
PGLDB’2003, pp. 68-77, 2003.
 PUC-Rio, Rio de Janeiro-RJ, Brazil

Web-service-based, Dynamic and Collaborative E-learning

Stanley Y. W. Su Gilliean Lee

Database Systems R&D Center
Department of Computer & Information Science & Engineering

University of Florida
Gainesville, FL. 32611 - USA

{su, glee}@cise.ufl.edu

Abstract
This paper describes an on-going effort to investigate problems and approaches for
achieving Web-service-based, dynamic and collaborative e-learning. In this work, a
Learning Content Definition Model is used to model distributed and sharable learning
resources as content objects. Distributed and sharable software systems/components for
supporting e-learning are modeled as software objects. Both types of objects are uniformly
published as Web-services in a constraint-based Web-service registry and made sharable
and reusable. An extended Web-service infrastructure provides a standard framework for
the modeling, registration, discovery, binding and invocation of these objects. In this work,
we also introduce a Learning Process Definition Model and a Learning Process Execution
Engine for specifying and executing learning process models, which represent instructional
modules in the forms of activity trees. An Event-Trigger-Rule Server is integrated with the
Learning Process Execution Engine to make learning process models active, flexible,
customizable and adaptable. It is also used to facilitate the interaction and coordination
among learners, administrators, authors, and other personnel involved in collaborative e-
learning.

1. Introduction

In recent years, there have been a number of initiatives in developing technologies for
supporting Web-based learning. The Advanced Distributed Learning Initiative [1], the
IMS Global Learning Consortium [2], the Schools Interoperability Framework [3], the
Open Knowledge Initiative [4], MIT’s OpenCourseWare [5], and Dspace being jointly
developed by MIT and the Hewlett-Packard Company ([6], [7]) are a few examples.
The Sharable Content Object Reference Model (SCORM) ([8], [9]) is a reference model
initiated by the Advanced Distributed Learning (ADL) program of the Department of
Defense (DoD) and the White House Office of Science and Technology Policy (OSTP)
in November 1997. Its specification is composed of a Content Aggregation Model for
aggregating learning resources to form leaning modules and courses, and a Runtime
Environment for launching learning resources and enabling the communication between
learning resources and Learning Management Systems (LMSs). According to the
specification, it is envisaged that Internet users and heterogeneous LMSs would use the
Web as a universal platform for accessing and launching sharable content objects and
for establishing close communication, interaction and coordination among content
object developers, course authors, content users, and course administrators. To realize
this vision, sharable content objects must be durable, interoperable, accessible and
reusable. These requirements impose the following requirements on the network of
heterogeneous web-based LMSs [8].

o The ability of a web-based LMS to launch content that is authored by using
tools from different vendors and to exchange data with that content.

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference69

o The ability of web-based LMS products from different vendors to launch the
same content and exchange data with that content during execution.

o The ability of multiple Web-based LMS products/environments to a access
common repository of executable content and to launch such content.

In order to meet the above requirements, it will be necessary to have a uniform way of
modeling, not only learning resources, but also heterogeneous learning tools and LMSs
as well as an information infrastructure to enable the interoperation and sharing of their
contents and functionalities. Also, the aggregation model that defines the learning
sequence or process has to be flexible, adaptable and customizable to meet different
learners’ needs and learning contexts. Furthermore, there must be a general and
powerful mechanism for facilitating the close interaction, communication and
coordination among learners, content authors, course administrators, assistants, etc., to
achieve collaborative e-learning. Research and development work to meet the above
needs is consistent with the vision and goals of the Advanced Distributed learning
(ADL) program.

In this work, we present some problems and approaches to integrate the Web-service
technology, a dynamic learning process modeling and management technology, and an
event-trigger-rule technology for achieving Web-service-based, dynamic and
collaborative e-leaning. The focus of this research is on 1) the development of
techniques for the modeling, registration, discovery, binding and invocation of
distributed learning objects, 2) the development of a Learning Content Definition Model
(LCDM) for modeling content objects, a Learning Process Definition Model (LPDM)
for modeling learning processes, and a Learning Process Execution Engine (LPEE),
which is paired with an Event-Trigger-Rule (ETR) Server, for making learning process
models active, adaptable, flexible and customizable, and 3) the integration of event,
event filtering, event notification, condition-action rule processing technologies with
computer mediated communication (CMC) tools to enhance the interaction,
coordination, and communication among people and software systems that are involved
in distributed e-learning.

