
Benchmarking triple stores with biological data

Vladimir Mironov1, Nirmala Seethappan1,2, Ward Blondé3, Erick Antezana1, Bjørn
Lindi2, and Martin Kuiper1

1 Dept. Biology, Norwegian University for Science and Technology (NTNU), Trondheim,
Norway

{Martin.Kuiper, Erick.Antezana Vladimir.Mironov}@bio.ntnu.no
2 High Performance Computing, Norwegian University for Science and Technology

(NTNU), Trondheim, Norway
Bjorn.Lindi@ntnu.no, s.nirmala@gmail.com

3 Dept. Applied Mathematics, Biometrics and Process Control,
Ghent University, Ghent, Belgium

Ward.Blonde@ugent.be

Abstract. We have compared the performance of five non-commercial triple
stores, Virtuoso-open source, Jena SDB, Jena TDB, SWIFT-OWLIM and
4Store. We examined three performance aspects: the query execution time,
scalability and run-to-run reproducibility. The queries we chose addressed
different ontological or biological topics, and we obtained evidence that
individual store performance was quite query specific. We identified three
groups of queries displaying similar behavior across the different stores: 1)
relatively short response time, 2) moderate response time and 3) relatively long
response time. OWLIM proved to be a winner in the first group, 4Store in the
second and Virtuoso in the third. Our benchmarking showed Virtuoso to be a
very balanced performer – its response time was better than average for all the
24 queries; it showed a very good scalability and a reasonable run-to-run
reproducibility.

Keywords: triple store, benchmarking, semantic web, knowledge management,
RDF, SPARQL.

1 Introduction

Semantic Web technologies are increasingly being adopted by the scientific
community, and Life Sciences researchers are no exception [1]. Our perspective is
from the Life Sciences, and we have previously built two semantically integrated
knowledge bases [2,3]. Semantic Web technologies open a new dimension to data
integration, with various solutions, such as format standardization at the source
(ontologies and uniform semantics), a sound scalability system, and an advanced
exploratory analysis (e.g. automated reasoning), to overcome some of the current
limitations. An increasing number of principal biological data providers, such as

UniProt [4], have started to make their data available in the form of triples
(commonly represented in the Resources Description Framework (RDF) language
[5]). Access to data in RDF format typically is facilitated via so-called endpoints.
Those endpoints allow querying by SPARQL [6], the standard query language that
allows users experienced in this query language to fetch information from resources
holding RDF triple stores – a collection of terms and their interrelationships.

1.1 Triple stores

Currently, there are several triple store solutions [7] to store information represented
in RDF format. Although most of them are not targeted towards a specific domain,
some of them have been readily adopted by biological data handlers who expected to
find in them a means to overcome some of the limitations of classical storage
solutions (mainly based on relational database management systems).

The development of triple stores has flourished during the last 5 years. Currently,
there are more than 20 systems available [8]. Both the academic and private sectors
have been involved in developing these triple stores. This race has created a healthy
competition to excel in querying and loading performance, scalability, and stability.
In particular, the semantic web community has been also challenging the usage of
triple stores by promoting open contests and demonstrating Semantic Web
applications [9]. It is encouraging for the scientific community that many of these
triple stores are freely available for academic use.

1.2 Benchmarking efforts

Much of the benchmarking done previously on triple stores was based on artificial
data or a set of triples that could at best only mimic a realistic ontology. Among the
“standard” sets used are: the Lehigh University Benchmark (LUBM [10]) and the
Berlin SPARQL Benchmark (BSBM, [11]). Other studies, such as the one performed
by UniProt [4], demonstrated the current limitations of some triple stores [12].

Here, we present “the NTNU benchmark”, which is the work we undertook using
five popular triple store implementations, and report the outcome of this
benchmarking. In comparison with previous benchmarkings [13], we used two
additional stores not included previously (Swift OWLIM and 4Store) and instead of
(artificial) computationally generated data, we used biologically relevant real life data
from our Cell Cycle Ontology knowledge base [2].

2 Benchmarking

2.1 Software

The set of triple store implementations included Virtuoso OpenSource 6.0.0, Swift
OWLIM 2.9.1, 4Store 1.0.2, Jena SDB 1.3.1, Jena TDB 0.8.2. The stores were run
under Centos 5 operating system. The details of software configuration are available
on request.

