits plain
Java bytecode, the performance characteristics of Scala programs are not necessarily similar
to those of Java programs. We therefore propose to complement a popular Java benchmark
suite with several Scala programs and to subsequently evaluate their performance using
VM-independent metrics.

1 Introduction

While originally conceived as target of the Java programming language only, the Java
Virtual Machine (JVM) [1] has since become a target for hundreds of programming
languages, the most prominent ones arguably being Clojure, Groovy, Jython, JRuby,
and Scala. The JVM can therefore rightly be considered a Joint Virtual Machine.

Targeting such a joint virtual machine offers a number of engineering benefits to
language implementers: After more than 15 years of research and development the
Java platform is very mature. Moreover, it is not only mature but portable, wide-
spread, and offers a staggering amount of libraries to choose from. Last but not least,
the platform is backed by several high-performance JVMs. Alas, simply targeting the
JVM does not always result in performance as good as Java’s; existing JVMs are pri-
marily tuned with respect to the performance characteristics of Java programs.

Of the five languages mentioned above, four languages share one key character-
istic: Clojure, Groovy, Python, and Ruby are all dynamically typed. As this single
language feature has been identified as the biggest performance bottleneck, the Java
Community Process has put forth a specification request (JSR 292) to “[Support] Dy-

1

PPPJ’10 WiP Poster Abstract

namically Typed Languages on the JavaTM Platform,” i.e., to close the semantic gap
between dynamically-typed source languages and Java bytecode.

While a semantic gap undoubtedly exists for statically-typed source languages
like Scala [2] as well, it is less clear what the bottlenecks are. This work-in-progress
therefore aims to shed light on the performance characteristics of Scala programs. In
particular, we will answer the following three questions: Are the performance charac-
teristics of Scala programs, from the JVM’s perspective, similar or dissimilar to those
of Java programs? If they are dissimilar, what are the assumptions that implementers
of a JVM have to reconsider? And are Scala programs sufficiently different to warrant
special treatment—as the dynamically-typed languages now receive?

2 Characterising the Performance of Scala Programs

Previous investigations into the performance of Scala programs have been mostly
restricted to micro-benchmarking.1 While such benchmarks are undeniably useful
to the implementers of the Scala compiler, who have to decide between different
code generation strategies for a given language feature, they are less useful to im-
plementers of a Java VM, who have to deliver good performance across a wide range
of real-world programs, only some of which are written in Scala. Our research will
therefore assume the latter’s viewpoint, in turn making the following contributions:

1. A benchmark suite of Scala programs developed as an extension to the popular
DaCapo benchmark suite [3].

2. The definition of VM-independent metrics to characterise the performance of
Scala programs.

3. A VM-independent comparison of the performance characteristics of Scala pro-
grams and Java programs.

2.1 Towards a Scala Benchmark Suite

The following programs (along with potential input data) have been selected for in-
clusion in the benchmark suite. As of October 2010, half of the implementations are
stable (marked †); Figure 1 on page 3 relates their size to the DaCapo benchmarks’.

kiama† The Kiama library for language processing (compiling and interpreting the
Obr and ISWIM languages, respectively).

lift The Lift web framework (running its example application).

scalac† The “New” Scala compiler (compiling and optimising the Scalaz library).

scalap† A Scala classfile disassembler (disassembling a complex classfile).

scalatest ScalaTest, a testing framework supporting various testing styles, including
JUnit and TestNG integrations (running its own test suite).

specs† Specs, another testing framework, which makes heavy use of embedded do-
main-specific languages (running its own test suite).

tmt The Stanford Topic Modeling Toolbox, a natural language processing framework
driven by Scala scripts (learning a model using Latent Dirichlet Allocation).

1The language’s implementers themselves perform a number of so-called shoot-outs, each testing a partic-
ular language feature: http://www.scala-lang.org/node/360.