2. Problems and Approaches

We describe the three focused R&D efforts below:

2.1 Modeling, registration, discovery, binding and activation of sharable learning
objects

In order for the e-learning community to share multimedia learning resources as well as
heterogeneous learning tools and components of software systems (e.g., LMSs), there
must be a standard and uniform way for the developers of these resources, tools and
software systems to model them and publicize their availability for sharing in the e-
learning community. A very general and powerful way, which is adapted from the
object-oriented technology, is to uniformly model them as “learning objects” having
attributes/properties (i.e., meta-data) and operations/methods (i.e., behaviors). The
learning objects that model content resources with behaviors are then called “content
objects” in this paper, and those that model software tools and systems/components are
called “software objects”. In our Learning Content Definition Model (LCDM), we
model each content object in terms of pre-assessment items, content items, practice
items, post-assessment items, and constraints. The pre-assessment items (optional) are

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference 70

used to assess a learner’s prior knowledge with respect to the content items to be
presented and studied by learners. The practice items (optional) contain items to be
exercised by learners after they have studied the content items. The post-assessment
items are used to test the proficiency of the learners on the contents of the content items.
The constraints are used to specify such things as users’ profile, learning context, etc.,
in which the content object is suitable for use. The behavioral specification of a content
object provides the Get functions for accessing the four types of items separately as well
as for accessing the entire content object as a whole. These functions allow an LMS to
import either a part of or the entire content object into its processing environment. We
note here that the last three types of items form the Reusable Information Object of
Cisco’s Reusable Learning Object Strategy [10]. Software objects model those
functionalities of some existing application systems, LMSs, or other software systems
that users/organizations are willing to share with others. The specifications of these
objects provide the information to enable either remote or local invocations of these
functionalities programmatically. All learning objects (content and software objects) are
executable in that their operation specifications can be mapped to their corresponding
APIs of their local, heterogeneous implementations.

In addition to modeling learning objects in terms of attributes and operations, we
believe that it is important also to specify the constraints associated with their attributes
and operations. The constraint specification of an object can be constraints on the valid
values of its attributes, on the inter-attribute relationships, or on the values of the
parameters associated with its operations. For example, the constraint specification of a
content object may include such information as its prerequisites, difficulty level, cost,
the estimated learning time, and other value constraints on its descriptive attributes. The
meta-data and behavior information and their associated constraints can then be
registered with and maintained by online registries (or repositories) and be searched
either manually by content users or programmatically by learning tools and LMSs for
the discovery of the published objects either for the downloading purpose or for remote
executions. The constraint associated with the meta-data and behaviors would allow
more accurate selections of sharable learning objects that satisfy content users’ or
software requestors’ requirements. As pointed out in [8], the standardized way to
register and discover content objects will enhance opportunities for their reuse. The
constraint specification and processing, which is not a part of the traditional object
model or object-oriented systems, would enhance the discovery of suitable learning
objects to meet different users’ needs. Another important SCORM’s requirement is for
content objects to be interoperable across multiple LMSs and the run-time environment
should facilitate such interoperations [9]. To meet this requirement, we need also a
standard protocol to bind a request to a discovered learning object and to launch or
activate its operations at run-time.

To meet the modeling, registration, discovery, binding and invocation requirements
discussed above, we believe that the Web-service technology being developed by the IT
industry can be adapted and extended to serve this purpose. Universal Description,
Discovery and Integration [11] provides the general framework to allow both content
objects and software objects to be defined as Web-services using the Web Service
Description Language [12]. WSDL is XML-based and can be extended to include the
specification of meta-data, behaviors and their constraints. A WSDL document in XML
format can be used to define any type of learning objects and be posted on the Internet.
Its access point (URL) together with other meta-information can be registered with an
online Web-service registry. The contents of the registry can then be searched manually
or programmatically to discover and select suitable learning objects. As an alternative to

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference71

downloading some identified objects for local use, the Web-service model allows the
run-time binding of a service request to a remote Web-service and provides a Simple
Object Access Protocol [13] to activate the remote service. By applying the Web-
service technology, learning objects become Web-services, which model different types
of learning resources, learning tools, learning management systems/components
developed by different authors and vendors. They can interoperate and be activated
locally or remotely based on their published interfaces. Since the contents of the registry
can evolve over time (i.e., some registered objects may have been modified or deleted,
and new objects may have been registered), dynamic binding and remote access and
activation of learning objects can enhance their delivery and use.

