
iQvoc – Open Source SKOS(XL) Maintenance and

Publishing Tool

Thomas Bandholtz
1
, Till Schulte-Coerne

1
, Robert Glaser

1
, Joachim Fock

2
, Tim

Keller
1

1 innoQ Deutschland GmbH, Halskestr. 17, 40880 Ratingen, Germany

{thomas.bandholtz|till.schulte-coerne|robert.glaser|tim.keller}@innoq.com
2 Federal Environment Agency, Wörlitzer Platz 1, 06844 Dessau, Germany

joachim.fock@uba.de

Abstract. iQvoc is a new open source SKOS-XL vocabulary management tool

developed by the Federal Environment Agency, Germany, and innoQ

Deutschland GmbH. Its immediate purpose is maintaining and publishing

reference vocabularies in the upcoming Linked Data cloud of environmental

information, but it may be easily adapted to host any SKOS-XL compliant

vocabulary. iQvoc is implemented as a Ruby on Rails application running on

top of JRuby – the Java implementation of the Ruby Programming Language.

To increase the user experience when editing content, iQvoc uses heavily the

JavaScript library jQuery.

Keywords: SKOS, Thesauri, Cool URIs, Linked Data, Editorial, Open Source,

Ruby, jQuery.

1 Introduction

When governmental authorities start publishing Linked Data1, they need to draw some

border lines within the open world. Authorities want to streamline legal publishing

obligations, but they have to take care about provenance and trust in a way that every

citizen can make sure that this data has been published by a governmental authority.

For such reasons, authorities publish controlled reference vocabularies themselves

rather than linking their data to publicly maintained vocabularies such as dbPedia2 or

Geonames3. iQvoc has been built by the Federal Environment Agency, Germany4, and

innoQ Deutschland GmbH5 to serve such controlled reference vocabularies through

their life cycle (Clarify -> Agree -> Formalize -> Publish -> Reference).

1 http://linkeddata.org/
2 http://dbpedia.org
3 http://www.geonames.org
4 http://umweltbundesamt.de/
5 http://innoq.com

mailto:joachim.fock@uba.de
http://linkeddata.org/
http://dbpedia.org/
http://www.geonames.org/
http://umweltbundesamt.de/
http://innoq.com/

2 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

In order to achieve the best development productivity in the iQvoc project, the

decision was to use Ruby and jQuery as the basic development tools.

iQvoc is available with a European Public License (EUPL6).

2 Reference Vocabulary Management

iQvoc has been developed as a management tool for reference vocabularies in

knowledge organization systems (KOS) [1] on the Web. Reference vocabularies

provide definitions and structure for a set of preferred keywords designating what the

knowledge contributions (documents or data) are talking about. The traditional pattern

for the usage of such a vocabulary is thesaurus-based indexing in libraries. Today,

KOS are typically accessible via the Web, although some contributions may still be

available in paper form only. Since years, more and more content has been published

in the Web in form of digital documents, Web pages, or Linked Data, so that the

content items can be linked to the respective keywords by URI references.

In contrast to folksonomies, reference vocabularies are controlled by an editorial

team. While any user may post her proposals, the editorial team will decide.

Usually, reference vocabularies are quite large and thoroughly organized in

concept hierarchies and cross-references, and many of them add a multitude of

synonyms and vernacular terms around the preferred concept labels.

Some established examples from the environment domain are:

 GEneral Multilingual Environment Thesaurus (GEMET)7, and

 EUNIS biodiversity database8, both maintained by the European Environment

Agency;

 Environmental Applications Reference Thesaurus (EARTh)9 from Italy;

 Environmental Thesaurus UMTHES, from Germany10.

2.1 Requirements and Existing Tools

Important functional requirements of the Agency have been:

 SKOS-XL compliance of the model

 Web interface for browsing and navigation

 Multilingualism

 Comfortable editing features with validation

 Editorial team and workflow support

 Linked Data support

These requirements are discussed more closely in the following sub-sections.

