
A Visual Web Query System for NeuronBank Ontology

Weiling Li
Georgia State University

Atlanta, GA
wli16@student.gsu.edu

Rajshekhar Sunderraman
Georgia State University

Atlanta, GA
raj@cs.gsu.edu

Paul Katz
Georgia State University

Atlanta, GA
pkatz@gsu.edu

ABSTRACT
Ontologies have recently been heavily developed in the life
sciences. Scientists retrieve life science ontologies and ref-
erences to them (e.g. annotations) for aiding their research.
As users usually have little or no knowledge about the query
languages such as Algernon or SPARQL to access these on-
tologies, designing flexible and powerful Web query inter-
faces will make this information more accessible. In this
paper we describe a Web query system for NeuronBank1, a
web-based tool for cataloging, searching, and analyzing neu-
ronal circuitry within and across species. Information from a
single species is represented in an individual branch of Neu-
ronBank. We aim to assist users in searching within a branch
or perform queries across branches to look for similarities in
neuronal circuits across species. The query interface ideas
are general enough that they can be adapted to work with
other ontologies.

Author Keywords
Ontologies, Visual Query Interfaces, Form-based Querying

INTRODUCTION
During the last decades, many ontology-based knowledge
base systems have been developed in order to meet the chal-
lenges of complex and quickly evolving life science data.
Briefly, an ontology is a specification of a conceptualiza-
tion ([9]). The design purpose of an ontology is to allow
researchers to share and reuse knowledge bases. To eas-
ily access the information located in these ontologies, sev-
eral query languages and systems have been proposed, such
as SPARQL ([18]), Algernon ([1]), COQL ([6]), and CIRI
([5]). The Algernon rule-based inference system, which is
implemented in Java, performs forward and backward rule-
based processing of frame-based knowledge bases, and ef-
ficiently stores and retrieves information in ontologies and
knowledge bases.

In this paper, we introduce an ontology-based Web query

1http://www.neuronbank.org

Workshop on Visual Interfaces to the Social and Semantic Web
(VISSW2011), Co-located with ACM IUI 2011, Feb 13, 2011, Palo Alto,
US. Copyright is held by the author/owner(s).

interface that is built on the Algernon system. The visual
query interface enables end-users to query the knowledge-
base without knowing any query language. It is the ma-
jor web-based query component of the NeuronBank system
([15]), an online reference source and informatics tool for
exploring vast knowledge of identified neurons and the cir-
cuits they form. The query system is developed using the
JavaServer Faces (JSF) technology. Through the readily us-
able query interface that dynamically retrieves the ontology,
the user can specify their query criteria, and create a form-
based query. The form based design relieves end users from
the low level knowledgebase details and the terse and error
prone text-based query expressions. Moreover, it is unre-
alistic to expect naive users who have no desire to work in
computer science to become proficient in a query language.
The web-based design makes the query system accessible
from any computer on the internet.

The form-based query is translated into a textual Algernon
query that is then executed against the ontology-based knowl-
edgebase. The query result includes not only the main re-
sults but also all intermediate results. With the intermedi-
ate results, users can easily trace the inference chain per-
formed on the data in the knowledgebase. This query system
also supports user-defined operators that are derived from
the functions and relationships defined in the ontology.

The remainder of this paper is organized as follows: The
second section sketches the architecture of the NeuronBank
system. The third section presents details of the Neuron-
Bank visual query system. The fourth section discusses re-
lated work and the advantages of our system compared to
other visual query systems. Conclusion and future work are
presented in the final section.

BASIC ARCHITECUTRE OF NEURONBANK
Figure 1 (obtained from [12]) shows the overall distributed
architecture of the NeuronBank system. To manage infor-
mation related to different species with different data mod-
els and user interfaces, knowledge about each species is de-
signed as a branch. Each branch of NeuronBank hosts a
knowledge-base, called BranckKB, that contains knowledge
about the neurons and synapses of a particular species. The
knowledge base is stored within the Protégé Ontology Edi-
tor and Knowledge-Base System ([8]). In addition to host-
ing the knowledge base, the BranchKB also provides a Web
service interface to the rest of the system, thereby enabling
sharing of the knowledge in a distributed manner. Various

h


Figure 1. Architeture of NeuronBank

administrative functions such as creating a branch, import-
ing and exporting the branch ontology, and updating branch
parameters are also supported by the BranchKBs.

