
One Click Annotation

Ralf Heese, Markus Luczak-Rösch, Radoslaw Oldakowski, Olga Streibel, and
Adrian Paschke

Freie Universität Berlin, Institute for Computer Science,
Corporate Semantic Web, D-14195, Germany,

{heese,luczak,oldakowski,paschke}@inf.fu-berlin.de

Abstract. The acceptance and the dissemination of Semantic Web tech-
nologies depends on the availability of authoring tools that enable ordi-
nary Web users (i.e. non-experts with respect to semantic technologies)
to create and publish semantic content. In this paper, we introduce the
One Click Annotator, a WYSIWYG Web editor for enriching content
with RDFa annotations. An intuitive user interface hides the complexity
of creating semantic data. We discuss requirements, challenges, and solu-
tions of the implementation. In large parts the editor is already available
as a prototype on the semantic content authoring system loomp.

1 Introduction

Gathering information on a topic of interest from the Web is a time-consuming
task, because the users are required to discover data sources, to filter, and to
integrate information manually. The Web 2.0 movement changed Web into an
information interchange platform helping ordinary Web user to ease and partially
to automate the discovery process. Along with this development information
chunks published online become smaller and are part of larger interconnected
data silos or information clouds being accessible by Web 2.0 portals. This is, for
example, emphasized by the recent success of social networks and micro blogging.

Semantic technologies, and in the first place linked data, promise further
automation by turning the Web of information into a Web of interconnected and
machine processable data sources. Although these technologies have reached an
acceptable mature state, they are not broadly used in commercial and public Web
2.0 applications. In our opinion this is mainly caused by the lack of user-tailored
and easy-to-use tool support for creating and publishing semantic contents.

With the One Click Annotator (OCA) we address the issue of missing tool
support for creating semantic content by non-expert users. The OCA is an editor
for Web browsers which allows for annotating words and phrases with references
to ontology concepts and for creating relationships between annotated phrases.
Although you may notice that a user needs at least two clicks to create an anno-
tation, we nevertheless call it One Click Annotator, because we want to stress
the simplicity of the annotation process. Our main design goal is to realize a
tool that non-expert users can easily use to create semantic content: It provides
a clear and intuitive user interface, presents only simple and well-described on-
tologies/vocabularies, and lets the user focus on the task of writing text.

The OCA interacts with a server to process and to store the semantic content
as well as to answer queries about resources occurring in the edited content. For
this reason, we currently develop the loomp platform [?] which is a lightweight
content authoring system for creating, managing, and publishing semantic con-
tent. It offers the necessary functionalities for running the OCA.

The paper is structured as follows: In Section 2, we motivate our ideas by
a use case in the domain of journalism, because we believe that people working
in this area can obtain a great benefit. Afterwards, we focus on the One Click
Annotator in Section 3 and discuss requirements, challenges, and solutions. In
Section 4, we give an overview of our implementation and the interaction of the
OCA and the loomp platform. In Section 6 we conclude and outline future work.

2 A Motivating Use Case

The development of loomp was motivated by a use case in the domain of jour-
nalism which is representative for the domain of content intensive work in a
heterogeneous environment. Studies such as [?] recognize an increasing impor-
tance of online publishing and claim for more professional journalists in online
media. Today, journalists research specific topics on demand and access various
information sources for this purpose, e.g., websites, articles, and human infor-
mants. Personal interviews with journalists and publishing houses revealed that
they note the research results using paper and pencil. Few journalists use digital
devices for this task and even fewer apply information management systems.
To transfer the finished article to the editor at the publishing house the people
use free text documents and email communication or they enter their articles
directly into editorial managements systems or content management systems.