6 http://ec.europa.eu/idabc/eupl
7 http://www.eionet.europa.eu/gemet
8 http://eunis.eea.europa.eu/
9 http://uta.iia.cnr.it/earth_eng.htm
10 http://www.semantic-network.de

http://ec.europa.eu/idabc/eupl
http://www.eionet.europa.eu/gemet
http://eunis.eea.europa.eu/
http://uta.iia.cnr.it/earth_eng.htm
http://www.semantic-network.de/

iQvoc – Open Source SKOS(XL) Maintenance and Publishing Tool 3

The most important non-functional requirement has been Open Source availability

of the tool.

After investigating and comparing existing tools such as Pool Party11, MMI

Ontology Registry and Repository12, Neologism13, OntoWiki14, and an early demo

version of iQvoc15, iQvoc turned out to be the closest match. None of these tools met

all the requirements out of the box, but iQvoc represented the closest strategic

consensus between the Agency and the potential development partner. iQvoc had

already proved to work with the above mentioned GEMET multilingual GEMET

vocabulary in SKOS on the Web, and there was a Linked Data commitment.

Furthermore, innoQ shared the strategic focus on serving lexical complexity (SKOS-

XL) and a controlled editorial workflow.

2.2 SKOS-XL Compliance

The Simple Knowledge Organization System (SKOS) W3C Recommendation [2]

provides a RDFS/OWL schema for “thesauri, classification schemes, subject heading

lists and taxonomies within the framework of the Semantic Web”. The SKOS Core

model defines basic classes such as Concept and ConceptScheme and simple

properties (such as skos:prefLabel, skos:altLabel, skos:note) and semantic relations

(broader, narrower, related). The recommendation also contains a SKOS Extension

for Labels (SKOS-XL). XL is needed in order to express lexical complexity of the

labels such as inflectional forms or term composition [3], which is a required feature

for any kind of natural language processing and widely supported by the

environmental thesaurus of the Agency.

While SKOS labels are simple annotation properties (sub-properties of rdfs:label)

with a literal value, SKOS-XL labels are classes which can be linked to concepts and

among each other using object properties. Consequently the SKOS-XL version of

prefLabel has not a literal as its range, but an instance of the skosxl:Label class, like

in the following example:

SKOS

:4711 a skos:Concept;

 skos:prefLabel “waste“@en;

 skos:altLabel “garbage“@en.

corresponding statements in SKOSXL

:4711 a skos:Concept;

 skosxl:prefLabel :4712;

 skosxl:altLabel :4713.

11 http://www.enterprise-20.at/produkte/poolparty/
12 http://mmisw.org/orr/
13 http://neologism.deri.ie/
14 http://ontowiki.net/Projects/OntoWiki
15 http://apps.innoq.com/iqvoc/about.html

http://www.enterprise-20.at/produkte/poolparty/
http://mmisw.org/orr/
http://neologism.deri.ie/
http://ontowiki.net/Projects/OntoWiki
http://apps.innoq.com/iqvoc/about.html

4 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

:4712 a skosxl:Label;

skosxl:literalForm “waste“@en.

:4713 a skosxl:Label;

skosxl:literalForm “garbage“@en.

In SKOS-XL, the literal value has moved to the skosxl:Label instance and appears

as the value of its skosxl:literalForm property. In order to make this compatible with a

simple SKOS representation of the label, the Recommendation defines property

chains such as “The property chain (skosxl:prefLabel, skosxl:literalForm) is a sub-

property of skos:prefLabel.” [2, S55]. Based on this generic model, applications may

create extensions to express inflectional forms of the literal form, term compositions,

abbreviated forms, or spelling variants.

2.3 Web Interface for Browsing and Navigation

Fig. 1. Expandable hierarchical view

The vocabulary can be accessed and navigated in multiple forms:

 the hierarchy view starts with a list of top concepts from which the concept

hierarchy may be explored level by level;

 the alphabetic view provides a sorted list of labels;

 the search dialog with comprehensive search options;

 resolving a URI reference pointing to a single concept or label.

iQvoc – Open Source SKOS(XL) Maintenance and Publishing Tool 5

 dedicated Web pages for concept and label instances in which cross-references are

implemented as hyperlinks.