The different branches of the system are united by a common
framework, NB-Central: NeuronBank Central, which en-
ables search and analysis of neural circuits across all species.
This architecture allows for the sharing of knowledge from
different species. NB-Central not only facilitates search-
ing and analysis of data across all the species represented,
but also provides Web services to the BranchKBs and the
Clients. NB-Central works with BranchKBs to provide “cross-
branch search”, accepting queries from Clients and passing
them on to each available BranchKB. NB-Central then col-
lates the results and returns them back to the Clients.

Clients are individual applications, either stand alone or Web-
based, that need to access the various BranchKBs. The clients
can be anonymous or can register themselves with NB-Central
and can create a form-based query, submit search criteria,
and store search results, and use other services.

QUERY SYSTEM OVERVIEW
One of the important components of NeuronBank is the ad-
vanced search sub-system that is implemented as a client-
server Web application. The client-side provides two in-
terfaces: query generation user interface and query result
display user interface. The server-side consists of several
functional components such as ontology schema retriever,
text Algernon query generator, Algernon engine, and user-
defined operator (see Figure 2).

Through the query generation user interface, the system pro-
vides the end-users with a dynamically view of the ontology
schema and allows them to build their form-based Alger-
non query expressions. The query results are displayed on
the summary page of the query result display user interface.
The query results include not only the final query objects,

Figure 2. Query System Architecture

but also all intermediate objects specified in the form-based
Algernon query expression. As a result, users can easily
keep track of the chain of inference rules performed on data
in the knowledge base. Within the summary page, all ob-
jects including intermediate objects are bound to hyperlinks,
through which users can visit the detail pages of the cor-
responding objects. The detail page for a particular object
shows a comprehensive view of the object including the val-
ues of all of its attributes, relationships with other objects
in the system, as well as two graphical views (location and
network) implemented as Java applets.

On the server side, ontology schema retriever can dynami-
cally retrieve ontology schema elements from the ontology
backend and provide them to the client applications. The
text Algernon query generator takes as input the form-based
Algernon query expression built by end-users and generates
the text-based Algernon query statement. User-defined op-
erators are based on the functions predefined in the ontology,
and facilitate users to create a query expression close to their
domain research questions. The Algernon engine executes
the text Algernon query against the knowledgebase, and re-
turns the result to be displayed by the summary and detail
pages.

Each of these interfaces is described in more detail now.

Query Generation User Interface
The query generation user interface is a general purpose in-
terface that facilitates the expression of ad-hoc queries against
a given ontology. The ad-hoc queries usually represent a
“path expression” in the underlying graph structure (data
graph) of the objects (nodes) and relationships (edges) of the
ontology. The interface allows the user to traverse a desired
“path” in the underlying data graph and retrieve objects of
interest along the way. Using this interface, users can for-
mulate very complex queries without knowing much of the
underlying structure of the ontology.

Query generation user interface is a form-based user inter-
face that runs in a Web browser environment. The interface
consists of multiple columns, each consisting of three parts:

1. a class list consisting of a dropdown menu of classes from



Figure 3. Query Generation User Interface

the underlying ontology,

2. a property list consisting of a listbox of primitive proper-
ties of the class chosen, and

3. a query criteria panel that allows users to express selection
conditions on the chosen property.

Figure 3 illustrates these three components.

In NeuronBank, the ontology is stored within the Protege
frames storage system and is interpreted as a set of “classes”
with each class containing two types of “property assertions”:
primitive properties that have simple values and relationship
properties that relate the object to other classes in the ontol-
ogy. The multiple columns of the interface along with their
constituent parts are displayed by the system in a piece-meal
fashion responding to the user’s interactions with the inter-
face.

The first part of query generation user interface shows infor-
mation including classes and relationships to the users to en-
able them to express their queries as follows:

1. The left-most column of the interface consists of a class
list (a dropdown menu) that is the start point for building
the form-based query. This class list is initialized with
the names of ALL classes available in the ontology when
the interface is loaded. This start dropdown menu lists
all classes defined in the ontology in a hierarchical style
that represents the inheritance relationships among them.
An example is shown in Figure 4. In this example, class
Chemical Synapse is the subclass of class Connections,
which is a root class.

2. After users select a class in the start dropdown menu, two
GUI components on the page are activated:

(a) The property list-box beneath the selected dropdown
menu class is populated with the primitive properties
of the selected class.

