
Ontology-based Queries over Cancer Data
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Abstract. The ever-increasing amount of data in biomedical research,
and in cancer research in particular, needs to be managed to support
efficient data access, exchange and integration. Existing software infras-
tructures, such caGrid, support access to distributed information anno-
tated with a domain ontology. However, caGrid’s current querying func-
tionality depends on the structure of individual data resources without
exploiting the semantic annotations. In this paper, we present the de-
sign and development of an ontology-based querying functionality that
consists of: the generation of OWL2 ontologies from the underlying data
resources metadata and a query rewriting and translation process based
on reasoning, which converts a query at the domain ontology level into
queries at the software infrastructure level. We present a detailed analy-
sis of our approach as well as an extensive performance evaluation. While
the implementation and evaluation was performed for the caGrid infras-
tructure, the approach could be applicable to other model and metadata-
driven environments for data sharing.

Keywords: ontology, query, caGrid, UML, OWL2, pattern, module ex-
traction

1 Introduction

In the biomedical sciences, the use, exchange and integration of the ever-increasing
amount of data has become paramount to accelerate the discovery of new ap-
proaches for the detection, diagnosis, treatment and prevention of diseases. In
particular, this applies to cancer, for which the US National Cancer Institute
(NCI) and the UK National Cancer Research Institute (NCRI) have implemented
Informatics Initiatives focusing on building and deploying software infrastructure
to manage and analyse data generated from heterogenous data sources.

In this paper, we provide an analysis of the caGrid[1] software infrastruc-
ture developed within the NCI caBIG®3 programme and extend it with richer
querying capabilities. caGrid supports a collaborative information network for
sharing cancer research data, and deals with syntactic and semantic interop-
erability of the data resources in a service-oriented model-driven architecture.
Semantic interoperability is achieved by using a metadata registry, which main-
tains information models annotated with concepts from a domain ontology: the

3 caBIG® stands for cancer Biomedical Informatics Grid® .
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NCI thesaurus (NCIt)[2]. However, the query functionality provided in caGrid
does not take into account the semantic annotations, but it only relies on each
individual information model.

Our methodology is based on extending the caGrid service-oriented model-
driven infrastructure with additional services to support ontology-based queries
over the distributed data resources. In this way, the biomedical researchers, as
the end-users of our system, will be able to query cancer data by building queries
using their domain knowledge (expressed as concepts from the NCIt ontology)
rather than having to know the underlying models. This also means that the
queries are reusable across resources, which is not the case in the caGrid infras-
tructure. This functionality will be incorporated into the NCRI ONcology Infor-
mation eXchange (ONIX4). Our approach involves a customised transformation
from annotated information models to an ontological representation using the
Web Ontology Language version 2 (OWL5). This representation supports an-
notations based on a primary concept and a list of qualifiers. Based on these
ontological representations of the data resources, we have designed and devel-
oped a query rewriting and translation approach that converts concept-based
queries into the query language supported by the caGrid infrastructure. This
approach is general and could be used to support other target query languages,
as the only step dependent on caGrid is the last one. This work presents signif-
icant improvements over our previous work[3], as we have significantly modified
and improved the OWL representation and the design and implementation of
the query rewriting and translation steps. We have developed a caGrid ana-
lytical service for the transformation from an annotated information model to
OWL. Additionally, we present an analysis of the caGrid query language and
information together with an extensive performance evaluation that justifies the
applicability of our solution.

This paper is structured as follows. Section 2 introduces background material
on the caGrid infrastructure. Section 3 presents an analysis of the caGrid query
functionality and the type of queries supported by its query language. Then, we
present in section 4.1 the OWL representation that is used for query rewriting
and translation, which in turn is described in Section 4.2. The implementation
details and performance evaluation results are given in Sections 4.3 and 4.4, re-
spectively. The evaluation includes an analysis of the generated ontologies as well
as several performance metrics for OWL generation and query rewriting, which
justify the viability of our approach. After comparing our approach with related
work in Section 5, we conclude the paper in Section 6, including considerations
for future work.

4
http://www.ncri-onix.org.uk/

5
OWL is a recommendation from the World Wide Web Consortium

(W3C) and the language overview for its second version can be found at

http://www.w3.org/TR/owl2-overview/
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2 Background

caBIG
®
[1] is an NCI programme whose aim is to create a virtual and feder-

ated informatics infrastructure for sharing data, tools and connect scientists and

organisations in the cancer research community. The computing middleware in

caBIG
®

is called caGrid, which is a Grid[4] extended to support data modelling

and semantics[1]. caGrid has a number of core services and corresponding appli-

cation programming interfaces (APIs), which we will introduce next, by analogy

with the metadata hierarchy[5], as per Figure 1.