Most of these are rather simple features and implemented by many tools, apart from

the property chain pattern (see previous subchapter). In the concept view, iQvoc

displays the literalFom values of the related skosxl:Label instances, which is what

human readers are expecting, but a generic RDF or specialized simple SKOS tool

would never behave like that. They would treat skosxl:Label instances lust like any

class instance which has no rdfs:label annotation property.

2.4 Multilingualism

Most of the reference vocabularies are multilingual (GEMET concepts have labels in

28 languages). The first demo version of iQvoc (2008) hosted GEMET as test data,

supporting concept labels in all these 28 languages. UMTHES is German-centric with

English translations.

iQvoc supports both symmetrical and asymmetrical multilingualism. In the

symmetrical approach, each concept has preferred labels in any of the supported

languages (like in GEMET), while the asymmetrical approach has language-specific

concepts with translation relations. The German-centric approach of UMTHES

implies that there must be exactly one German preferred label for each concept.

English labels are added as altLabels only. Explicit translation relations may be

asserted to Label instances. While these different approaches need no specialized

implementation for browsing-only applications, support of the selected pattern is a

requirement for the editing features (see below).

A different aspect is the internationalization of the user interface. Currently iQvoc is

configured bilingual German/English, but more languages can be added simply by

providing a YAML file with the specific interface terms.

2.5 Comfortable editing features with validation

The most challenging pattern of the editing features is managing valid references

from huge lists of concepts or labels in many semantically different relations.

Fig. 2. Reference Widget

Fig. 2 shows an example dialog for the selection of English altLabels for the

German concept “Hochwasser” (flood). Each box in this canvas represents a single

6 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

target of this relation (in SKOS-XL: the literalForm value of the related label). The

icons in each box mean (from left to right):

 open the concept display of this target for viewing in a new browser tab;

 open the concept display of this target for editing in a new browser tab;

 remove this reference from the canvas.

At the end of the target list, you can see someone has started typing the label of a

further target (“tsu …”). In this moment, a dynamic selection list opens showing all

the available valid targets starting with the characters as typed. If the intended target

(“tsunami”) would not exist, it can be created on the fly in a second browser tab or

window.

All target lists are pre-validated according to the semantics of the respective

relation, so that it is not possible to make invalid selections in this widget. However,

there might be collisions with cardinality restrictions. For example, each concept must

have exactly one preferred label in German, and the composition of a compound must

have at least two components. Such constraints are checked on demand at any time,

and consistency check is forced before final release. However, for convenience of the

editor, the state of work may be saved in any state of inconsistency or incompleteness

but remaining invisible in the production.

2.6 Editorial team and workflow support

While the public user does not need any account for browsing or dereferencing the

released data, there are four roles with ascending rights in the editorial team:

 guest – has read access to unreleased versions and internal editorial notes;

 edit – can edit concepts, labels, and their relations;

 release – can release new versions after they have been edited;

 admin – can create accounts and assign roles to users.

These roles already give an idea of the implemented workflow:

 checked out – create a copy of an item for editing. This copy will stay locked to the

individual editor, but he (or the higher roles) can unlock the record so that someone

else can take over;

 submit – from the point of view of the single editor, the copy may be released now.

 release – the new version passes into production after a consistency check. The

copy can also be rejected or dismissed before release.

Intentionally, there is no way to delete a concept after it has been released. In order to

provide sustainable references (“Cool URIs don’t change”), deprecated concepts are

annotated instead (“expired”).

The overall state of editing is displayed in a dashboard from which the editorial team

may pick up an item. This dashboard supports team planning in order to provide some

coordination. In addition, when a dataset gets checked out, iQvoc looks up if any

directly linked instance is currently being edited, and in this case displays a warning.

iQvoc – Open Source SKOS(XL) Maintenance and Publishing Tool 7

2.7 Linked Data support

As more and more data gets published as Linked Data, iQvoc needs “cool URIs” in

order to be linked with this data. Currently, the Federal Environment Agency is

moving towards Linked Environment Data16, and iQvoc will be used to maintain the

reference vocabularies. So iQvoc needs to implement Linked Data technology as

described in [4]. Content negotiation follows the “303 URIs forwarding to Different

Documents” [5] pattern. IQvoc renders concepts or labels in Turtle syntax17 like in the

following example.