2.2 Hardware

The benchmarking was performed on a Dell R900 machine with 24 Intel(R)
Xeon(R) CPUs (2.66GHz). The machine was equipped with 132G main memory and
14x500GB 15K SAS hard drives.

2.3 Querying

The ten graphs constituting the Cell Cycle Ontology (CCO) [2], in size ranging
from 356903 to 3170556 triples, were used for benchmarking. The graphs were
queried with 24 SPARQL queries from the library of queries on the CCO web site
(http://www.semantic-systems-biology.org/cco/queryingcco/sparql). The queries were
executed on each of the graphs sequentially from query Q1 through Q24. The
experiments were replicated three times. Prior to each experiment the contents of the
stores were completely cleared and uploaded anew. The average response time and
the corresponding relative standard errors (RSE) for these three observations were
computed for all the data points (24 queries and 10 graphs, available as
supplementary material) and used to aggregate the data for Tables 2 and 3 and Figures
1 and 2.

3 Results and Discussion

The most salient features of the queries used for our benchmarking are summarized
in Table 1.

Table 1. Overview of the query features. The selected 24 queries (Q1 through Q24) were
used to evaluate the triple stores' responsiveness with respect to various query features (e.g.
REGEX). The table shows the full set of queries and the features used.

As can be seen from Table 1, this collection of queries encompasses a broad range
of features and combinations thereof. This ensures a comprehensive assessment of the
performance of the triple stores.

In order to get a bird's eye view on the performance of the stores we aggregated the
response times into the single cumulative total response time and estimated the
average relative standard errors for each of the stores (Table 2). (Please note that
OWLIM does not support the COUNT operator, therefore the values for this store do
not include data for queries Q17, Q19, Q20. Q21).

Table 2. Response times (in seconds) averaged over the three replicates and summed over the
24 queries and 10 graphs. RSE – the relative standard error for the three replicates averaged
over all the data points (24 queries and 10 graphs).

!

"# $

"% $

"& $ $ $ $ $

"'

"(

")

"* $ $

"+ $

", $

"#- $ $ $ $

"##

"#% $

"#& $ $ $ $

"#' $

"#(

"#)

"#* $ $

"#+ $ $ $ $ $

"#, $ $ $

"%- $ $

"%# $ $

"%%

"%&

"%' $ $ $

./0123!
4/25367

8963!5:;<!+!
56/123!

1;5536<7
=>?@=ABC!
9136;596

C@8@?!
09D/E/36

=FGHF!IJ!
09D/E/36

G@.?@AK?!
09D/E/36

FHLHM!
9136;596

NA@=A!
9136;596

K=NA?!
9136;596

!"#$%& '$#()!#*+& ,"-

O/65P979 %-&Q,&, -Q-(&

R3<;!.GI *&-Q',% -Q-%-

R3<;!?GI #''(Q(*% -Q%&(

=SC@8 #'%(*Q,)' -Q#()

'.5963 '*())Q(&- -Q-,*

The total execution time varied over a very broad range and some of the stores (most
notably Jena TDB and OWLIM) displayed an unexpectedly high run-to-run
variability. On the basis of these data Virtuoso emerges as an overall winner, with by
far the best total execution time and a relatively small run-to-run variation. However,
the picture changes radically when we look into the query- specific behavior (Table
3).

Table 3. Average response time in seconds summed over the 10 graphs and sorted by the
average execution time. The slowest response is highlighted in red, the fastest in green. The
queries are sorted in the order of the response time averaged over the 5 stores (Avg).