The metadata hierar-

Fig. 1: caGrid semantic infrastructure.

chy represents how the se-

mantics of raw data (in-
stance data) can be aug-

mented by overlaying meta-

data of increasing descrip-

tiveness [5]. The syntac-
tic metadata refers to the

language format and data types, and in caGrid is represented by XML schemas

managed by the Global Model Exchange (GME)[1] service, which exposes them

through the GME API
6
. The structural metadata gives form to the units of data.

In caGrid, it is implemented as an object-oriented virtualisation of the underly-

ing data resources[1] and it is represented as UML
7
models. These UML models

can be accessed through the Discovery API
8
. The purpose of the referent meta-

data is to represent the linkages between the different data models. In caGrid,

the linkages are provided by a metadata registry, called caDSR
9
, based on the

ISO/IEC 11179 standard
10
. caDSR manages common data elements (CDEs) and

exposes them through the caDSR API. The domain metadata represents what

the data is about. It is implemented by a domain conceptualisation, usually in

the form of an ontology[5]. In the caGrid case, the NCIt ontology[2] is used,

accessed via the LexEVS API
11
. Finally, the rules constitute an overarching

layer that can be applied to all the aforementioned layers. Rules can be used

to constrain and extend the semantics of metadata specifications at any of the

abstraction levels[5]. In the current caGrid semantic infrastructure, there is no

equivalent to the rule metadata.
A data resource owner can share the data by developing caGrid data ser-

vices using common interfaces and metadata, as described above. In this way, a

data service encapsulates the data, which is kept in native formats (including,

for example, relational data or flat files), exposing an access interface based on

the object-oriented (UML) model of the underlying resource. The common in-

terface also exposes a query processor based on the Common Query Language

(CQL) defined for caGrid. CQL is an object-oriented query language reflecting

the underlying object model of the data resource while abstracting the physical

representation of the data[1]. At the time of writing, there exist two versions of

6
http://cagrid.org/display/gme/

7
UML stands for the Unified Modeling Language, a specification of the Object Man-

agement Group®(OMG®)
8
http://cagrid.org/display/metadata13/Discovery

9
caDSR stands for cancer Data Standards Repository

10
http://metadata-stds.org/11179/

11
https://cabig.nci.nih.gov/concepts/EVS/
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CQL and there is a pre-release version of the latest one12. More details on CQL
are given in Section 3.

caGrid also supports basic distributed aggregations and joins of queries over
multiple data services by means of the caGrid Federated Query Infrastructure13,
through a distributed extension of CQL called DCQL. Thus, caGrid relies on
D/CQL – custom query languages based on the structural characteristics of
the resources. In other words, caGrid builds a ’structural layer’, where queries
are expressed in terms of objects, attributes and associated objects, without al-
lowing for semantic queries. D/CQL are evolving to provide richer structural
queries as new requirements arise from different caBIG® projects. However,
these query languages do not allow for data extraction based on semantic in-
formation. Thus, a shortcoming of caGrid is that does not currently exploit the
referent and domain metadata maintained for its data services. Additionally, as
already mentioned, it is not possible to specify rules about the models nor the
domain semantics.

As stated in the introduction, this work advocates the extension of the ca-
Grid infrastructure to exploit its rich metadata by building a semantic layer,
using semantic web technologies to exploit caGrid’s metadata. Additionally, this
extension is capable of: a) accommodating other resources with different ways of
dealing with metadata, and b) specifying rules at different levels of abstraction.

3 Analysis of the caGrid Query Language

A CQL query is defined by an XML document, which must comply to a specified
XML schema14. The schema indicates that a CQL query must specify a �Target�
element, which is the data type of the query result. Optionally, an �Attribute�
element might indicate a predicate over an attribute of the object with �Target�
type and an �Association� may specify a link with a related object. In Table 1
we show how a CQL query is built recursively presenting it as a context-free
grammar, where �CQLQuery� is the start symbol, � is the empty string and�xsd:string� is the non-terminal variable representing the XSD:string data type.

So, CQL traverses the UML class diagram graph, where the �Target� is the
initial class, the �Association� conditions allow for path navigation by travers-
ing sequences of consecutive classes and �Attribute� conditions apply locally to
individual classes. The terminal symbols �Group� and �Group1� represent the
combination of two or more constraints over a particular node in the UML class
graph.

