
 1

RDF Browser for Data Discovery and Visual Query
Building

Jans Aasman

Franz Inc.

2201 Broadway, Suite 715, Oakland, CA 94612

ja@franz.com

Ken Cheetham

Franz Inc.

2201 Broadway, Suite 715, Oakland, CA 94612

cheetham@franz.com

ABSTRACT

The free-form nature of triplestores offers a lot of flexibility

for constructing databases, but that freedom can also make

it less obvious how to find arbitrary data for retrieval, error-

checking, or general browsing. Gruff is a graphical
triplestore browser that attempts to make data retrieval

more pleasant and powerful with a variety of tools for

laying out cyclical graphs, displaying tables of properties,

managing queries, and building SPARQL and queries as

visual diagrams.

Author Keywords

RDF, SPARQL, Query Builder, Triplestore, Prolog,

Reasoning, Semantic Web

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

There is an exciting explosion of linked RDF datasets being

made available in the Linked Open Data Cloud ("LODC").

A current overview is described in Bizer et al’s paper,

Linked Data - The Story So Far. [1]. The Authors argued

that we have moved beyond the point where we simply

publish some info as RDF and contend that we have arrived

at early maturity: there are now quality standards, best
practices and a whole slew of tools to help with publishing

and retrieving RDF.

Many RDF datasets from the LODC are about one

particular domain and contain a description of the classes

(the ontology), a set of instances, and possibly some

explicit owl:sameAs relations to other instances in other

datasets. Some other RDF datasets in the LODC actually

have many different domains, DBPedia and Freebase are

good examples. The LODC vision is that the single data

representation for every type of knowledge (RDF) will
make it easy to combine datasets and dramatically increase

their value. In practice, the exploitation and exploration of

these data sources can be far from trivial. Two papers

recently made this point:

1. Heath [2] argues in his paper How will we interact with

the web of data? the tools that are currently being

developed basically focus on how machines can interact

with the RDF cloud. However, there is also an urgent need

for new Human-Computer interaction paradigm for the

Web of Data. One point he makes, it is actually better to

speak of a Web of Things and visualization tools should
make the thing that is referred to in RDF become a first

class object.

2. Karger and Schraefel [3] wrote an interesting position

paper called The Pathetic Fallacy of RDF. The core of their

criticism of current visualization tools is that the cloud of

data is treated as one big fat graph that somehow should be

displayed as a graph. Their paper shows that in many cases

the 'graph view' hardly helps the user in achieving their

tasks. We actually agree with their assessment and we

think that any visualization tool should be a combination of

graphs, table like views, object oriented views and faceted

navigation and browsing tools.

But lets us go back to why it is hard to browse the LOD

cloud. To begin, most of the time an interesting problem

requires you to combine datasets. A typical example would

be from the biomedical domain. Say you take the RDF

version of Clinical Trials [4], the side effect database –

Sider [5], the disease database - Diseasome [6], Dailymed

[7] with commercially available medicine, and Drugbank

[8] filled with FDA approved drugs and targets. With all

these databases combined you can perform some very

interesting analysis to find relationships between clinical

trials and genes, drug and diseases in a space of more than a
100 different classes and thousands of types of

relationships.

EXPLORATION AND DISCOVERY

So what kinds of analysis would you do with these datasets:

Workshop on Visual Interfaces to the Social and Semantic Web

(VISSW2011)

Co-located with ACM IUI 2011

Feb 13, 2011, Palo Alto, US.
Copyright is held by the author/owner(s).

Example 1 - Automatic Discovery. Sometimes users just

want to know if it would be possible to find any connection

between two interesting instances from two different

datasets. A good example would be to find all the links you

can find between a particular target (Cytochrome c3) and

say Morphine Sulfate given all the predicates or a subset of
the predicates in the database. What is non-trivial about

this? Well most Triplestores do not provide automatic

discovery functions that would connect these instances or

provide ways to specify which predicates to use while

doing automatic discovery.

Example 2 - Write New Queries. Say a user has two

instances from two different datasets (like Example 1) and

you want to write a SPARQL query that links them

together. Again, what is non trivial about this? In some

sense a user has to know the datasets before they can write

the queries, that is, you have to understand the predicates

and the names of the classes that will link them together.

Unfortunately the datasets from the example above lack

domain and range restrictions so it not straight forward to

explore the schema space. Additional usability problems are

that you have to know the namespaces, the fragments of the

namespaces, and very often the type of the objects.

Example 3 - Basic Data Mining: Say you have an instance

of a clinical trial and now you want to find all the clinical

trials that discuss the same kind of drugs, diseases and

targets. The non trivial part is that most triple stores do not

offer you advanced ways to perform stored procedures on

large datasets that could do this data mining for you.

In order to make exploration of multiple datasets easier we

developed Gruff, an advanced Graphical User Interface for

working with RDF Data in a triplestore.