:00028876 a skos:Concept;

 skosxl:prefLabel :Hochwasser;

 skosxl:altLabel :Flusshochwasser, :Flut--Hochwasser,

:Flutereignis, :Flutkatastrophe, :Fruehjahrshochwasser,

:HochwasserEinesFlusses, :Hochwasserereignis, :Hochwasserganglinie,

:Hochwasserganglinienvorhersage, :Hochwasserkatastrophe,

:Hochwasserrisiko, :Oderhochwasser, :Winterhochwasser, :flood,

:floodLevel, :floodWater, :highTideWater, :highwater;

 skos:broader :_00027345, :_00028887, :_00650524;

 skos:narrower :_00012775, :_00012789, :_00012791,

:_00651102;

 skos:related :_00012793, :_00029767, :_00655642;

 umt:exportNote [

 umt:source "<aDisBMS>";

 umt:thsisn "\"00028876\"";

 dct:date "\"2010-04-29\""

];

 umt:changeNote [

 umt:editor "<nn>";

 dct:modified "\"2008-11-21\""

];

 umt:changeNote [

 umt:editor "<nn>";

 dct:created "\"1991-01-15\""

];

 umt:sourceNote "GEMETID3298"@de;

 skos:closeMatch gemet:3298, gemet:3218;

 skos:classified "WA60", "NL10";

 skos:status "x".

Linked Data access is implemented by Graph Store integration (see section 3.4).

16 http://www.w3.org/egov/wiki/Linked_Environment_Data
17 http://www.w3.org/TeamSubmission/turtle/

http://www.w3.org/egov/wiki/Linked_Environment_Data
http://www.w3.org/TeamSubmission/turtle/

8 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

Furthermore, there had been plans for some basic assistance for data matching by

comparing names in batch mode and write a list of possibly matching terms. We

finally dropped this approach as we found that the Linking Framework for the Web of

Data (Silk) [6] is a specialized Open Source tool in this area which can be configured

for SKOS-to-SKOS matching more conveniently.

3 Technologies

3.1 JRuby and Ruby on Rails

JRuby18 is the Java-Implementation of Ruby. Most of the Ruby libraries work with

JRuby unless the library has native extensions. With JRuby it is possible to run Ruby

on Rails and hence iQvoc directly on top of the Java Virtual Machine.

Ruby on Rails19 is a Ruby Web framework and organized around the Model-View-

Controller (MVC) pattern. The core principles are:

 Don't Repeat Yourself (DRY)

 Convention Over Configuration

Whereas Ruby and Ruby on Rails work very well with relational databases (“Active

Records”), the same cannot be said about Ruby and RDF. The initial RubyRDF

package was an experimental system and is no longer under active development.

Other approaches, such as ActiveRDF or Redland's Ruby interface are not officially

abandoned but they lack a certain degree of maturity. A deeper discussion can be

found in [7].

Considering the priority of a rapid transition into production, iQvoc internally uses

a relational representation of the SKOS-XL model with an external RDF

representation and SPARQL endpoint which are provided by Triple Store integration

(see section 3.4).

3.2 RDF Rendering

For RDF Rendering we introduced a new Ruby library, iQrdf. It contains an internal

DSL inspired by the popular Builder20 DSL for XML markup. We plan to release this

library separately under a EUPL license after testing and stabilizing it in our internal

projects.

We designed the DSL by complying with the principles of the Turtle Syntax. On

one hand, iQRdf supports abbreviation of triple groups. On the other hand, it does not

18 http://jruby.org/

19 http://guides.rubyonrails.org/getting_started.html
20 http://builder.rubyforge.org/

http://jruby.org/
http://guides.rubyonrails.org/getting_started.html
http://builder.rubyforge.org/

iQvoc – Open Source SKOS(XL) Maintenance and Publishing Tool 9

support nested triple definitions (Subject Predicate AnotherSubject Predicate ...)

except of Blank Nodes.