The existing specification and implementation of UDDI does not allow the
specification of constraints associated with Web-services. Without this specification
capability, a learning object can be selected by the registry for downloading or for
online use, but does not satisfy a requestor’s requirements. In this work, we have
extended the WSDL and UDDI’s capabilities by allowing the specification of
constraints associated with learning objects. Requestors’ requirements can also be
specified as constraints in a constraint specification language. We use a Constraint
Satisfaction Processor developed at the Database Systems R&D Center to store
constraints and perform constraint matching to select suitable Web-services [14]. This
processor was also used as a component in an automated negotiation system developed
for e-business applications [15]. The processor does not replace the current UDDI
implementations but complements their capabilities. It can be integrated with an
existing implementation of UDDI (e.g., IBM’s UDDI v2.0) to enhance its
functionalities.

2.2 Modeling and management of dynamic learning processes

The process of creating and delivering learning experiences involves the creation,
discovery, and aggregation of simple electronic assets into more complex learning
resources and then organizing those resources into a predefined sequence of delivery
[16]. The Sequencing Definition Model described in [17] allows a learning activity to
be defined as an activity tree (a hierarchical organization of learning content) having
sequencing control modes associated with its items called activities. Each activity can
have a number of condition-action-type of sequencing and roll-up rules, which control
the behavior of an LMS, based on the data that keeps track of the statuses on the
progress toward reaching the objective of learning contents and the progress of learners’
activity/attempts. The tree structure, the control modes and the sequencing rules
constitute a sequencing model, which specifies the structure and the conditions (or
rules) in which content objects should be launched in certain sequences and control
modes.

A learning module or course defined by an activity tree is static in the sense that it has
a fixed structure, predefined control modes, and sequencing and roll-up rules, which are
to be followed by an Instruction Management System (IMS) for each and every
enactment of the tree. (i.e., all instances of its processing). This is not ideal because
different content users may take the module or course with different background
training, in different learning contexts and constraints, and for different needs (e.g.,
different background trainings require different difficulty levels or different orders of
content delivery, or some component may be skipped due to a learner’s previous
knowledge). It is unreasonable to expect that an activity tree can be predefined by a
content developer to suit the different needs and constraints of all potential learners. An
activity tree can only represent a “typical” structure of learning for a group of potential

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference 72

learners. It has to be customized to meet individuals’ needs, constraints and learning
contexts. We believe that a learning management system controls the processing of
activity trees (i.e., the sequencing models) must be dynamic in the sense that they are
active, flexible, adaptive and customizable.