Journalists can use a combination of OCA and loomp as a personal informa-
tion management system managing semantically enriched notes, interview logs,
references, and articles. They can make use of a semantic search on their own
content and the content provided by the Web of linked data, e.g., find all articles
about “president Bush” who was in office from 1989 to 1993. Additionally, loomp
supports linking resources (e.g., notes to the final article) and, thus, facilitates
the reuse of articles or parts of them. On the side of publishing houses content
already annotated by journalists allows for offering value-added services to their
customers without additional effort. For example, the customer can highlight all
phrases being an instance of a certain concept (e.g., all names of rivers). Using
loomp editors can add further annotations to articles received from journalists
and publish them on different channels, e.g., blog, RSS feed, wiki, or print.

3 One Click Annotator

With the One Click Annotator (OCA) we aim at providing tool support for
annotating content semantically. We consider non-experts having little or no
knowledge of semantic technologies as the primary target group, because we
believe that the success of the Semantic Web depends on reaching a critical mass

of users creating and consuming semantic content. Thus, the annotator has to
hide the complexity of creating semantic content by providing an intuitive user
interface. To realize such an interface, the OCA follows common mindset as
the underlying domain model and uses well-known components of existing user
interfaces. It is implemented as a component that can be used independently of
loomp, e.g., it could be integrated into a wiki. However, a server has to exist
which implements the OCA programming interface. Thus, we describe in the
remainder the design of the OCA as a client communicating with some server.

3.1 Requirements

The main driver for our requirement analysis is to enable non-expert users to
annotate their content semantically. “Non-expert” means that a user is able to
use a computer, e.g., select some text, click a button, or tag content, but he has
no or little knowledge about semantic technologies such as RDF, ontologies, and
linked data. In our opinion, the compelling simplicity of Web 2.0 applications
should be transferred to the task of creating semantically rich content: light-
weight, easy-to-use, and easy-to-understand. In the following list, we focus on
design requirements on a semantic annotation tool for non-experts.

Intuitive user interface. The annotator hides the complexity of creating se-
mantic annotations by providing an intuitive user interface. It follows com-
mon mindset and reuses procedures of system interaction known from word
processors to produce the annotations.

Simple vocabularies. Although Web users know the term URL or Internet
address, most of them are not aware of namespaces. Thus, the annotator
provides access to vocabularies without going into technical details. Each
concept has a meaningful label and is described in simple terms.

Focus on the user’s task. Usually, a user wants to perform the task of writ-
ing some text and not to annotate content. Thus, the toolbar for creating
semantic annotations is seamlessly integrated into a text editor, so that the
user can add annotations without distracting himself from his primary task.

Interoperability. To minimize the problems of interoperability the annotator
is build on top of standards, e.g. to represent and to access annotated content.
Regarding vocabularies, the annotator provides access to widely accepted
vocabularies and is able to map concepts of equal or similar meaning.

Comparing these requirements to existing approaches and tools we think that
there is still large room for improvement. For example, semantic wikis (e.g., On-
toWiki [?] or semantic MediaWiki [?]) rely on a proprietary wiki syntax to repre-
sent semantic annotations in the text. As a result, a user has to learn additional
syntax and to know the vocabularies. The other extreme consist of annotation
services such as OpenCalais [?] that automatically annotate entities in a given
text. These allow little or no human influence on the added annotations.

Finally, before we started to develop the OCA we made the following two key
design decisions on the implementation: The OCA has 1) to work with modern

Web browsers, and 2) to store the annotated content and the annotations itself in
a format that corresponds to widely accepted Web standards. As a consequence
the OCA is independent of a certain backend implementation and can easily
be integrated into other Web applications. Due to the requirements we were
confronted with the challenges as compiled in Table 1 and discussed below.

Challenge Solution

Clear and intuitive UI Transfer the look&feel of the toolbar for style
sheets known from word processors.

Represent annotations as RDF Selected text is the value of a property as-
signed to a resource.

Annotate text using existing re-
sources

Use the selected text to guess the resource to
link to, but allow manual changes.

Create links between resources Allow different ways of creating relationships
and provide inverse properties.

“Don’t repeat yourself.” Support the user with annotation services, but
under control of him. Treat tables specially.