The table makes clear that all the stores behave in a query specific manner. A
highly query-specific behavior has been also observed by Bizer and Schultz [14].
However, a couple of common trends are visible. OWLIM is by far the best performer
with the relatively short response time queries; 4Store shows the best performance
with the moderate response time queries; and Virtuoso is doing best of all with the
long response time queries. Jena SDB is consistently the slowest store with all the
short and moderate response time queries. Additionally, it should be noted that for
OWLIM and 4Store the cumulative values in the Table 2 are dominated by outliers –
query Q18 for 4Store and queries Q14, Q3, Q18 for OWLIM. The only common
feature of the queries Q14 and Q18 is the ORDER BY modifier, not used by any other

!"#$% &'$(")*) +#,-./01 +#,-.201 3/()$# 45678 9:;

!< !"#$% &$"''# &&"(((&")!# ("'(*)"*('

!=>)"#$(&$"$'$ &("')' &"$'$ ("((% #"&)#

!??)"$'$ &$"$$% &("+($ &"'&% ("(&& #"&#$

!?@)"#&+ &$"$') &("*!) &"$'# ("((% #"!!*

!?< #"&#$ &$"$'! &(")'' &"$%(("(&* #"!%&

!==)"&+(&$"+(% &("%*& &"'!* ("&+$ #"!%!

!3)"%&# &$"$'* &("++$ &")$% ("(&+ #"$&%

!A +"(%' &$"$$# &("''% &")++ ("('% #")(&

!?= +"&%* &$"$+$ &("+$& &"'((("($(#")'#

!= +"!*& &$"$$+ &("+#* &"'$* ("()! #")+)

!@ '"()' &'")!$ &(")+$ &"++% !"(!(#")%(

!?B !"(#) &$"$%(%"+%) &"$!# #"#''

!B)"*!(&$"+&& &("#%% !"&$$ &"(#+ #"#*#

!=? $"$+% &$"$$) %"*&* &"$&# #"%#!

!?C '"#+% &$"+)+ &&"#+# !")!% '"##' +"'#&

!?D)"#'* &$"$%(&("&&% &"$)(+"#!+

!=C #"&&(&$"$*+ &("#*# &"$&) +"*+)

!? &"*%+ &*"(#' &'"!)* &"#'+ *"(!' *"++*

!?> &"#)*)!")') &'"&)# &")#% ("($' &$"%%!

!=3 !"*&$!'"+&% $*"#&% &'"$## !+"!'! !&"))!

!D !"#&+ !#")&% $%"!'* &'"&&(!*"%%# !!"!%*

!?3)"++) &$"$$* '#"'$$ &"'(& %&"*%' $&"+#*

!> $"$)* $("'+# !+"('% $"#)' &&!&"+(! !$+"!'*

!?A !!"*'(+#"(&$ '%$")%# !'%%%")#% *$!)"+$' #+*$"))(

queries. The list of features shared by the queries Q3 and Q18 includes simple filters,
more than 8 triple patterns and a REGEX operator. At present it is not possible to
determine which of these features or a combination thereof are responsible for the
long execution time.

Finally, we wanted to compare the stores with respect to their scalability. The
averaged response times were summed over all the queries (except for the queries
Q17, Q19, Q20. Q21 for OWLIM) and plotted against the total number of triples in
the graphs (Figure 1).

Fig. 1. Average response time in seconds summed over the 24 queries. The response times
were averaged over the three replicates and summed over all the queries (except for the queries
Q17, Q19, Q20. Q21 for OWLIM due to the lack of support for the COUNT operator) and
plotted against the total number of triples in the graphs.

As can be seen from the figure OWLIM scales up extremely well, with Virtuoso
and Jena SDB as second best. 4Store demonstrated the poorest performance with
respect to scalability. However, as pointed out earlier, the behavior of OWLIM and
4Store is strongly affected by a few outliers. Therefore, to eliminate the impact of the
outliers we excluded the three slowest queries Q3, Q14 and Q18 from the plot (Figure
2).

! "!!!!!! #!!!!!! $!!!!!! %!!!!!!

!

!&'

"

"&'

#

#&'

$

$&'

%

%&'

()*+,-.-

/0123456

/0123756

89:;<

%4+-*0

=3+*)>?0.

?-
@
3+
)A

0

Fig. 2. Average response time in seconds summed over the 21 queries. The same as Fig. 1 but
omitting the queries Q3, Q14 and Q18.

Although the mutual arrangement of the individual graphs on the plot changed in
favor of OWLIM and 4Store, the conclusion drawn previously about the scalability
did not change.