Figure 4. The Start Dropdown Menu

Figure 5. Relationship Properties of Selected Class in next Column

(b) The properties of selected class that reference other
classes in the ontology are imported into the drop-
down menu to the right of the start dropdown menu
in the next column of the interface.

Similarly, the selection of a class in the second dropdown
menu will activate and populate the third dropdown menu
and the property list-box under it. All ontology schema
information above is dynamically retrieved by ontology
schema retriever module. For example in Figure 5, the se-
lected class Neuron in the left menu has three properties,
Annotations, Inputs, and Outputs, which are containers of
compatible classes. Note that we can express the fact that
Neuron has a relationship with not only one of these three
properties, such as Inputs; but also its subclasses, such as
Electrical Synapse, and so on. This part of conceptualiza-
tion defined in the ontology is dynamically retrieved and
displayed in the interface for users to build their queries.

The second part of the interface is a group of property list-
boxes, each of which corresponds to a class chosen by the
user in the dropdown menu above. By choosing a class from
the dropdown class list, its primitive properties are displayed
in the property list-box under it. An example is shown in
Figure 6. All primitive properties of the selected “−Neuron”
class are listed beneath it. The property with “:” sign in the
front signifies that this property is an intrinsic property, i.e.
system-generated. Property with “−” sign in the front signi-



Figure 6. Primitive Properties of Selected Class - in Property List-Box

fies that this property is a user-defined property. All classes
in the NeuronBank ontology have certain fixed core proper-
ties and a varibale number of user-defined properties.

The third part of the interface is the query criteria panel. This
part is a form-based interface that allows users to specify
selection conditions on the primitive properties chosen by
the user from the property list-box above. Users can con-
struct Algernon query criteria to limit the objects of interest
in the current column of the interface. The aim is to build
the search interface dynamically to match the current data
model of a selected branch. User can simply select one or
more properties from the property list-boxes, and click Add
button to add them into the form-based query. Then, they can
specify the selection conditions in the query criteria section
of the interface. All the conditions expressed in the query
criteria section are treated as a conjunction (“and”).

The query generation user interface descibed above is a gen-
eral purpose interface that provides the user the capability
to formulate very complex query requests. One such query
request is discussed in the example below.

An example query formulation. Consider the following
query request: Find all neurons which are involved in chem-
ical synapses satisfying the following two properties:

1. the connection probability of the synapse is greater than
2, and

2. the synapse has an article annotation which was published
after year 2000.

Using the query generation user interface the user has ex-
pressed the query as shown in shown in Figure 7. The user
is looking for

a a neuron

b with a chemical synapse (whose parent is “Inputs” hid-
den in the figure)

c has an attribute of “-connection probability”

d and the value of that attribute is larger than 2

e where an article (whose parent is “Annotations” hidden
in the figure)

f has an attribute of “-Year”

g and the value of that attribute is larger than 2000

In this example the user has added two query criteria: chem-
ical synapse involved with the connection probability > 2
and article involved with year > 2000.

h When the “Add” button is clicked a table-like panel is cre-
ated, which allows the user to express the selection condi-
tions in the query criteria.

Finally, this query can be submitted to

f the current branch (e.g. Tritonia) or

g all branches.

The table-like panel for the query criteria has the following
six columns (again refer to Figure 7):

1. Class Name column representing the class of a query cri-
terion. (e.g. -Inputs.-Chemical Synapse means a chemi-
cal synapse input).

2. Attribute column representing a property of the class. (e.g.
-Connection Probability is a property of domain -Inputs.-
Chemical Synapse).

3. Operator column containing a list of operators that are
dynamically determined and generated according to the
property data type. That is, it has only compatible oper-
ators depending on the property. This column also also
supports user-defined operators that are predefined by do-
main experts.

4. Value column representing a constant value from the prop-
erty domain. By default the field is supplied with a string
to represent input value constraint, meaning the input value
must follow the constraint of the property and only the
matching value can be input to this field. By using the de-
fault String, user will know the type of the property. For
example, the constant value for -Connection Probability
only can be entered in a numeric format. The constraint
for each property is defined in the ontology.

5. Definitional column is for the definitional function defined
in the NeuronBank ontology. Properties that are tagged by
the ontologist as being important in identifying the cell are
called definitional.

6. Remove column containing a remove button for removing
a row in the panel.

Users can easily edit their queries by clicking the Add, Reset
or Remove button. By clicking Submit button, queries are
submitted to the current branch and the result user interface
is displayed by the system. By clicking Submit to All Branches
button, cross branch query results are shown as in Figure 8.
Then clicking one of branches, the corresponding result user
interface is displayed by the system.