Compatibility and ease of integra-
tion

Implementation is based on XHTML+RDFa
(client) and RDF (server)

Independence of domain ontologies An RDF schema defines a set of annotations
which can refer to well-known ontologies.

Table 1. Realizing the One Click Annotator: Challenges and solutions

3.2 User Interface

Providing a tool for creating semantic content by non-experts that fulfills the
above requirements, we develop the One Click Annotator (OCA). In the fol-
lowing, we describe the functionalities and the user interface of the OCA and
discuss challenges we were confronted and propose solutions for them.

Clear and intuitive UI. The first challenge addresses the following ques-
tion: What user interface is suitable to create semantic annotations but is clear
and intuitive enough to be understood by non-experts? The central idea is that
every computer user is familiar with word processors and is able to select some
text and to click on a button to format it italic. Thus, we transferred the con-
cept of assigning style sheets to texts as known from modern word processors
to the OCA. In a word processor a user can choose between different sets of
style sheets. After having chosen a set he can select some text and assign a style
sheet to it, e.g., heading 1. In the OCA, a user can similarly choose between
different vocabularies, e.g., personal information and geography, and assign an
annotation to some selected text, e.g., foaf:firstName. The dashed box in Fig-
ure 1 shows the ribbon toolbar for selecting an annotation. Please note, that the
toolbar only displays human understandable labels but not namespace prefixed
labels of properties – in general, we try to avoid to show URIs.

Represent annotations as RDF. The procedure of adding annotations to
text leads to another challenge. In our opinion, a non-expert user is hardly aware
of the difference between a concept and the label of a concept. For example, if a
user reads the phrase George Bush in some text, he probably wants to state that

History

The earliest evidence of settlements in today's Berlin central areas is a wooden

beam dated from approximately 1192.[18] The first written mention of towns in the

area of present-day Berlin dates from the late twelfth century. The settlement of

Spandau is first mentioned in 1197, and Köpenick in 1209, though these areas did

not join Berlin until 1920.[19] The central part of Berlin can be traced back to two

towns. Cölln on the Fischerinsel is first mentioned in a 1237 document, and Berlin,

across the Spree in what is now called the Nikolaiviertel, is referenced in a document

City DistrictCountry Geography

CancelSave

Waters

VocabulariesAnnotations

Geography

Berlin is located in eastern Germany,

about 70 kilometers (44

Climate

Summers are warm with average high

temperatures of 22 - 25°C (mid 70s)

SearchBerlin

Fig. 1. The ribbon toolbar of the One Click Annotator for creating annotations

George Bush is a person but not that it is the name of a person. We consider
this behavior in the OCA by using the labels of properties in the toolbar (in
the following also referred to as annotation) and creating a resource that has a
property with the selected text as literal value.

In many cases it will also be possible to derive the type of the generated
resource, because a property has a specific domain defined in the schema, e.g.,
foaf:Person is the domain of foaf:surname. Moreover, the domain may be derived
from the domain of the annotation set. For example, in the context of personal
information the property foaf:name will probably have the domain foaf:Person
which is more specific than owl:Thing as defined in FOAF.

Annotate text using existing resources. If users annotate the same re-
source in different texts, it is important to reference the same resource in the
generated RDF statements. Otherwise, we get many resources that are not inter-
linked and the statements in the repository are not very useful and meaningful.

After a user has selected some text and clicked on an annotation in the
toolbar, the system presents a list with information of existing resources that
are likely to be chosen by him (see Figure 2). The resources may originate from a
local or a external repository (e.g., DBpedia). To retrieve appropriate resources
from the repositories we use three sources of information: 1) the selected text, 2)
the schema information stored in the vocabulary definitions (e.g., domain and
range of properties), and 3) annotation services. In our current implementation
we use some simple syntactical measures to determine the similarity, e.g., text
containment or Levenshtein distance. To enable a user to choose an appropriate
resource, the list of resources has not only to contain the label of a resource but
also some properties of it. Additionally, a user can view the text fragments that
contain occurrences of the resource. If he does not find the resource in the list
then he can manually search for a resource or create a new one.