2

http://www.scala-lang.org/node/360

PPPJ’10 WiP Poster Abstract

437 3,331

1,930

19,531 scalac

scalap

specs

avrora

batik

eclipse

foph2

jython
luindex

lusearch
pm

dsunflow

tom
cat

xalan

Classes used

#
M

et
ho

ds
us

ed

Figure 1: The size and complexity of 15 benchmark programs (excluding harness)
written in Java () and Scala (), respectively.

A few of the above benchmarks incorporate a significant amount of code written
not in Scala but in plain Java. This choice is deliberate, as it reflects current practice;
candidates either employ Scala facades to Java libraries (scalatest, specs) or run on
an infrastructure written entirely in Java (lift). The following table summarises this for
a selection of Scala benchmarks.

Benchmark # Method Calls

Java JRE Java (other) Scala

scalac† 7.29% 0.22% 92.49%
scalap† 29.83% 0.04% 70.13%
specs† 89.99% 0.06% 9.95%

2.2 Towards VM-Independent Benchmark Comparisons

Possible metrics to compare benchmarks in a VM-independent fashion are based on
object demographics or the structure of the static and dynamic call graphs. Hereby,
metrics based on object demographics have been used extensively to characterise the
DaCapo benchmarks [3]; thus, we will sketch a few metrics of the latter group below.

Two of the most effective optimisations a JVM can perform are adaptive recom-
pilation and method inlining. Just how effective these optimisations are is deter-
mined, to a large degree, by the program’s weighted dynamic call graph; the larger
the weight of a vertex, the more profitable is recompiling the corresponding method;
the larger the weight of an edge, the more profitable is inlining the corresponding call.
Each of these optimisations, however, comes at a cost. Any dynamic metric must thus
be related to a static metric which reflects the cost of performing said optimisations.
In either case, it is essential for the purpose of our study to discern the influence of
code written in Scala from code written in Java within the same benchmark program.

One metric of particular interest is the number of tail-calls which Scala programs
exhibit. While the JVM does not yet support the notion of hard tail calls and thus
will not guarantee tail-call optimisation, such optimisations are often assumed to be
necessary to fully support functional languages on the JVM. The degree to which
tail-calls are used in the aforementioned benchmarks determines whether such an

3

PPPJ’10 WiP Poster Abstract

optimisation would also be beneficial to existing programs, whether written in Scala
or Java. In particular, this metric would shed some light on the Scala compiler’s effec-
tiveness in eliminating tail-calls (cf. Section 3.1).

3 Future Directions

In the following we will outline a few research directions into which we will embark
once the above contributions have been made.

3.1 Optimising Compiler vs. Optimising VM

The semantic gap between Scala source code and Java bytecode is wider than the gap
between Java source and bytecode. It is therefore likely that the peculiar nature of the
bytecode derived from Scala sources inhibits some of the optimisations a production
JVM will perform on Java programs.

The Scala compiler scalac is thus able to perform several optimisations on its own:
method inlining, escape analysis (for closure elimination), and tail call optimisation.
All these optimisations have traditionally been the domain of the JVM. Working of-
fline, however, the compiler can spend considerably more time optimising. It does
not have access to online profiles, though. The key question is thus whether the se-
mantic gap is wide enough to warrant the re-implementation of optimisations within
the compiler or whether the VM is the proper place for these optimisations.

3.2 JVM vs. Common Language Runtime

Scala targets a second platform besides the JVM, namely the Common Language Run-
time (CLR). This gives rise to further questions: Do the answers to the above questions
carry over to the CLR? If so, what makes such a generalisation possible?

Acknowledgments

Thanks go to the entire team behind the DaCapo benchmark suite, who have pro-
vided us with a rock-solid foundation to work on.

This work was supported by CASED (www.cased.de).

References

[1] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1999.

[2] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Press,
2008.

[3] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang,
Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas Van-
Drunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Proceedings of the 21st Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, pages
169–190, Portland, Oregon, USA, 2006.

4

http://www.cased.de/

	Introduction
	Characterising the Performance of Scala Programs
	Towards a Scala Benchmark Suite
	Towards VM-Independent Benchmark Comparisons

	Future Directions
	Optimising Compiler vs. Optimising VM
	JVM vs. Common Language Runtime