Figure 7. An Example Query Formulation

Figure 8. Cross Branch Query Results

Result Display User Interface
The result display user interface is composed of two pages:
Summary Page and Detail Page. The summary page has
a query result table, whose schema matches the dropdown
menus in the query formulation. That is, the first column of
the table will match the selected class in the start dropdown
menu, the second column matches the class selected in the
second dropdown menu, and so on. The first column is the
major domain and corresponds to the objects of interest in
the query. Other columns are the related or intermediate do-
mains that are used in the query criteria to retrieve the major
domain result. Each row in the table consists of one instance
from the major domain and a list of intermediate instances
from the related domains. The list of intermediate instances
is used to infer the major instance. The Sorting button within
the table can be used to sort the result list. Every instance in
a result row is bound to a link that takes the user to the detail
page containing for the corresponding instance (see Figure
9).

The results within a branch are displayed in three formats:
List, Location, and Network. Here we focus on the List for-
mat which presents objects instances that satisfy the query.
Figure 9 shows the results table for the query of Figure 7.
-Neuron is the major class, -Inputs.-Chemical Synapse and
-My Annotations.-Article are the related classes. Each row
in the table represents a chain of inference rules performed
on the data in the knowledgebase. One instance may be re-
trieved from multiple inference-rule chains, such as the in-
stance S-Cell (one neuron) in above table. This design pro-
vides users the maximum information related to their major
query result. The detail information about each instance can

Figure 9. Summary Page

Figure 10. Detail Page

be reached by clicking the instance (i.e. a hyperlink) inside
the table. A sample detail page for neuron S-Cell is shown
in Figure 10.

Algernon Query Generation
A key aspect of the advanced query interface is the auto-
matic generation of the Algernon query. As the query is con-
structed by the user using the visual interface, at each step
the system is automatically creating and appending various
components of the final query string. The query generation
process is illustrated by looking at the example of Figure 9.
Here, the user has created a query to retrieve neurons with a
chemical synapse which has an attribute of connection prob-
ability which is larger than 2 and which has an article an-
notation has an attribute of year after 2000. Corresponding
to each of the three dropdown menus of classes in the visual
query constructed by the user, there are three columns in the
Algernon query expression:



• instance Neuron,

• Inputs, whose instance is Chemical Synapse with the value
of Connection Probability property (whose parent class is
My Properties) larger than 2, and

• My Annotations, whose instance is Aritcle with the value
of Year property larger than 2000.

The final Algernon query expression is as follows:

(
(:INSTANCE -Neuron ?Col0_Returns)

(-Inputs ?Col0_Returns ?Col1_Returns)
(:INSTANCE -Chemical_Synapse ?Col1_Returns)
(-My_Properties ?Col1_Returns ?Col1_Cond_Prop6)
(:CHILD -Connection_Probability

?Col1_Cond_Prop6 ?Col1_Cond6)
(-Value ?Col1_Cond6 ?Col1_Cond6_Values)
(:test (:lisp (> ?Col1_Cond6_Values 2)))

(-My_Annotations ?Col1_Returns ?Col2_Returns)
(:INSTANCE -Article ?Col2_Returns)
(-Year ?Col2_Returns ?Col2_Cond_Prop12)
(:test (:lisp (> ?Col2_Cond_Prop12 2000)))
)

The following describes in detail how the above textual Al-
gernon query expression is generated by the system:

1. The user starts by creating a query for a neuron (See Fig-
ure 7 (a)). The system generates the following Algernon
query:
(
(:INSTANCE -Neuron ?Col0_Returns)
)

Note: The system automatically generates a column name
?Col0 Returns to refer to the instances descibed here.
Similar column names are generated at each step.