Create links between resources. Assigning an annotation to a selected
text is only one facet of creating semantic annotations. The other facet is the
creation of relationships between two resources. To simplify the creation of links
between resources we offer different approaches: 1) Use a context menu associated
with an annotated text to choose a property and a resource to link to or 2) drag
an annotated resource, drop it onto another one, and select a property.

History

The earliest evidence of settlements in today's Berlin central areas is a wooden

beam dated from approximately 1192.[18] The first written mention of towns in the

area of present-day Berlin dates from the late twelfth century. The settlement of

Spandau is first mentioned in 1197, and Köpenick in 1209, though these areas did

not join Berlin until 1920.[19] The central part of Berlin can be traced back to two

towns. Cölln on the Fischerinsel is first mentioned in a 1237 document, and Berlin,

across the Spree in what is now called the Nikolaiviertel, is referenced in a document

City DistrictCountry Geography

CancelSave

Waters

VocabulariesAnnotations

Geography

Berlin is located in eastern Germany,

about 70 kilometers (44

Climate

Summers are warm with average high

temperatures of 22 - 25°C (mid 70s)

SearchBerlin

History

The earliest evidence of settlements in today's Berlin central areas is a wooden

beam dated from approximately 1192.[18] The first written mention of towns in the

area of present-day Berlin dates from the late twelfth century. The settlement of day Berlin dates from the late twelfth century. The settlement of

Spandau is first mentioned in 1197, and in 1209, though these areas did

not join Berlin until 1920.[19] The central part of Berlin can be traced back to two not join Berlin until 1920.[19] The central part of Berlin can be traced back to two

towns. on the Fischerinsel is first mentioned in a 1237 document, and Berlin,

across the Spree in what is now called the Nikolaiviertel, is referenced in a document

VocabulariesAnnotations

Geography

Berlin is located in eastern Germany,

about 70 kilometers (44

Climate

Summers are warm with average high

temperatures of 22 - 25°C (mid 70s)

Berlin

Berlin

SearchBerlin

Search for resources

Berlin

is a City

in Country Germany

also labeled Capital of Germany

Berlin

is a Village

in state Connecticut

has a population of 19,590

CancelSelect

+

+

New

Fig. 2. User interface for selecting an existing resource

“Don’t repeat yourself.” Annotating text is a time-consuming task that,
in most cases, users do not like to perform even if they only have to add a few
metadata about the text. According to the principle “don’t repeat yourself” a
user can invoke annotation services which automatically analyze the text and
propose annotations. Besides external annotation services such as OpenCalais
we develop a client-side component that creates annotations while the user is
typing. This component keeps track of the annotations created by the user and
adds the same annotations to other parts of the text. Independent of the used
annotation service, an icon is placed behind any automatically generated anno-
tation allowing to accept, to reject, to choose an alternative annotation, or to
disable automatic annotation at all (cf. Figure 3).

History

The earliest evidence of settlements in today's Berlin central areas is a wooden

beam dated from approximately 1192.[18] The first written mention of towns in the

area of present-day Berlin dates from the late twelfth century. The settlement of

Spandau is first mentioned in 1197, and Köpenick in 1209, though these areas did

not join Berlin until 1920.[19] The central part of Berlin can be traced back to two

towns. Cölln on the Fischerinsel is first mentioned in a 1237 document, and Berlin,

across the Spree in what is now called the Nikolaiviertel, is referenced in a document

accept

accept all

reject all

reject

Fig. 3. User interface for accepting or rejecting an annotation

We also develop a dedicated approach for annotating the content of tables.
A table should be treated differently, because a table implicitly expresses rela-
tionships between the entries of a row (or column). Especially, annotations are
likely to repeat in each row, e.g. all entries in a column share the same annota-
tion and the same entry may occur multiple times in a column. To reduce time
and effort for annotating tables, we combine the approaches of annotating text,
linking resources, and automatic generation of annotations. The user selects a
column and assigns an annotation to all entries. Afterwards, he defines the rela-
tionships between the columns using the same approach as to link resources. The

OCA transfers the relationship to the entries of each row. Finally, the automatic
annotation service takes care of linking repeating entries to the same resource.