Gruff provides a full set of graph analysis capabilities to

help users explore the LODC. In the most simple case a

user selects two resources in Gruff, the predicates the graph

algorithm needs to explore, and Gruff will find all

connections between the two instances. The end result on

the screen can even be saved as an NTriple file. The graph

algorithms all take as input first class functions called

generators. The contract for a generator is that it takes one

node as an input, and will generate a set of nodes as output.
Gruff will create these generators for you if you select the

predicates that you want to explore.

In other cases the users want to investigate something more

sophisticated, like conditionally exploring predicates per

type of node (or resource), starting with the important

predicates first. In this case the user needs to write some

SPARQL or Prolog code and this can be facilitated with the

visual query builder described below.

With Gruff you can first explore the graph over multiple

link data sets completely visually, and once you find one

pattern that you are interested in, you can easily build from
that a visual query and find all the same patterns in the set

of linked datasets.

Gruff provides several key capabilities for LODC

exploration:

Graph Layout:

Triplestores specialize in relationships between things, and
it can be difficult to get a feel for a tangled set of

relationships.

Gruff's Graph View (figure 1) provides automatic layout of

highly-cyclic graphs. Heuristics are used to make layouts of

a modest number of nodes fast enough for interactive

browsing. The algorithm specializes in keeping nodes from

laying on top of unrelated link lines, even though all link

lines are straight; those two features allow you to quickly

spot all of the nodes that are linked with a particular node,

and then to quickly spot all of the linked nodes of those

nodes, and so on.

Figure 1.

Once you have found one or more initial objects of interest,

the familiar Table View (figure 2) can be used to jump to

linked objects that are properties of other objects. The

Graph View will add nodes and links that show a history of

all of the paths that you traversed in the Table View. You
can also incrementally add linked nodes directly in the

Graph View.

 3

Figure 2.

Finding arbitrary objects:

A triplestore can contain many objects that are not instances

of a simple set of classes, and so it can be tricky to locate

arbitrary objects of interest.

Gruff has a variety of ways for looking up arbitrary objects.

These include (1) specifying an object textually as either its
easy-to-type rdfs:label string, its full URI, or a brief URI

that uses a namespace identifier; (2) selecting a node that

has a selected rdf:type (selecting the type either from a

single list or from an rdfs:subClassOf hierarchy); (3)

finding all nodes that have property values containing

arbitrary text, using free text lookup; and even (4) selecting

from all sorted nodes.

When there are many choices to select from, Gruff manages

the selection by using a series of pop-up menus that allow

you to gradually hone in on a desired object. You use these

menus by first selecting the starting character of an object's

name, then the second character, and so on. Each menu
displays only the choices that remain for the next character,

with string completion for the remaining choices to the

extent that's possible without ambiguity, allowing you to

see increasingly recognizable choices.

Saving visual layouts and other views to file allows you to

start back up quickly in a future Gruff session with a

familiar set of "starter nodes", rather than specifying them

again from scratch. The most recently saved or loaded

views are always listed on the View menu for quick

retrieval. You can also copy nodes from one view to

another, for example, to avoid respecifying them.

Building Queries Graphically

While query languages like SPARQL are quite powerful,

queries can become rather complex and therefore difficult

to construct free of nesting mismatches and typos in URIs.

Gruff's newest feature, the Graphical Query View (figure

3), allows creating queries as diagrams of nodes and links.

A query diagram can include actual objects from the store,

which you select as in other views, while other nodes and

links represent query variables. Group graph patterns such

as UNION and OPTIONAL groups can be laid out as
grouper boxes that can be nested to any level, with proper

nesting maintained automatically.

Figure 3.

Once you've created a query diagram, Gruff will generate

either SPARQL or Prolog code for the query. Seeing the

generated query text (figure 4) can help you learn to write

SPARQL or Prolog queries directly. You can also edit the
generated text before performing the query. You can save

queries either as graphical diagrams or as actual query text

and load them any time later for modification into related

queries. You can even generate a visual graph from query

results, showing the network of all triples that are

comprised of nodes and predicates that are in the query

results and the query itself.

Figure 4.

CONCLUSION

In general, Gruff's tools are tightly integrated to allow

browsing a triple-store in a variety of ways. Gruff is free

and can be downloaded from www.franz.com/agraph/gruff/,

where additional screen shots and demonstration videos can

also be found.

REFERENCES

1. Heath, T., Hepp, M., and Bizer, C. The Story So Far.

Special Issue on Linked Data, International Journal on

Semantic Web and Information Systems (IJSWIS) 2009.

http://linkeddata.org/docs/ijswis-special-issue

2. Tom Heath (2008) How Will We Interact with the Web

of Data? IEEE Internet Computing, Vol. 12(5), pp. 88-

91

3. Schraefel, M. and Karger, D. (2006) The Pathetic

Fallacy of RDF. In: International Workshop on the

Semantic Web and User Interaction (SWUI) 2006, Nov

2007, Athens, Georgia.

4. LinkedCT http://linkedct.org/index.html

5. Sider - http://sideeffects.embl.de/

6. Diseasome - http://www.nd.edu/~alb/Publication06/145-

HumanDisease_PNAS-14My07-Proc/Suppl/.

7. DailyMed - http://dailymed.nlm.nih.gov/

8. Drugbank - http://www.drugbank.ca/