2. Then, the user chooses a chemical synapse (whose parent
is Inputs hidden in the Figure 7 (b)), which has a relation-
ship with the neuron. This action by the user on the query
interface prompts the system to add two sentences (each
sentence in Algernon is enclosed within a set of paren-
theses) to the Algernon query that connects the inputs of
the neuron to the chemical synapse instance using appro-
priately “joined” variables. The updated Algernon query
is:
(
(:INSTANCE -Neuron ?Col0_Returns)

(-Inputs ?Col0_Returns ?Col1_Returns)
(:INSTANCE -Chemical_Synapse ?Col1_Returns)

)

3. After choosing the Chemical Synapse relationship class,
the user chooses the -Connection Probability property of
the Chemical Synapse, whose parent class happens to be -
My Properties (see Figure 7 (c)). When the user clicks the
“Add” button, the query criterion row is displayed by the
system into which the user enters the selection condition
that the value of that chosen property is larger than 2 (Fig-
ure 7 (d)). Corresponding to all these user interactions, the
system adds four more sentences to the Algernon query.
The updated Algernon query is:
(
(:INSTANCE -Neuron ?Col0_Returns)

(-Inputs ?Col0_Returns ?Col1_Returns)
(:INSTANCE -Chemical_Synapse ?Col1_Returns)

(-My_Properties ?Col1_Returns ?Col1_Cond_Prop6)
(:CHILD -Connection_Probability

?Col1_Cond_Prop6 ?Col1_Cond6)
(-Value ?Col1_Cond6 ?Col1_Cond6_Values)
(:test (:lisp (> ?Col1_Cond6_Values 2)))

)

4. Next, the user chooses the article sub-class from the third
pulldown menu of classes which is a relationship property
of the chemical synapse. The parent class for the article
sub-class is My Annotations, which is hidden in the Fig-
ure 7 (e)). This action by the user on the query interface
prompts the system to add two more sentences to the Al-
gernon query. The updated Algernon query is:
(
(:INSTANCE -Neuron ?Col0_Returns)

(-Inputs ?Col0_Returns ?Col1_Returns)
(:INSTANCE -Chemical_Synapse ?Col1_Returns)

(-My_Properties ?Col1_Returns ?Col1_Cond_Prop6)
(:CHILD -Connection_Probability

?Col1_Cond_Prop6 ?Col1_Cond6)
(-Value ?Col1_Cond6 ?Col1_Cond6_Values)
(:test (:lisp (> ?Col1_Cond6_Values 2)))

(-My_Annotations ?Col1_Returns ?Col2_Returns)
(:INSTANCE -Article ?Col2_Returns)

)

5. Lastly, the user chooses the primitive property -Year of the
article class (Figure 7 (f)). Upon clicking the “Add” but-
ton, the system introduces a second row in the query crite-
ria panel. The user enters the value of the year property as
larger than 2000 (Figure 7 (g)). The final Algernon query
is generated with the addition of two more sentences to
the query:
(
(:INSTANCE -Neuron ?Col0_Returns)

(-Inputs ?Col0_Returns ?Col1_Returns)
(:INSTANCE -Chemical_Synapse ?Col1_Returns)

(-My_Properties ?Col1_Returns ?Col1_Cond_Prop6)
(:CHILD -Connection_Probability

?Col1_Cond_Prop6 ?Col1_Cond6)
(-Value ?Col1_Cond6 ?Col1_Cond6_Values)
(:test (:lisp (> ?Col1_Cond6_Values 2)))

(-My_Annotations ?Col1_Returns ?Col2_Returns)
(:INSTANCE -Article ?Col2_Returns)

(-Year ?Col2_Returns ?Col2_Cond_Prop12)
(:test (:lisp (> ?Col2_Cond_Prop12 2000)))
)

There are several important points to note in the Algernon
query generation process:

1. The system systematically introduces new variables as the
user continues to interact with the interface and formating
the query. The variables are repeated in appropriate places
in the new sentences to ensure equality of values in these
positions. For example, the variable ?Col0 Returns
appearing in the first line is repeated in the second line



to indicate that the neuron that the variable represents is
the one whose inputs are being considered in the second
sentence of the Algernon query. This is similar to the join-
conditions that are prevalent in relational databases.

2. The query generation user interface allows for the user
to return back to a previous step in the formulation pro-
cess and possibly add new conditions in earlier parts of
the query. The interface also allows for parts of the query
being formulated to be deleted. The system carefully han-
dles all these cases by keeping track of query strings for
various screens and editing these query strings appropri-
ately.

3. The query generation user interface allows the users to
choose a sub-class at any level while making progress in
the query formulation. Appropriate Algernon queries are
generated in such instances.

The final Algernon query, when executed against the Protege
KB, generates a list of 3-tuples (Neuron, Chemical Synapse,
Article) with the associated relationships between these ob-
jects as specified in the query. The results are displayed in a
tabular manner.