3.3 Technologies

The OCA is the client part of a client server architecture for semantic content
authoring. It is responsible for displaying the user’s content as well as the anno-
tation toolbar and for modifying the content to include semantics. The server is
only contacted if the OCA needs information about resources or has to invoke
external annotation services. In this section we describe details about processing
of the user’s content and the creation of semantic annotations by the OCA.

Compatibility and ease of integration. The OCA is implemented as a
plug-in of tinyMCE [?] which is a WYSIWYG editor for Web browsers. The
tinyMCE and, thus, the OCA plug-in is only able to handle HTML content. As
a consequence of this and due to our requirements of a high compatibility with
and an easy integration into existing software components, the OCA consumes
and produces XHTML+RDFa [?]. So, XHTML+RDFa is the central format
for exchanging content between the client and the server. Servers can then,
for example, extract the RDF from the XHTML+RDFa content (e.g., RDFa
Distiller [?] or ARC [?]), link it to RDF data of other sources, and serve it as
linked data. As a side effect of using XHTML+RDFa, we are able to provide
additional functionality such as faceted viewing which highlights user-selected
annotations in a Web browser (e.g., all names of persons).

If the OCA needs to retrieve data about resources it uses an http-request to
submit a SPARQL query to the server. In our implementation, the server returns
the answer as a simple array of resources and their properties in JSON format.
Other formats such as RDF or XML are conceivable.

Convert annotations to RDF(a). While we described the creation of the
semantic annotation on a high level in the previous section, we now give some
more details on how the content is modified. The procedure of annotating some
text is as follows (cf. Figure 4): After a user has selected some text and clicked
on the button of an annotation, the OCA queries the server for resources that
the user may refer to. He can either select a resource from the list or, if the list
does not contain the intended resource, manually search for it or create a new
one. New resources are assigned a generated URI based on a hash value with the
annotated text as the label. A label is important to ensure that there is at least
one human readable property for all resources to display. Then, the OCA inserts
a span tag containing appropriate RDFa attributes into the XHTML content.
For example, Figure 5 shows a snippet of a XHTML+RDFa document stating
that there is a resource with the name George Bush. When the user saves the
content then it is sent to the server for further processing. Finally, if the user
saves the content in the editor then the XHTML+RDFa is send to the server
which processes it, i.e., extract the RDF, store it in an RDF repository and make
it available as linked data.

A drawback of using XHTML+RDFa as representation of annotations is that
we are currently not able to create overlapping annotations in a text, e.g., x y

User OCA Server
select text

click annotation

save content
send XHTML+RDFa

add RDFa to
xhtml content

extract and
store RDF

retrieve list
of resources

select resource/
create new resource

show resources

list of matching
resources

query RDF
repository

Fig. 4. Sequence diagram illustrating the process of creating an annotation
(a) <span about="http://www.loomp.org/resource/fdff8477..."

property="http://xmlns.com/foaf/0.1/name">George Bush

(b) <http://www.loomp.org/resource/fdff8477...>

rdf:type foaf:Person;

foaf:name "George Bush".

Fig. 5. Example of an RDFa annotation (a) and resulting RDF statements (b)

z where x y and y z are annotated differently. The reason is that each XHTML
document is also an XML document. Thus, we have to maintain well-formedness
of the document to process it using XML-based tools and libraries. However, we
think that this disadvantage is not severe because the case will rarely occur.

Independency of domain ontologies. The OCA is extensible with respect
to the ontologies that can be used with it for annotation. A domain is usually
described by several ontologies. Since we also want to hide the complexity of
choosing an ontology and of mapping different ontologies, we decided to develop
a simple RDF schema for describing the elements of the OCA toolbar. Using this
schema an annotation is described by the referred property (loomp:refersTo) of
a standard ontology (e.g., Dublin Core, FOAF, etc.), a label for displaying in the
toolbar, a description of the annotation, and examples of its usage (Figure 6).

