mOCRa: Mobile OCR Application*

mOCRa: Aplicación OCR Móvil

Xose R. De La Puente
IRLab, A Coruña Univ.
Campus Elviña s/n
A Coruña
xose.puente.romay@udc.es

Ismael Hasan
IRLab, ICT Centre
Campus Elviña s/n
A Coruña
ihasan@udc.es

Resumen: En los últimos años, los teléfonos móviles han evolucionado hasta convertirse en dispositivos con cámaras de gran resolución y conexión a Internet. En este contexto, surge la idea de aplicar tecnologías OCR a las fotos de los móviles. Esta idea origina mOCRa, la aplicación presentada en este trabajo.

Palabras clave: Reconocimiento óptico de caracteres, aplicación móvil, Android

Abstract: In the last years, mobile phones have evolved to devices with high-resolution cameras and Internet connection. In this context, the idea of applying OCR techniques to the pictures taken with these devices rises. As result of this idea, we have built mOCRa, the application presented in this work.

Keywords: Optical character recognition, mobile application, Android

1. Introduction

The evolution of mobile devices has been vertiginous: two decades ago they were big devices, with a low autonomy of battery, and they only could be used to make phone calls; nowadays, mobile phones are devices with multimedia capabilities, Internet access, etc. Their features include the integration of the mobile phones with digital cameras. With this in mind, it rises the idea of using a mobile device to extract the text from the pictures taken with the camera; this idea is materialised in mOCRa, and its first version for Android devices.

2. System Overview

mOCRa client application offers to the users an accessible and easy-to-use interface, optimised capturing of images with text and tools to manage and edit the texts recovered from the pictures.

The application interface includes an adaptable grid so the user can use it to align it with the lines of text (see Figure 1); it also allows to set the quality of the picture to be taken according to the amount of grid lines. In order to ease the use of the application, four quality levels have been defined in mOCRa: low, medium, high and very high. The “very high” level is suitable to analyse full page texts.

The process of obtaining the text from a picture goes as follows: once an image is captured with the phone it is sent to the server. The server processes it and returns the text to

* This work was funded by FEDER, Ministerio de Ciencia e Innovación and Xunta de Galicia under projects TIN2008-06566-C04-04 and 07SIN005206PR.
the phone; the user of the device can modify
the text using a text editor, can store it, can
send it via e-mail or can select a portion of
text to be used as a query against Google. A
video demonstration of mOCRa can be found in
the IRLab web.

3. System Architecture

The application mOCRa was developed
for the Android platform. Also, it was de-
signed to be easily migrated to other mo-
bile operating systems. To accomplish this,
the application follows a client-server archi-
tecture; moreover, to guarantee compatibil-
ity, communication issues are managed us-
ing Web Services. Both client and server sys-
tems follow a component-based architecture,
to build a functionally scalable application.

The mobile device system comprises the
following modules: user interface module,
Web Services based communication manage-
ment module, stored texts management mod-
ule and public key management module, to
communicate with the server using secure
connections.

The server system comprises the following
modules: image pre-processing module, OCR
analysis module, a parsing module for each
Web Service and a business logic module for
each Web Service. The aforementioned Web
Services are used to configure the applica-
tion, to send the images and responses and
to avoid sending data in the case the server
is overloaded.

4. Evaluation

The application was evaluated in terms of
effectiveness, to check that the results are cor-
correct, and efficiency, to check that the results
are obtained in an acceptable time. The ref-
ference to be compared with was another mo-
bile OCR application, SnapIt, available for
Android systems and developed by mocsoft.
This system has been commercialised for a
while, and it is one of the main competitors
of mOCRa.

4.1. Effectiveness

In this analysis the similarity between the
text obtained using the applications and the
original text was measured using the Levens-
shtein distance (LD) (Levenshtein, 1966), in
a similar way it was used in other evaluations
of OCR systems (E. Borovikov and Turner,
2004), and the normalised Levenshtein dis-
tance (NLD).