RELATED WORK AND COMPARISON
Visual querying began with QBE (Query-By-Example) [22]
in 1975. Since then, several visual query languages have
been developed, such as QBT (Query-By-Templates) [19],
Kaleidoquery [14], XQBE (XQuery-By-Example) [3], QBB
(Query-By-Browsing) [17]. A visual query builder called
Visual XQuery Builder has been distributed by IBM in DB2
Developer Workbench [21]. There have been a number of
tools to assist users in building queries for semantic data.
Many of them provide intuitive Web-based approaches. Some
examples are NITELIGHT [20], MashQL [10], and GLOO
[7]. Konduit [2] also allows for the integration of desk-
top data. These help users create declarative queries with
pre-embedded declarative queries instead of using forms.
Form-based query interfaces are also widely used to access
databases and Jayapandian [11] gave an automated creation
method.

Visual Query Systems (VQSs) are defined as database query
systems that use a visual representation to depict the domain
of interest and express related requests [4]. They are espe-
cially designed for end-users who have limited computer ex-
pertise and cannot work explicitly with the internal structure
of the accessed database. The technology for the construc-
tion of VQS is generally well researched and the choice of
approach is primarily one of matching other language con-
cepts to provide a clean, conceptually consistent interface
[13].

The primary differences between our query system and other
visual query systems are as follows:

1. Web-based: Ontology-based Web query system was de-
signed to be consistent with an existing ontology query
language Algernon which uses forward and backward chain-
ing rules to perform inference on data in knowledge bases.

It extends the functionality of the Algernon system by pro-
viding a Web-browser user interface which allows user to
make the query system accessible from any computer on
the internet.

2. On demand ontology schema retrieval: Unlike VQS, user
interfaces for most query systems are not designed for
non-programmers. Such as, Query-By-Example (QBE)
[22] which requires the users to remember too much in-
formation about database organization (schema). Before
users can formulate queries, they must remember or look
up the names of classes and properties in the database,
which requires database knowledge. Moreover, multiple
types of relationships between each class (Inheritance, re-
late to) are not easy to be understood to end-user. Starting
from the first selection of end-users, our query system can
dynamically retrieve the part of ontology schema in users’
interests, which facilitates them to construct a query ex-
pression with minimal database knowledge.

3. Intermediate Results: Most visual query systems require a
complex and difficult query expression in order to get the
intermediate results. With the intermediate results, users
can trace the inference chain performed on the data in the
knowledgebase. The inference chain information can be
easily found in the result table on the summary page. The
major/final result is in the first column of the table, and
other columns contain intermediate results. A row in the
result table represents an inference chain, from which the
major result is returned. If the major result can be resulted
from multiple chains, there will be multiple rows in the
table to reflect this fact.

4. Supporting user-defined operators: Our query system sup-
ports user-defined operators that are derived from the func-
tions in the ontology. With this support, users can easily
build a query according to their domain knowledge. The
user-defined operators provide more functionalities and
flexibilities to users, and make the query system readily
usable.

CONCLUSION AND FUTURE WORK
In this paper, we have presented the Web query sub-system
of NeuronBank. The query system provides a visual inter-
face that allows users to express arbitrary queries using an
easy to use interface. Classes are dynamically looked up by
the system and presented in the visual interface. Primitive
properties of classes can be queried by the users as well as
relationships with other classes. The user can follow a chain
of relationships to formulate complex queries.

The ideas presented in this paper can easily be used to query
arbitrary ontologies that are stored in Protege Frames. The
system can also be easily modified to work with RDF/OWL
ontologies as well. SPARQL queries will have to be gener-
ated in this case. The NeuronBank ontology is currently also
available in RDF/OWL and we expect to implement the ad-
vanced search visual interface discussed in this paper in the
near future. It is hoped that the ideas presented in this paper
form a general template for a general-purpose visual query
interface for ontologies.



ACKNOWLEDGEMENTS
This work is supported by the Brains and Behavior (B&B)
program at Georgia State University.

REFERENCES
1. Algernon:
http://algernon-j.sourceforge.net/

2. O. Ambrus, K. Möller, and S. Handschuh. Konduit
VQB: a Visual Query Builder for SPARQL on the Social
Semantic Desktop. Workshop on Visual Interfaces to the
Social and Semantic Web (VISSW), IUI, 2010.

3. D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By
Example): A Visual Interface to the Standard XML
Query Language. ACM Transactions on Database
Systems, 30(2), 2005.

4. T. Catarcia, M. F. Costabileb, S. Levialdic, and C.
Batinia. Visual Query Systems for Databases: A Survey.
Journal of Visual Languages and Computing. Elsevier,
1997.