<loomp:AnnotationSet rdf:about=".../pi/0.1/PersonalInformation">

<rdf:li>

<loomp:Annotation rdf:about=".../pi/0.1/name">

<loomp:annotationDomain rdf:resource=".../foaf/0.1/Person"/>

<loomp:refersTo rdf:resource="http://xmlns.com/foaf/0.1/name"/>

<rdfs:comment xml:lang="en">Name of a person.</rdfs:comment>

<rdfs:label xml:lang="en">name</rdfs:label> ...

</loomp:Annotation>

</rdf:li> ...

</loomp:AnnotationSet>

Fig. 6. Excerpt of an annotation set: Name of a person

Information

Content

Presentation

Meaning

User

User Agent

Information
Need

Templating
Engine

Templating
Engine

Fig. 7. Separating content from meaning from presentation

Furthermore, the engineer of an annotation set can give hints about the type
of resources (loomp:annoationDomain) that are created when a user selects an
annotation for some text. This is useful to assign a more specific type to a
resource than it is defined in the original ontology. For example, the domain of
the property foaf:name is owl:Thing at the moment [?]. In the context of an
annotation toolbar about personal information it is more meaningful to create
a resource which is of type foaf:Person or foaf:Agent. The annotation sets
to be displayed in the OCA can be configured, so that the OCA shows only
vocabularies needed for a given application domain, e.g., a sport journalist will
only see annotation sets relevant for his tasks.

4 Semantic Content Management System

The One Click Annotator relies on the functionality of a server managing the
semantic content – we refer to such a server as semantic content management
system (SCMS). A SCMS is a content management system that follows the
principle of separating content from meaning from presentation (cf. Figure 7).
Thus, a templating engine can make use of the different aspects of an informa-
tion object to render it according to the specific information needs of a content
consumer (e.g., highlight resources of a given type in the content and serve it in
different formats). In this section, we give an overview of the programming inter-
face that an SCMS has to provide for supporting OCAs. As a proof of concept
and backend of the OCA we currently implement this interface in loomp1.

One Click Annotator

Semantic Content
Management System

RDF store

SCMS API

RDFSPARQL/
SPARUL

XHMTL+RDFa
JSON

content data vocab services

Fig. 8. Architecture

Figure 8 illustrates the interaction between
OCA, SCMS, and RDF store. On the left sides
of the arrows we noted the used protocols and
on the right side the formats for exchanging data.
The server and the OCA exchange content in
XHTML+RDFa format and data about resources in
JSON format. The communication between SCMS
and RDF is based on Semantic Web standards. Us-
ing the API of the SCMS an One Click Annota-
tor has access to the semantic content, information

1 http://loomp.org

about resources, vocabularies for annotating content, and additional services. We
omitted interfaces for authentication and server administration, because they do
not provide any unusual functionality.

The content API comprises functionality that is related to manage content.
Its foundation is a simple and easy-to-understand domain model: we distinguish
between content elements and documents. A content element can consist of text,
multimedia objects, or embedded SPARQL queries2. A document consists of
a sequence of content elements. We believe that this domain model is advan-
tageous, because it conforms user’s mindset, already used in modern content
management systems, and allows an easy reuse of content. The API includes be-
sides basic operations (e.g., to create, to update, and to delete content elements
and documents) also operations to search for content semantically. The data API
allows for accessing the RDF data directly, e.g., to retrieve all statements of a
given resource. In an OCA, the functionality of this API is used to display all
known information about a resource or to create links between resources. The
vocabulary API provides access to annotation sets. While the OCA uses this in-
terface only for retrieving annotation sets and building the annotation toolbar,
a client can use it for creating, updating, and deleting annotation sets.

The server may offer additional services which are useful for annotating and
accessing content. For example, the server could provide a service for annotat-
ing content automatically by sending the conten to an annotation service, e.g.,
OpenCalais. The annotated content is then returned to the OCA (Section 3.2).