4 Ontology-based queries over the caGrid infrastructure

As shown before, the caGrid queries rely on the structure of the underlying data
resources, i.e. their UML models. Thus, a biomedical researcher interested in

12
http://cagrid.org/display/dataservices/CQL+2

13
http://cagrid.org/display/fqp/Home

14
The CQL XML schema is available at: http://cagrid.org/display/dataservices/CQL+Schemas



5�CQLQuery� →�Target� ��Target� �QueryModifier��Target� →�Name� �Attribute� ��Name� �Association� ��Name� �Group��Attribute� →�Name� �Predicate� �Value��Association� →�RoleName��Group� →�LogicalOp� �Attribute� �Group1� ��LogicalOp� �Association� �Group1� �
��Group1� →�Attribute� �Group� ��Association� �Group� ��Group�

�LogicalOp� →AND �OR�Predicate� →EQUAL TO �NOT EQUAL TO �
LIKE �IS NULL �
IS NOT NULL �LESS THAN �
LESS THAN EQUAL TO �
GREATER THAN �
GREATER THAN EQUAL TO�Name� →�xsd:string��RoleName� →�xsd:string��Value� →�xsd:string��QueryModifier� →�DistinctAttribute� ��DistinctAttribute� �AttributeNames�

Table 1: CQL query context-free grammar

retrieving data about, for example, a particular gene of interest will need to

explore the UML model of each relevant data service and build a query consid-

ering the specific attributes and associations of the class maintaining the Gene
objects. The queries can be built programmatically or also through the caGrid

portal
15
, which allows to explore the UML models and provides a query builder

based on these models.

In this work, we propose a system that allows the user to concentrate on

the concepts from the domain, as represented by the NCIt ontology on cancer,

and build the ontology-based queries which are high-level16 and descriptive17.
Thus, the ontology-based queries can be applicable to any of the underlying data

resources.

Apart from the cancer concepts found on NCIt, the queries combine elements

from an ontology we built with metadata on UML models
18
, namely the UML

model ontology. This ontology contains OWL classes to represent UML classes

and attributes (UMLClass, UMLAttribute), OWL object properties to represent

UML associations and the relationship between a UML class and its attributes

(hasAssociation, hasAttribute) and a data property to represent the values of

attributes (hasValue).
Some simple example queries

19
are: a) Specimen to retrieve all the objects

that are annotated with the Specimen concept; b) Gene and hasAttribute some

15
http://cagrid-portal.nci.nih.gov

16
By a high-level query, we mean a query that can be written without specific details

about the structure of the target resource.
17

By a descriptive query, we refer to queries that provide the criteria for the desired

data rather than the procedure to find the data.
18

We will see later, than the queries could also use elements from the list ontology[6].
19

The example queries are given in Manchester OWL Syntax and are just intended to

show queries retrieving objects from a UML class, a UML class with a condition over
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(Gene Symbol and hasValue value ”BRCA%”) to find all the genes whose symbol

starts with the string BRCA; c) Single Nucleotide Polymorphism and hasAsso-
ciation some (Gene and hasAttribute some (Gene Symbol and hasValue value
”TGFB1”)) to obtain all the SNPs associated with the Gene Transforming
Growth Factor Beta 1 [3]. In our system, these queries could be submitted to

any data service, and they will be converted to the specific CQL query.

We note that the third query specifies SNPs that are associated with genes.

This association may be present in different ways in two separate UML models.

For example, the two corresponding classes may have a direct UML association,

or the association may arise by traversing an association path from the first

class to the second one. In order for our system to deal with those paths of

associations, without the user requiring to know the specific underlying UML

model, we define the hasAssociation property as transitive and use reasoning to

determine the paths.

Next, we introduce our transformation from caGrid models to an OWL2

representation and the query rewriting/translation approach, which transforms

ontology-based queries into CQL queries. The OWL2 ontologies provide an uni-

fied view of the UML models and their semantic annotations, which allows us

to apply reasoning over them.

4.1 OWL Representation of caGrid Information Models

OWL model of UML class di-

Fig. 2: Part of UML class diagram for

caBIO 4.2

agrams. First, we present our customised

UML-to-OWL transformation. This trans-

formation differs from previous approaches,

as explained in Section 5. Next, we de-

scribe the transformation and use the

portion of the caBIO 4.2 information

model in Figure 2 to give examples. Ev-

ery UML element is related to its coun-

terpart in the UML model ontology: all
UML classes and attributes are defined

as subclasses of UMLClass and UMLAttribute, respectively (see equations Eq.