Unlike some other Ruby libraries (e.g. DataGraph21), another basic principle is the

object oriented interpretation of triples. We interpret a triple (subject, predicate,

object) as the call of a method (the predicate) on the subject with the object given as

parameter: Subject.Predicate(Object). Namespaces can be addressed by using Ruby

Modules: Subject.Namespace::Predicate(Object). Namespaces can be defined by

simply assigning a URI to a prefix symbol.

To achieve this we make heavy use of Ruby’s method_missing feature. This

method, initially defined in the Object class, is called each time a method call could

not be resolved due to the lack of a matching method. The default method_missing

implementation (raising a MethodNotFound Exception) can be overwritten by the

application.

Some examples:

doc = IqRdf::Document.new('http://iqvoc.de/concepts')

doc.namespace :skos => 'http://www.w3.org/2008/05/skos#'

doc << IqRdf::foo.Rdf::type(IqRdf::Skos::Concept)

puts doc.to_turtle

This would result in the following Turtle RDF:

@prefix : <http://iqvoc.de/concepts>.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix skos: <http://www.w3.org/2008/05/skos#>.

:foo rdf:type skos:Concept.

RDF graphs of a single subject with multiple predicates or multiple objects of the

same predicate can be rendered by using blocks respectively multiple method

parameters:

…

doc << IqRdf::foo do |my_foo|

 my_foo.Skos::prefLabel('Foo')

 my_foo.Skos::related(IqRdf::bar, IqRdf::fubar)

end

This would result in:

…

:foo skos:prefLabel "Foo";

 skos:related :bar, :fubar.

IQrdf can also annotate strings with language tags:

…

doc << IqRdf::foo(:lang => :en) do |my_foo|

 my_foo.string1('String1')

21 http://blog.datagraph.org/2010/03/rdf-for-ruby

http://blog.datagraph.org/2010/03/rdf-for-ruby

10 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

 my_foo.string2('String2', :lang => :de)

 my_foo.string3('String3 "with quotes"', :lang => :none)

end

The Result:

…

:foo :string1 "String1"@en;

 :string2 "String2"@de;

 :string3 "String3 \"with quotes\"".

rdf:lists are rendered by providing an array as method parameter:

…

doc << IqRdf::foo.myList(['a', 'b', 'c'])

With the result:

…

:foo :myList ("a" "b" "c").

3.3 jQuery

jQuery is a JavaScript library that “...simplifies HTML document traversing, event

handling, animating, and Ajax interactions for rapid web development”22. iQvoc uses

jQuery heavily in editing mode to increase user experience. For example, iQvoc

supports comfortable date pickers, adding notes dynamically, and the widget for

managing cross references already mentioned in section 2.5.

To hide the complexity of the relation editing process, iQvoc uses a tagging style

approach. With this approach, it is quite simple for a user to add and remove relations

to other concepts or labels. The relation widget is an extension of the “Tokenizing

Autocomplete Text Entry” jQuery-Plugin23.

The following plugin features are important for iQvoc:

 Autocompletion – the simplest way to handle large data sets

 Pre-populate lists – for already added relations.

 Clean and Simple Interface

With some extensions, it is now possible to add and remove relations on the fly. For

example, if a user adds a relation an AJAX request is send from the browser to the

server, and the relation will be added in the database. If an error occurs, the user will

be informed by an error message.

22 http://jquery.com/
23 http://www.jqueryplugins.com/plugin/235/

http://jquery.com/
http://www.jqueryplugins.com/plugin/235/

iQvoc – Open Source SKOS(XL) Maintenance and Publishing Tool 11

3.4 Graph Store Integration

In the application context of the Environment Agency, we intend to use the Virtuoso

Open Source Edition24 as a triple store proxy for several applications that take part in

Linked Environment Data. Each of these information systems simply needs to be

enabled to render its data in RDF and synchronize the proxy whenever something

changes. In this architecture, content negotiation, RDF dereferencing and a SPARQL

endpoint are provided as shared services by the graph store rather than by redundant

implementations of these features in each system. As a most welcome side effect, all

participating databases will share a single SPARQL endpoint, so there is no need for

any SPARQL federation within this network.