5 Related Work

The key concept of the One Click Annotator is to support non-expert users w.r.t.
semantic technologies to create semantic content. The annotation happens “on-
the-fly” while the user is writing text. To our best knowledge we are not aware
of any tool that is focused on the target group non-experts as much as the OCA.

However, there are many approaches that support automatic and manual cre-
ation of semantic annotations on Web content, e.g., OpenCalais [?], Zemanta [?],
GATE[?], and COHSE [?]. Automatic approaches based on semantic tagging or
text mining are complementary to our approach of one click annotation. Provided
as services by a semantic content management system the One Click Annotator
can support users in annotating content by invoking these services. Thus, we do
not discuss them here in detail.

In literature, we found also tools for annotating manually the content. There
is a category of tools that are based on annotation frameworks (Annotea [?]
and CREAM [?]) and enable users to add metadata to content. With the OCA
we follow a different approach, because the OCA enables the user the assign a
meaning to separate words instead of adding metadata. Some other tools do not
seem to be under development for years although they are mentioned in recent
articles, e.g., SMORE [?] and Mangrove [?].

2 loomp supports only text and embedded SPARQL queries at the moment.

In the next category we put approaches based on social tagging and collab-
oration. There are many wiki-based systems like semantic wikis: OntoWiki [?],
Ikewiki [?], or Semantic MediaWiki [?]. These wikis extend traditional wikis by
functionalities that enable users to add annotations to a wiki page and to specify
relationships between pages based on ontologies. In our opinion semantic wikis
are far from being usable by non-experts. Besides the effort to learn a special
syntax to write and to annotate content, a user has to cope with technical terms
such as resource, different kinds of relationships, and namespaces.

In contrast, semantic tagging engines such as faviki [?] and the MOAT
project [?] exploit the well-known user interaction procedure of tagging to anno-
tate content. Faviki is based on Zemanta [?] and retrieves suggestions for tags,
e.g., Wikipedia terms. Similarly, clients based on MOAT use existing ontologies,
e.g., DBpedia, to add tags to content. Since they assign a tag to a Web resource
these tools work similar as the mentioned annotation frameworks.

In [?], the authors present a JavaScript API for modifying RDFa directly on
the client side and synchronizing the changes with the server. While our One
Click Annotator is suitable for extensive changes of annotations of a text, this
JavaScript library is a useful supplement for smaller changes of annotated texts.

The Tabulator linked data browser [?] allows users to edit data directly on
the Web of data. However, since it requires a Firefox plug-in in its current
stage of development we see it as a proprietary tool. OpenLink Data Spaces [?]
provide a complete platform for creating a presence on the Web of data, e.g.,
calendar, weblog, or bookmark manager. However, they focus on describing the
data entities semantically while we enrich the content itself.

6 Conclusion and Outlook

Up to now, there exist lots of tools wrapping or transforming the data of re-
lational databases or similar content to RDF. However, we think that a key
prerequisite in the vision of a Semantic Web is to enable ordinary Web users –
non-experts w.r.t. semantic technologies – to create and consume semantic con-
tent on the Web easily. Currently, the barrier for them is still too high, because
there are no easy-to-use Semantic Web authoring tools available. In this paper,
we introduced a simple-to-use “One Click Annotator” (OCA) for enriching text
content semantically. The key design goals are a clear and intuitive user interface
hiding the complexity of creating semantic data and simple access to vocabular-
ies. To our best knowledge we are not aware of any tool that is focused on the
target group non-experts as much as the OCA.

We currently develop a browser-based OCA as a plug-in of the WYSIWYG
editor tinyMCE which uses loomp as its backend. Since it is still in the status
of a prototype, some concepts are partially implemented and not yet available
at the public demonstrator (http://loomp.org/).

In the future we focus on automatic generation of links to external resources
(e.g., to the Linking Open Data dataset cloud), improved integration of external
annotation services such as OpenCalais, and privacy issues.