1 and Eq. 2 below
20
); all the UML associations are sub-properties of hasAsso-

ciation (Eq. 4), and the datatype property hasValue is used to specify the type

of the attributes (Eq. 3) as an existential restriction. Contrary to other UML-

to-OWL transformations, we represent UML attributes as OWL classes. This is

required so that the ontology-based queries can include the concepts associated

with attributes.

c:Chromosome � u:UMLClass (1)

c:Chromosome number � u:UMLAttribute (2)

c:Chromosome number � ∃u:hasValue.xsd:string (3)

c:Chromosome locationCollection Location � u:hasAssociation (4)

UML subclass and superclass relationships are represented with subsumption

(Eq. 5). For each UML class, existential restrictions are added for its associa-

an attribute and two associated UML classes with a restriction over an attribute of

one of the classes, respectively.
20

The prefixes used in the equations are: c: for the caBIO 4.2 ontology, u: for the UML

model ontology, n: for the NCIt ontology and l: for the list ontology. We note that

the name of an OWL class corresponding to an attribute includes the class name to

avoid duplications and for associations, it includes its domain and range.
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tions (Eq. 6) and attributes (Eq. 7). While UML does not explicitly represent

inherited associations, our OWL representation makes them explicit, modeling

the semantics of UML. For example, as the UML class Location has an associ-

ation chromosome with the class Chromosome, this association is inherited on

the subclass CytogeneticLocation (Eq. 8).

c:CytogeneticLocatoin � c:Location (5)

c:Chromosome � ∃ c:Chromosome locationCollection Location.
c:Location (6)

c:Chromosome � ∃u:hasAttribute.u:Chromosome number (7)

c:CytogeneticLocation � ∃ c:Location chromosome Chromosome.
c:Chromosome (8)

We note that the generated OWL ontologies belong to OWL2EL[7], an OWL2

profile specifically designed to allow for efficient reasoning with large terminolo-

gies, which is polynomial in the size of the ontology. While OWL2EL disallows

universal quantification on properties, it does allow the inclusion of transitive

properties. Thus, it is suitable for our UML-to-OWL transformation customised

for the rewriting approach as outlined before.

OWL Representation of the Semantic Annotations. Apart from rep-

resenting the UML model, we also model its mapping to NCIt, as maintained

in caDSR. Through the CDEs, UML elements are annotated with a primary

concept, which indicates the meaning of the element. In turn, a list of qualifier

concepts may be used to modify the primary concept, giving specific meaning.

As OWL2 does not natively supports the representation of lists, we used Drum-

mond et al ’s design pattern for sequences[6] to model primary concepts and

qualifier lists. The following equations give some examples on how the semantic

annotations of UML classes (Eq. 9) and attributes (Eq. 10) with a single concept

are modelled. Equation 12 models the class c:SNPCytogeneticLocation as being

a n:Location qualified with l:Chromosome Band and

n:Single Nucleotide Polymorphism.

c:Chromosome � n:Chromosome (9)

c:Chromosome numer � n:Name (10)

c:SNPCytogeneticLocation � n:Location � (l:OWLList �∃l:hasContents.n:Chromosome Band � (11)∃ l:hasNext.(l:OWLList �∃ l:hasContents.n:Single Nucleotide Polymorphism))
Module Extraction from NCI Thesaurus Ontology. The NCIt ontol-

ogy is very large, as it provides a common vocabulary for the whole cancer

domain[2]. Each caGrid data service is, in general, concerned with data per-

taining to more specific domains than the whole NCIt ontology. Thus, for each

caGrid data service referring to a subset Σ of the NCIt vocabulary, there is a

subset of terms and relationships from NCIt that is relevant, called a module
from the ontology[8]. The moduleM represents all knowledge about the terms

of the signature Σ. One of the approaches torelevance is logic-based: the moduleM is relevant for the terms Σ if all the consequences of the ontology that can

be expressed over Σ are also consequences ofM[8]. We follow that approach by
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Sattler et al [8] and extract an NCIt module for each of the information mod-
els in caGrid. For succinctness and efficiency, this module is used, as opposed
to the whole NCIt ontology, for the semantic annotations of UML models and
subsequent reasoning. However, we observe that we removed the disjoint axioms
from the NCIt modules, as we noted before[3,9] using subsumption to represent
UML class to concept mapping may result in inconsistent ontologies as the an-
notations for a single class may come from two high-level branches in NCIt that
are declared as disjoint.