4 Conclusions

We have compared the performance of five popular triple stores, Virtuoso-open
source, Jena SDB, Jena TDB, Swift OWLIM and 4Store, in three aspects – the query
execution time, scalability and run-to-run reproducibility. According to our results
there is no absolute winner within this set of stores. Instead, the performance seems to
be quite query-specific. Nevertheless, it was possible to identify three groups of
queries displaying similar behavior with respect to the different stores: 1) relatively
short response time, 2) moderate response time and 3) relatively long response time.
OWLIM proved to be a winner in the first group, 4store in the second and Virtuoso in
the third. Virtuoso emerged from our benchmarking as a very balanced performer –
its response time was better than average for all the 24 queries; it showed a very good
scalability and a reasonable run-to-run reproducibility. Even though in our study we
used only moderately large triple stores, others demonstrated that Virtuoso excels
when confronted with much larger stores, up to 100-200 M triples [14,15]. We
conclude that Virtuoso is well suited for managing large volumes of biological data.
This conclusion is further corroborated by the successful deployment of Virtuoso in
our BioGateway project [16] where it gracefully supports querying of ~1.8 billion
triples.

Data availability. The rdf files used for uploading the triple stores are downloadable
from the CCO web site [17].

! "!!!!!! #!!!!!! $!!!!!! %!!!!!!

!

!&#

!&%

!&'

!&(

"

"&#

"&%

"&'

"&(

)*+,-./.

01234567

01234867

9:;<=

%5,.+1

>4,+*?@1/

@.
A
4,
*B

1

Acknowledgments. The authors appreciate the assistance of E. Jensen with setting up
the triple stores used in this benchmarking. V. Mironov was supported by FUGE Midt
Norge.

References

1. Antezana E, Kuiper M, Mironov V. Biological knowledge management: the emerging role
of the Semantic Web technologies. Brief Bioinform. 2009 Jul;10(4):392-407. Epub 2009
May 19.

2. Antezana E, Egaña M, Blonde W, Illarramendi A, Bilbao I, De Baets B, Stevens R, Mironov
V, and Kuiper M. The cell cycle ontology: An application ontology for the representation
and integrated analysis of the cell cycle process. Genome Biol. 2009, 10(5):R58

3. Antezana E, Blondé W, Egaña M, Rutherford A, Stevens R, De Baets B, Mironov V, Kuiper
M. BioGateway: a semantic systems biology tool for the life sciences.BMC Bioinformatics.
2009 Oct 1;10 Suppl 10:S11.

4. UniProt Consortium. The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Res.
2010 Jan;38(Database issue):D142-8.

5. Resources Description Framework (RDF). http://www.w3.org/RDF/
6. SPARQL Query Language for RDF. http://www.w3.org/TR/rdf-sparql-query/
7. Large Triple Stores. http://esw.w3.org/LargeTripleStores
8. ListofTriplestoreImplementations.

http://en.wikipedia.org/wiki/Triplestore#List_of_Triplestore_Implementations
9. The Semantic Web Challenge http://challenge.semanticweb.org/
10. Guo Y, Pan Z, and Heflin J. LUBM: A Benchmark for OWL Knowledge Base Systems.

Journal of Web Semantics 3(2), 2005, pp158-182.
11. Berlin SPARQL Benchmark (BSBM). http://www4.wiwiss.fu-

berlin.de/bizer/BerlinSPARQLBenchmark/
12.Bolleman J, Kappler T, and the UniProt Consortium. Weekend Triple Billionaire.

SWAT4LS, 2009.
13. RDF Store Benchmarking. http://esw.w3.org/RdfStoreBenchmarking
14. Bizer C and Schultz A. The Berlin SPARQL Benchmark. International Journal on Semantic

Web & Information Systems, Vol. 5, Issue 2, Pages 1-24, 2009.
15. Bizer C and Schultz A. Berlin SPARQL Benchmark Results for Virtuoso, Jena TDB and

BigOWLIM. http://www4.wiwiss.fu-
berlin.de/bizer/BerlinSPARQLBenchmark/results/V5/#comparison

16. The biogateway triple store http://www.semantic-systems-biology.org/biogateway
17. CCO download http://www.semantic-systems-
biology.org/cco/downloadcco/ontologies