To achieve the above four dynamic properties, we adopt and extend our prior work on
a dynamic workflow management technology reported in ([18], [19], [20]). We
introduce a Learning Process Definition Model (LPDM) for modeling learning modules
and sub-modules of different granularities as activity trees; the same as SCORM’s
Content Aggregation Model [16] but with a number of extensions to make these process
models active, flexible, adaptive and customizable. In our work, an activity tree defines
a learning process model. Each activity specification contains an activity name, an
activity identification, a textual description to explain the meaning of the activity, a
content object and its binding information, and a set of optional condition-action rules.
These rules may contain 1) pre-activity rules to be processed before the enactment of
the activity, 2) pre-assessed rules to be processed after the pre-assessment task and
before the content object is accessed and presented to the learner, 3) drill-down rules to
be processed after the practice items of the content object has been presented to the
learner and before leaving the activity to go down the activity tree, 4) roll-up rules to be
processed when the activity is revisited during the roll-up process and before the roll-up
content items and post-assessment items are presented to the learner, and 5) post-
assessed rules to be processed after the post assessment task to evaluate the result of
post-assessment. Since the condition parts of these rules may check the user profiles
and the progress they made at the stage of processing the activity, only some of these
rules are applicable to a specific learner or a category of learners. The author who
defines the activity can customize the rules to suit different learners or categories of
learners. The activity specification described above is compiled into the following
program code for processing at run-time. The run-time code performs a sequence of
“drill-down” tasks and a sequence of “roll-up” tasks. The drill-down tasks are: 1) post a
pre-activity event, which would trigger pre-activity rules, 2) access and present the pre-
assessment items of the associated content object and perform assessment, 3) post a pre-
assessed event to signal the completion of the pre-assessment, which triggers the
processing of pre-assessed rules, 4) access and present the content items of the content
object (e.g., an overview for a non-leaf activity or learning content for a leaf-activity),
5) access and present practice items to the learner (for leaf activity only), and 6) post a
drill-down event, which triggers drill-down rules. The roll-up tasks are: 1) post a roll-
up event, which triggers roll-up rules, 2) access and present roll-up content items (e.g., a
summary of content items presented in the sub-tree of a non-leaf activity), 3) access and
present post-assessment items and perform assessment, and 4) post a post-assessed
event, which triggers post-assessed rules. We note here that the drill-down tasks 1,3
and 6 and the roll-up tasks 1 and 4 post events to signal the stages of a learning process
in each activity. These events are automatically generated. They replace the rules
specified in the activity specification. Condition-action rules triggered by these events
are stored and managed by an Event-Trigger-Rule (ETR) Server in our
implementation. This separation allows drill-down and roll-up rules to be modified
and/or added without affecting the activity code; an approach that is critical for
achieving the dynamic properties of learning process models, to be addressed later.

Learning process models are processed by a Learning Process Execution Engine
(LPEE). An enactment of a learning process model by a learner forms a learning
process instance (or an instance of the activity tree). Multiple instances of the model

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference73

can be concurrently processed by LPEE to control the learning activities of multiple
learners, who are taking the same learning course/module.

The key extensions we made to the SCORM’s Content Aggregation Model are as
follows. First, the modeling construct called Activity is extended to include a Web-
service request made either to a specific content object or to a Web-service registry for a
dynamical binding of the request to a registered content object or to a software object
that returns a content object. Web-services requests can also be issued in the action part
of a condition-action rule. Some simple computational statements such as assignments
and comparisons can also be used in the action part of the drill-down and roll-up rules
to store and test the data returned by the executable learning objects. Second, the
sequencing control modes proposed in [17] specify the choosing and sequencing of
child activities under a parent activity (i.e., choice, flow, forward only, choice exit, or a
combination of these modes). They are treated as a part of activity specification. In our
LPDM, they are specified in a different modeling construct called “Connector” for the
following three reasons. One, semantically, they actually specify the “relationships”
between the parent and child activities or among child activities instead of the activity
itself. Two, by specifying the sequencing control modes in a separate modeling
construct, modifications made to the activity or the connector will not affect the other.
This will enhance the reusability of activity and connector specifications. The third
reason, a more important one, is that the separation will allow the control structure of an
activity tree to be modified at run-time for each enactment of the tree in order to fit each
learner’s background, needs, constraints, and learning context. This is essential for
making a learning process model customizable, an important property to be addressed in
the next paragraph. The third extension to SCORM is to allow non-leaf nodes of an
activity tree to contain content items. This is useful for providing an abstract and/or an
introduction to learners before the activity tree rooted by a non-leaf activity is launched,
and a summary of the content items of the activity tree after the tree is processed. It
also allows all the activities to be modeled uniformly by the items and rules given in the
preceding paragraph. Fourth, SCORM’s sequencing model allows sequencing and
roll-up rules to be specified as a part of activity specification. These rules are in the
form of condition-action rules, and are evaluated at different times in the sequencing
and content delivery process. They are defined based on a set of predefined keywords
such as Satisfied, Attempted, Skip, Retry, etc. The action part of a sequencing rule can
specify a precondition action, and a post-condition action or an exit action, which are
time-wise relative to the learning activity specified by an activity. In our work, we use a
general rule specification language to specify what we call drill-down and roll-up rules.
The language can specify not only SCORM’s sequencing and roll-up rules but also rules
for handling exception conditions and/or enforcing security and integrity constraints,
policies and regulations of the learning module/course’s authors and/or administrators.
As we have mentioned before, different types of rules are stored and managed by an
Event-Trigger-Rule (ETR) Sever. They are triggered for processing when events are
posted during the execution of an instance of an activity tree. This approach allows
drill-down, roll-up and other types of rules to be modified and new rules to be added
and triggered by the occurrences of events, without entailing changes to the generated
activity code, based on activity specifications. Event-injected activities, condition-
action rules and triggers, which link events to rules, can be separately specified by
different people or organizations and be managed in a distributed fashion (see a further
discussion in Section 2.3). Changes made to one type of specification will not affect the
other. This separation is important for achieving the dynamic properties at run time to
be elaborated upon next.