This architecture also overcomes the Turtle syntax limitation of the built-in RDF

rendering of iQvoc (iQrdf, see sub-section 3.2). iQrdf is only used for synchronization

with the triple store, but the open Linked Data URI dereferencing is provided by the

triple store itself independently. This is why N-Tripples or RDF/XML are also

available for public access.

4 Lessons Learned and Future Development

Given such in part non-trivial requirements, Ruby and JQuery have proved

themselves as excellent scripting languages. One big drawback of Ruby has been

described in section 3.1: the lack of some high quality RDF store integration which

could be compared to the relational ActiveRecord package. As we did not have

resources for such a development within the described project, we selected a

relational data persistence layer of the editorial data.

This of course reduces flexibility. Looking forward to Linked Environment Data,

we will need a tool to support different reference vocabularies which are not

expressed in the SKOS or SKOS-XL schema, such as a species catalogue, a gazetteer

and a chronicle. These three (and possibly more) cases should bundle their resources

to extend the iQvoc flexibility with regard to different schemas.

With regard to the user interface, the editing features have intentionally been

implemented with a trained expert team in mind. Some aspects may not appear self-

explanatory for the general user. If there is demand for a more intuitive interface, this

certainly needs revisiting the navigation design, but it does not touch any limits of the

scripting languages.

Demo Access

iQvoc is still in the final testing phase. The production release is scheduled to go live

by July 2010. A demo environment for the SFSW2010 workshop is temporarily

deployed at http://iqvoc-eswc.dyndns.info.

24 http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

http://iqvoc-eswc.dyndns.info/
http://virtuoso.openlinksw.com/dataspace/dav/wiki/Main/

12 Thomas Bandholtz1, Till Schulte-Coerne1, Robert Glaser1, Joachim Fock2, Tim

Keller1

References

1. "What is Knowledge Organization", a special issue of Knowledge Organization, Vol. 35

(2008) No.2-3.

2. SKOS Simple Knowledge Organization System. Reference. W3C Recommendation 18

August 2009. http://www.w3.org/TR/2009/REC-skos-reference-20090818/

3. Bandholtz, T.: Expressing Lexical Complexity in SKOS(XL). 5th ECOTERM MEETING

at FAO, Rome, Italy, 05-06 October 2009. ecoterm09-Bandholtz.ppt at

http://eea.eionet.europa.eu/Public/irc/envirowindows/jad/library?l=/ecoinformatics_indicat

or/ecoterm_5-6102009

4. Bizer, C et al.: How to Publish Linked Data on the Web. http://www4.wiwiss.fu-

berlin.de/bizer/pub/LinkedDataTutorial/

5. Cool URIs for the Semantic Web. W3C Interest Group Note 03 December 2008.

http://www.w3.org/TR/cooluris/

6. Volz, J. et al.: Silk – A Link Discovery Framework for the Web of Data. 2nd Workshop

about Linked Data on the Web (LDOW2009), Madrid, Spain, April 2009.

http://events.linkeddata.org/ldow2009/papers/ldow2009_paper13.pdf

7. Mainz, D.: Deep Integration of the OWL Ontology Language into Ruby Using

Metaprogramming. Dissertation. Düsseldorf 2008. http://docserv.uni-

duesseldorf.de/servlets/DerivateServlet/Derivate-10799/DominicMainz.pdf

http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://eea.eionet.europa.eu/Public/irc/envirowindows/jad/library?l=/ecoinformatics_indicator/ecoterm_5-6102009
http://eea.eionet.europa.eu/Public/irc/envirowindows/jad/library?l=/ecoinformatics_indicator/ecoterm_5-6102009
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
http://www.w3.org/TR/cooluris/
http://events.linkeddata.org/ldow2009/papers/ldow2009_paper13.pdf
http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-10799/DominicMainz.pdf
http://docserv.uni-duesseldorf.de/servlets/DerivateServlet/Derivate-10799/DominicMainz.pdf