Levenshtein distance is used to give an in-
sight of the amount of differences between
two sequences of characters. It measures the
minimum number of operations needed to
transform one of the sequences to the other.
These operations include replacement, addition
and deletion of single characters.

Normalised Levenshtein distance is used
to give an insight about the similarity: a val-
ue of zero means that the sequences are com-
pletely different, and a value of one means
that they are equal. Its formula is

\[
NLD = 1 - \frac{LD}{LDMax} \tag{1}
\]

where \(LDMax\) is the length of the longest
text.

The testbed includes an heterogeneous set
of texts to cover several significant charac-
teristics to compare the applications. Snapit
does not allow to load images from the mem-
ory of the phone, it only retrieves the text
from pictures taken with the camera, and it
does not store them. For this reason, the im-
ages used to compare the results are not ex-
actly the same for both systems. To minimise
the impact of using different pictures, several
images were taken for each text and applica-
tion, and in the evaluation it was used the
one offering the best results for each text.

The applications were tested using two dif-
f erent Android devices, with different speci-
fications: HTC Magic and Nexus One. To do
the tests, three texts were used; a brief ex-
planation of each text follows, accompanied
with the comparison of the results for each
application and mobile phone.

The first text used in the evaluation is an
economics text written in English. It is a full
page containing 3.729 characters, with a font
size of 12pt. Snapit only allows to take pic-
tures in landscape format, so it was neces-
sary to take two photographs to process the
entire page. The “very high” quality option
was used in mOCRa.

Table 1 shows that the results of mOCRa
clearly outperform the ones obtained with
SnapIt. To deal with full page images,
mOCRa includes a “very high” image qual-
ity mode to optimise the results. SnapIt does
not offer a similar option; moreover, due to
the fact that the pictures can only be taken

1http://www.irlab.org/?q=publications/multimedia
in landscape format, it is necessary to do two photographs.

Table 1: Full page text similarity

<table>
<thead>
<tr>
<th>Metric</th>
<th>SnapIt</th>
<th>mOCRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>2430</td>
<td>1830</td>
</tr>
<tr>
<td>NLD</td>
<td>0.34835</td>
<td>0.50925</td>
</tr>
</tbody>
</table>

Table 2: Several fonts text similarity

<table>
<thead>
<tr>
<th>Metric</th>
<th>SnapIt</th>
<th>mOCRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>419</td>
<td>212</td>
</tr>
<tr>
<td>NLD</td>
<td>0.09858</td>
<td>0.09584</td>
</tr>
</tbody>
</table>

Table 3: Table text similarity

<table>
<thead>
<tr>
<th>Metric</th>
<th>SnapIt</th>
<th>mOCRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>1077</td>
<td>1072</td>
</tr>
<tr>
<td>NLD</td>
<td>0.22350</td>
<td>0.22711</td>
</tr>
</tbody>
</table>

The second text contains 697 characters, uses a font size of 12pt, and it is written in English. This document contains the same phrase repeated with different font types and formats (boldface, italic and underlined). The phrase does not make sense, but it is intended to cover most of the usual characters: “The (quick) brown {fox} jumps! over the $3,456.78 <lazу> #90 dog & duck/goose, as 12.5% of E-mail”.

The results in table 2 show that mOCRa again outperforms SnapIt. The configuration used in mOCRa was the “high” quality one, which is suitable to extract the text from several paragraphs.

Table 2: Several fonts text similarity

<table>
<thead>
<tr>
<th>Metric</th>
<th>SnapIt</th>
<th>mOCRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>419</td>
<td>212</td>
</tr>
<tr>
<td>NLD</td>
<td>0.09858</td>
<td>0.09584</td>
</tr>
</tbody>
</table>

The results in table 3 show that mOCRa again outperforms SnapIt. The configuration used in mOCRa was the “high” quality one, which is suitable to extract the text from several paragraphs.

4.2. Efficiency

These tests were run in a Nexus One device. It accessed the web through a wireless 802.11g connection (54 Mb/s) to communicate with the server. The execution times showed in tables 4 and 5 comprise the process since a picture is sent for processing until the text is shown in the mobile device.