4.2 Query Rewriting and Translation

This section describes how an ontology-based query is rewritten and then trans-
lated, first to an intermediate optimisation language and then to the target CQL
language. While the overall approach is similar to our previous work[3], previ-
ously we relied completely on justifications[10] and now we have extensively
improved the approach by dealing with each of the steps independently. We
provide the output of each step for the third query from Section 4.

Parsing. First, the user query is syntactically parsed. The query uses con-
cepts from the NCIt, the UML model (see Section 4.1) and the list ontologies[6].

UML Extraction. The NCIt concepts in the query are translated into spe-
cific UML classes, by reasoning over the generated ontologies. Each concept is
the super-class of a UML class or UML attribute, depending on their position
on the query. Often, a single NCIt concept will correspond to many UML classes
(or attributes) and, in such cases, each UML class is returned to form an indi-
vidual query. Therefore, the outcome of the UML extraction is a combination
of possible queries given the extracted UML classes or attributes. The outcome
for our example query is: c:SNP and hasAssociation some (c:Gene and hasAttribute

some (c:Gene symbol and hasValue value ”TGFB1”)) .
Data Values Extraction. As the generated ontologies do not contain in-

stances, the semantic validation of the query, expressed as an OWL class expres-
sion, must ignore the data expressions. This step extracts the data expressions,
which will be reinserted later on. This step results in c:SNP and hasAssociation

some (c:Gene and hasAttribute some (c:Gene symbol)).
Semantic Validation. We use a reasoner to check that the resulting query

can be satisfied. If the query cannot be satisfied, subsequent rewriting of the
query is halted.

Properties Path Finder. This step deals with the ontology corresponding
to the UML model (the semantic annotations do not need to be considered
any longer) and aims at finding the path of UML classes related through the
transitive property hasAssociation21. The path finder rewrites the expression
using non-transitive properties, corresponding to UML associations, by using an
explanation generator[10] that retrieves the justification for two classes to be

21
We note that the ontology is compliant with the OWL2 EL profile, as OWL2

EL supports the use of transitive object properties. For more information, see

http://www.w3.org/TR/owl2-profiles/
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connected via the transitive property, and thus allowing to find the intermediate

classes. The path finder may find more than one path between a set of nodes

and, in such cases, will return each path as a combination of possible queries

for user selection. One path for our example query is: c:SNP and hasAssociation

some c:GeneRelativeLocation and hasAssociation some (c:Gene and hasAttribute some

(c:Gene symbol)).

Data Values Addition. At this point, we can retrieve the data expressions

removed earlier and re-insert them into the corresponding OWL classes, resulting

in c:SNP and hasAssociation some c:GeneRelativeLocation and hasAssociation some

(c:Gene and hasAttribute some (c:Gene symbol and hasValue value ”TGFB1”)).

OWL Expression to MCC Translation. No calculus or algebra has been

defined for the object-oriented query language CQL. To provide a translation

with CQL as target language, we use the monoid comprehension calculus (MCC),

as it is a formal framework to support object queries optimizations[11]. Object

queries involve collections (e.g. sets, lists, bags), whose semantics can be captured

by monoid comprehensions (MC). In this paper, we only overview MCs and its

use in our system
22
. Our approach is similar to the work by Peim et al [12], but

while they use an expansion algorithm to rewrite an OWL expression based on

a set of acyclic set of definitions, we follow the specific steps described above.

A MC takes the form ⊕{e � q}, where ⊕ is a monoid
23

operator called the

accumulator, e is the header and q = q1, . . . , qn, n ≥ 0 is a sequence of qualifiers.
A qualifier can take the form of a generator, v ← e′ with v a range variable

and e′ an expression constructing a collection, or a filter predicate. The symbol� denotes the accumulator for bags
24
. For an OWL class expression from the

previous step, an MCC expression is built such that: the header variable is

determined by the first concept in the query and the qualifiers are built for each

of the remaining expressions. The MCC expression for our example is: � { s �
s ← SNP, r ← s.relativeLocationCollection, r ← GeneRelativeLocation, g ← r.gene, g← Gene, g.symbol=TGFB1 }