5. CIRI: http://www.seco.tkk.fi/events/2004/2004-09-02-
web-intelligence/papers/airio et al.pdf

6. COQL:
http://hcs.science.uva.nl/projects/void/coql.html

7. A. Fadhil and V. Haarslev. GLOO: A graphical query
language for OWL Ontologies.
http://ceur-ws.org/Vol-216/submission 16.pdf CEUR
Workshop Proceedings, 2006.

8. J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E.
Grosso, M. Crubézy, H. Eriksson, N. F. Noy, and S.W.
Tu. The evolution of Protégé: an environment for
knowledge-based systems development. International
Journal of Human-Computer Studies, Volume 58 , Issue
1, Pages: 89-123. Academic Press Inc., Duluth, MN,
USA.

9. T. R. Gruber. Towards principles for the design of
ontologies used for knowledge sharing. International
Journal of Human-Computer Studies, Volume 43 , Issue
5-6 Nov./Dec. 1995, Pages: 907-928 Special issue on the
role of formal ontology in the information technology.
Elsevier, 1995.

10. M. Jarrar and M. D. Dikaiakos. MASHQL: a
query-by-diagram topping SPARQL. Proceeding of the
2nd international workshop on Ontologies and
Information systems for the Semantic Web (ONISW)
ACM, New York, NY, 2008.

11. M. Jayapandian and H. V. Jagadish. Automated
Creation of a Forms-based Database Query Interface.
http://www.vldb.org/pvldb/1/1453932.pdf Proceedings
of Very Large Databases (PVLDB), Vol. 1, No. 1, Pages
695-709, 2008.

12. P. S. Katz, R. J. Calin-Jageman, et. al. NeuronBank: a
tool for cataloging neuronal circuitry. Frontiers in
Systems Neuroscience, 2010.

13. J. Leopold, M. Heimovics, and T. Palmer.
WebFormulate: A Web-Based Visual Continual Query
System. Proceedings of the 11th international
conference on World Wide Web, 2002.
http://doi.acm.org/10.1145/511446.511476.

14. N. Murray, N. Paton, and C. Goble. Kaleidoquery: A
Visual Query Language for Object Databases.
Proceedings of the working conference on Advanced
visual interfaces (AVI) ACM, New York, NY, 1998.

15. NeuronBank system:
http://www.neuronbank.org/index.php?section=1

16. OWL. OWL Web Ontology Language.
Recommendation, W3C, February 2004.
http://www.w3.org/TR/owl-features/

17. S. Polyviou, P. Evripidou, and G. Samaras. Query by
Browsing: A Visual Query Language Based on the
Relational Model and the Desktop User Interface
Paradigm. Proceedings of the 3rd Hellenic Symposium
on Data Management, (HDMS04), Athens, Greece, June
2004.

18. E. Prud’hommeaux and A. Seaborne.
SPARQL query language for RDF. Recommendation,
W3C, January 2008.
http://www.w3.org/TR/rdf-sparql-query/

19. A. Sengupta and A. Dillon. Query by Templates: A
Generalized Approach for Visual Query Formulation for
Text Dominated Databases. Proceedings of the IEEE
international forum on Research and Technology
Advances in Digital Libraries (ADL). IEEE Press,
Washington, D.C., 1997.

20. P. R. Smart, A. Russell, D. Braines, Y. Kalfoglou, J.
Bao, and N. Shadbolt. A Visual Approach to Semantic
Query Design Using a Web-Based Graphical Query
Designer. 16th International Conference on Knowledge
Engineering and Knowledge Management (EKAW 2008)
29th September-3rd October 2008, Acitrezza, Catania,
Italy. Springer-Verlag, Berlin, Heidelberg, 2008.

21. Xquery in DB2 Developer Workbench. Introducing
DB2 9: Application development enhancements. IBM.
http://www.ibm.com/developerworks/data/library/techarticle/dm-
0607ahuja/

22. M. Zloof. Query-by-Example: the Invocation and
Definition of Tables and Forms. VLDB, 1975.

h
h
h
h
h
h
h
h
h
h

	Introduction
	Basic Architecutre of NeuronBank
	Query System Overview
	Query Generation User Interface
	Result Display User Interface
	Algernon Query Generation

	Related Work and Comparison
	Conclusion and Future Work
	Acknowledgements
	REFERENCES 