4.2.1. mOCRa

The application allows the users to choose the quality (size) of the picture to send. This choice can be done by adapting the size of the display grid, or by selecting one of the four available predefined quality levels. In the tests the data was collected for these predefined levels. The computing time in mOCRa includes:

1. mobile - configuration sending,
2. mobile - image splitting,
3. mobile - creation and sending of Web Service packages containing the image,
4. server - image reconstruction,
5. server - image pre-processing,
6. server - OCR processing,
7. server - text sending,
8. mobile - text display.

Also, it is worthy to mention that the communications involving images and text are encrypted using SSL.

To obtain the results 10 pictures were processed. Table 4 shows the time results: it can be inferred that nor mOCRa neither SnapIt apply layout analysis techniques to deal with tables or multi-column layouts. The results are pretty bad: the distribution of text causes problems in the OCR process and the lines of the tables are extracted as extra characters. In this test mOCRa results include more errors than the SnapIt ones (mOCRa has a higher LD); however, its NLD value is better. The main implication of this fact is that mOCRa extracts more text from the noise of the image than SnapIt, but it is more accurate obtaining the real text.

The tests also show an interesting fact: SnapIt offers better results with the HTC Magic device, despite the fact that its camera quality is lower than the Nexus One camera. Because of this, it is our belief that this application uses some image processing techniques which are dependant on the resolution of the pictures. This does not happen with mOCRa, offering better results as the quality of the images improves.

Also, it is worthy to mention that the communications involving images and text are encrypted using SSL.

To obtain the results 10 pictures were processed. Table 4 shows the time results: it can be observed that the use of the “very high” option is very time-consuming, but it takes advantage of the maximum quality the camera can offer. As previously stated, mOCRa results improve with quality images.

Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz, 4 GB of ram
About the time results, we must remark that the process which most penalises the execution time of mOCRa is to send the image. This operation takes longer than the image pre-processing and retrieval of text.

<table>
<thead>
<tr>
<th>Image quality</th>
<th>mOCRa processing time (s)</th>
<th>Mean</th>
<th>Best time</th>
<th>Worst time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td></td>
<td>6</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Medium</td>
<td></td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>High</td>
<td></td>
<td>9</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Very high</td>
<td></td>
<td>16.9</td>
<td>14</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 4: mOCRa processing time.

4.2.2. SnapIt

The tests run to check the efficiency of this application were the same used to check the efficiency of mOCRa. We cannot provide any information about the way in which SnapIt retrieves the text (we have no access to its source code), but we can assume that it also uses a server (since it cannot work without a connection to the Internet), so the process should share some similarities.

Table 5 shows the results. SnapIt times improve the times of mOCRa; therefore, it is our belief that this application does not take advantage of the quality of the cameras integrated in the mobile phones.

<table>
<thead>
<tr>
<th>SnapIt processing time (s)</th>
<th>Mean Time</th>
<th>Best Time</th>
<th>Worst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.25</td>
<td>2.5</td>
<td>7</td>
</tr>
</tbody>
</table>

Table 5: SnapIt processing time.

5. Conclusions and Future Work

The application presented in this work, mOCRa, shows good results. The system can provide an excellent startpoint to build specific and complex systems, offering for instance generation of summaries, generation of snippets, entities detection or language translation.

Our next works with mOCRa will include the improvement of the results by the use of top-down layout detection techniques, table boundaries detection techniques and the use of text post-processing techniques to detect the noise and to correct bad-recognised words. With these improvements, the text could be used for complex Information Retrieval tasks: the techniques of Parapar, Freire, and Barreiro (2009) can be applied to use these texts in IR systems; moreover, the work of K. Taghva and Condit (1994) states that if a picture is good enough and a post-processing of the text is applied, the final result has the same quality as a text manually created and corrected.

Finally, it is worthy to mention that we are working on image compression techniques and in the improvement of the communication protocols to obtain better results in terms of efficiency.

Bibliografía