MMC to CQL Translation. Translating the MCC expression into CQL

amounts to: define as Target the type of the variable that appears in the header

and then, including an Association per each pair of generators, one determin-

ing the name (the class to which they belong) and the other identifying the

role name; include an Attribute restriction for each filter. As this last step is

the only one involving CQL, only this last step requires to be modified to ex-

tend our methodology to other model-driven architectures with a different target
language. The resulting CQL in the example is:

<ns1 :CQLQuery xmlns : ns1=”http ://CQL. caBIG/1/gov . nih . nc i . cag r id .CQLQuery”>
<ns1 : Target name=”gov . nih . nc i . cab io . domain .SNP”>

22 For more details, we refer the reader to [11] and [3]
23 A monoid of type T is an algebraic structure defined by (⊕, Z⊕) where ⊕ ∶ T ×T → T

is an associative funcion and Z⊕ is the left and right identity of ⊕. A collection
monoid is a monoid for a collection type (e.g. lists or bags) and must also specify a
unit function building a singleton collection.

24 For example, �{x � x ← {1,2}} is the monoid comprehension representing the bag{{1,2}}.
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<ns1 : As soc i a t i on name=”gov . nih . nc i . cab io . domain . GeneRelat iveLocat ion ”

roleName= ” r e l a t i v eLo c a t i o nCo l l e c t i o n”>
<ns1 : As soc i a t i on name=”gov . nih . nc i . cab io . domain . Gene” roleName=”gene”>
<ns1 : Att r ibute name=”symbol” p r ed i c a t e=”EQUAL TO” value=”TGFB1”/>

</ns1 : Assoc ia t ion>
</ns1 : Assoc ia t ion>

</ns1 : Target>
</ns1 :CQLQuery>

4.3 Implementation

We have implemented two modules, with the functionalities: a) an OWL gener-
ator, which transforms a caGrid annotated UML model into an OWL ontology
and includes the generation of a module from the NCIt containing the concepts
relevant to the UML model; b) a query translation component, which takes as
input a OWL class expression using concepts from the NCI thesaurus and trans-
forms it into a CQL for a single data service.

For the first module, we also produced a caGrid analytical service called
OWLGenService25, which provides a simple API for the extraction of modules
from NCIt and for the ontology generation, given a specific information model.

The implementation was done in Java and uses caGrid version 1.326, the
OWLAPI version 3.1.027 (after upgrading from OWLAPI version 2), and relies
on the reasoners Pellet 2.2.228 and HermiT 1.3.029.

4.4 Performance Evaluation

This section analyses the generated ontologies and presents two areas of per-
formance evaluation that verify the viability of our approach. Since one impor-
tant step in the query rewriting/translation process is the property path finder
(see Section 4.2), we firstly introduce some metrics to assess the paths in the
generated ontologies. These paths are sequences of concepts linked by object
properties. Secondly, we present the generation times for the module extraction,
the ontology generation and the inference of the ontologies using both the Pellet
and HermiT reasoners. These results show that the generation of the ontologies
that make possible our approach is done in a timely fashion. Thirdly, we evalu-
ate the performance of the query rewriting process, showing a breakdown of the
constituent parts of the rewriting algorithm. For this evaluation, we considered
two sets of five queries each run over the caBIO data service30, where each set
consists of queries that involve paths of lengths one and two. The tests were run

25 The OWLGenService is accessible through the caGrid por-
tal at http://cagrid-portal.nci.nih.gov and available at
http://stylus 157.stylusinternet.net:9600/wsrf/services/cagrid/OwlgenService

26 http://wiki.cagrid.org/display/caGrid13/Home
27 http://owlapi.sourceforge.net/
28 http://clarkparsia.com/pellet/
29 http://hermit-reasoner.com
30 http://cabiogrid42.nci.nih.gov:80/wsrf/services/cagrid/CaBIO42GridSvc
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on a Red Hat Enterprise Linux Server release 5.3 (Tikanga) with 64 bits and

48285 MB of RAM.

This section analyses the generated ontologies and presents two areas of per-

formance evaluation that verify the viability of our approach. Since one impor-

tant step in the query rewriting/translation process — from Section 4.2 — is the

property path finder, we firstly introduce some metrics to assess the sequences

of concepts linked by object properties (paths) in the generated ontologies. Sec-

ondly, we present the generation times for the module extraction, the ontology

generation and the inference of the ontologies using both the Pellet and HermiT

reasoners. These results show that the generation of the ontologies that make

possible our approach take a short time. Thirdly, we evaluate the performance

of the query rewriting process with a breakdown of the constituent parts of the

algorithm. For this evaluation, we considered two sets of five queries each, where

each set consists of queries that involve paths of lengths one and two. The re-

sults were obtained by running on a Red Hat Enterprise Linux Server release 5.3

(Tikanga) with 64 bits and 48285 MB of RAM.

Throughout this section, we have grouped caGrid projects into three distinct

subsets: projects that are available from the caDSR service, all data services that

are registered with the caGrid default index service
31
, and Information Models

(or InfoModels) (those models that are supported by a deployed service from the

caGrid Index Service)
32
. We note that the groups caGrid and InfoModels are

the more relevant for our system, as only against these projects it is possible to

execute CQL queries. While InfoModels include a single project from caDSR for

a set of deployed services corresponding to that project, caGrid may include the

results for several services that correspond to a single model. Thus, the caGrid
results will be skewed according to the relative weight of services as opposed to

models.

Analysis of the OWL representation of the information models.

While ontology metrics have been defined in several tools [13], these have

focused on basic metrics (e.g. number of classes) and semantic-based metrics

(e.g. relationship richness) that allow for the comparison and quality evaluation

of the ontologies. Here, we will focus on the presentation of some bespoke metrics

we developed to measure the proliferation and complexity of paths within the

ontologies, as these will ensure the viability of our approach.

As seen in Section 4.2, our rewriting process seeks to remove the upper-

level and transitive object property hasAssociation and express the query using

only non-transitive properties, which correspond to the UML associations in the

models. In order to achieve this, we consider the paths between pairs of concepts

31 http://cagrid-index.nci.nih.gov:8080/wsrf/services/DefaultIndexService
32 It should be noted that not all caDSR projects are included in the metrics; some

contained errors (their semantic metadata is not complete or refers to an older version
of the NCI thesaurus) and some models are targeted for data modelling, rather than
specifically holding data, making them not representative for our system. Out of
the 136 projects in caDSR, 16 were excluded from the analysis for these reasons.
However, none of the excluded projects had an associated service. Additionally, the
caGrid subset has 63 services and InfoModels has 23 projects.
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from the query connected through the hasAssociation property. The calculation
of these paths is not trivial; there may be many intermediate nodes and there
may be more than one path for a given pair of concepts. We define a journey
as a traversal from one concept to another. A journey may have one or many
paths, which represent the possible routes that the traversal can take. Thus, it
is important to evaluate these aspects of the ontologies in order to assess the
viability of a rewriting tool.

We propose the following metrics as a measure of complexity in this respect.
The Longest Path is the maximum path length that may be computed within a
given ontology. The longest path length provides an indication of the worse case
for path calculation times. The Average Paths per Journey reflects the degree of
path expansion within the rewriting algorithm, as each journey (e.g. from Node
A to Node B) may have many different paths. The rewriting algorithm should
return all possible paths as each path may refer to a different expression of the
query. When we consider that a single query may include multiple independent
journeys, the possible query rewritings can become very large. The Average
Nodes per Path is the average number of nodes that must be visited in order to
return a single path. The path length can affect the calculation time as well as
the complexity of the resulting query.

Fig. 3: The Path Metrics.

Figure 3 illustrates three box-and-whisker plots with the results of the path
metrics for each project subset. We observe that while the longest path can have
up to 36 nodes, for 75 % of the projects in each category their length is less than
17 or 18. The average path length varies between 4 and 7 nodes over the three
subsets, and for 75 % of the InfoModels it is less than 8. There is an average of
around 2 paths returned for each journey, and for 75 % of the projects in each
category the average path per journey is less than 2.5, indicating that we will
be returning a low number of path combinations as a result. These results, then,
verify that the paths within the ontologies are manageable and appropriate for
our rewriting tool. We also note that in all the metric diagrams, the caGrid
subset is often very densely clustered around the mean. This is due to the fact
that there are often many caGrid services for the same project that differ to
one another very slightly or not at all, which can result in multiple similar or
identical results.
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Ontology Generation, Module Extraction and Classification. In or-

der to isolate any overhead caused by variations in network performance, we

extracted the XML corresponding to each project (or information model) in

caDSR. This is a preliminary step to run the performance evaluator locally, and

we do not include any data about the performance of this stage. We gener-

ate four ontologies for each project: the NCIt module ontology (incorporating

the concepts from NCIt relevant to the project), the annotated UML ontology

(including the classes describing the UML model) and inferred versions of the

two ontologies
33
. We recorded the time for each generation and Figure 4 shows

them for the four ontologies per project grouped by subset. The times are pre-

sented in a logarithmic scale. We can see that the vast majority (75%) of NCIt

modules take less than 2 seconds to generate and even less time for ontology

generation. The classification of the generated ontologies is also timely, with the

average inference of the Pellet and HermiT reasoners never taking longer than

100 milliseconds.

Fig. 4: The generation and inference times.

Query Rewriting Evaluation. We have developed a suite of queries of

varying complexity in order to evaluate the query rewriting. The results are

presented in figure 5, which shows the average time
34

taken at each stage of

the query rewriting process
35

for five queries whose rewriting has path length

one, five queries whose rewriting has path length two and the mean times for

these two sets. Path length refers to the number of intermediate nodes in the

query resulting from the rewriting. We can see from figure 5 that, while path

length has a marked effect on the time taken at the path finding stage, the other

stages of implementation remain largely unaffected. We therefore maintain that,

given our analysis of paths within our target ontologies described above, we can

provide query rewriting in a timely and efficient manner.

33
We generate the inferred ontologies classifying the generated ontologies using both

the HermiT and Pellet reasoners.
34

Each query was ran 5 times and the average times calculated.
35

These correspond to the stages of query rewriting; parsing, UML extraction, vali-

dation, path finding, MCC conversion and CQL conversion. For more information,

refer to section 4.2.
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Fig. 5: Query rewriting results at varying path lengths.

5 Related Work

The UML-to-OWL transformation has been studied in different contexts and

applications varying from the detection of inconsistencies in UML diagrams to

use as interchangeable modeling artifacts[14,15]. We have also provided different
alternative transformations before[3,9] and have improved it here so that the

UML transformation conforms with OWL2EL profile, where the semantic anno-

tations use subsumption and additionally, primary concepts and qualifiers are

modelled as sequences.

The use of semantic web technologies to support semantic queries over dis-

tributed data environments in biomedicine have been implemented in systems

such DartGrid[16] (for traditional chinese medicine), ACGT[17] and semCDI[18]

(for cancer). To the best of our knowledge, the latest is the only work over the

caGrid infrastructure. All these systems support SPARQL queries over the re-

sources, while our system allows for high-level descriptive queries which do not

need to be based on the structure of particular resources. Additionally, our ap-

proach using MCC as an intermediary language provides support for optimisa-

tions and generality, as a different target language could be used, even SPARQL.

6 Conclusions

This paper presented the design and implementation of an ontology-based query-

ing functionality implemented over a service-oriented, model-driven infrastruc-

ture aimed at sharing cancer research data. In particular, the implementation

was based on the caGrid infrastructure, but the approach could be used over

similar model-driven software infrastructures. We presented: a) the generation

of customised OWL2 ontologies from annotated UML models, based on the

ISO11179 standard for metadata registries, which differs from traditional UML-

to-OWL conversions and it is an improvement from[3], mainly as we now gen-

erate OWL2EL ontologies for the UML models and support annotations with

primary concept and qualifiers; b) an analysis of the generated ontologies by

determining several relevant ontology metrics, existing and new metrics that

justify the viability of our rewriting technique; c) a caGrid analytical service

implementing the OWL Generation facility; d) an analysis of the capabilities of
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the caGrid query language, and the queries it supports; e) a significant revision

and improvement of the query rewriting and translation steps to transform a do-

main ontology-based query into CQL; f) an extensive performance evaluation of

the OWL generation and module extraction, plus an assessment of the querying

rewriting and translation process and its viability. In future work, we will extend

the query rewriting/translation evaluation providing a varied query set, explore

the use of an OWL2EL reasoner to improve performance of the path finding

process and support federated queries across data resources, where the selec-

tion of join conditions will be provided by a semantic analysis of the distributed

resources.
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15. Gašević et al . MDA-based Automatic OWL Ontology Development. JSTTT,

9(2):103–117, 2007.
16. Chen et al . Dartgrid: a semantic infrastructure for building database grid apps.

Concurr. Comput. : Pract. Exper., 18(14):1811–1828, 2006.
17. Tsiknakis et al. A semantic grid infrastructure enabling integrated access and

analysis of multilevel biomedical data in support of postgenomic clinical trials on
cancer. IEEE Trans on IT in Biomedicine, 12(2):205–217, 2008.

18. Shironoshita et al . semCDI: Semantic Query Formulation for caBIG. JAMIA,
15(4):559–568, 2008.