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference 74

In addition to the model extensions described above, our approach to achieve the
dynamic properties at run time is to integrate the ETR Sever with the Learning Process
Execution Engine. When a learning process model represented by an activity tree is
enacted by the process execution engine, an instance of the model is established. The
execution of an activity would post events before processing the activity, after the pre-
assessment, before the drill-down process, before the roll-up process, and after the post-
assessment of the activity to trigger the execution of rules. These rules can, not only
affect different sequencing behaviors and/or enforce different constraints, policies, and
regulations and/or handle exception situations, but also conditionally modify the process
model instance itself at run time to change the control structure of content delivery.
This run-time dynamism can be achieved by the following implementation technique.
Since we separate the specifications of activities from those of Connectors, which now
contain the specifications of sequencing control modes, we can compile an activity tree
into two part: activity code for activities, which post events to trigger rules and launch
the instructional activities specified in activity specifications (including Web-service
requests for local or remote learning objects) and the control structure of the activity
tree and its sequencing control modes. The Learning Process Execution Engine is
driven by the contents of the control structure. Rules that are defined for a specific
learner or a category of learners can be conditionally activated at run-time to modify the
copy of the control structure created by an enactment of an activity tree (e.g., a leaner
initiates an attempt of a learning module). Thus, the original activity tree can then be
customized to suit each individual learner’s profile and learning context. Rules managed
and processed by the ETR Server can also be modified at run-time. A modified rule can
be compiled into Java code and the code can be automatically loaded for execution
using Java’s class loading facility.

The learning process models, which are processed by the Learning Process
Execution Engine and the ETR server, are active because the enactment of a process
model (i.e., an activity tree) can automatically activate rules to perform any desired
operations at different stages of a learning process. They are flexible because the Web-
service requests for learning objects included in activity specifications can be
dynamically bound to the operations of local and remote learning objects. They are
adaptable because each instance of a process model can trigger rules to modify the
control structure of that instance to fit a particular content user’s profile, needs and
learning context (e.g., by conditionally enacting a supplemental learning module not
included in the original model, skipping some activities, changing the request for a
content object to one that has a lower or higher difficulty level, altering the condition or
action of a rule, etc.). They are also customizable because different sets of rules
defined for different users or categories of users can be triggered by the same set of
events posted by the same activity tree in different enactments of the process model
(i.e., different model instances).

The research work and approaches described above are based on our previous
research on event-trigger-rule processing and dynamic workflow management ([21],
[18], [19], [20]) as well as the concept, model and language introduced for workflow
management by the Workflow Management Coalition [22]. We envision that the ETR
Server and the Learning Process Execution Engine are critical components of a web-
based learning management system. They, together with the learning content definition
model and the learning process definition model presented above, will make the
learning management system dynamic, having the above four dynamic properties.

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference75

2.3 Facilitating collaborative learning

Internet-based learning technologies emphasize interactions and collaborations among
people because learning is a largely a social activity; even the most well developed
multimedia interactive materials lack the flexibility of human interaction [23].
Collaborative learning requires that each learner taking a leaning module/course can do
group work with fellow learners and is able to establish close communication and
coordination with lecturers, assistants, mentors, and administrators. Computer mediated
communication (CMC) tools such as email, mailing list, computer conferencing, video
conferencing, Usenet news group, Internet relay chat, etc., can be used to enhance
communication and coordination. However, the use of these tools needs to be
integrated into the learning process. That is, during the progress of taking a learning
module or course, and at the proper times and under proper conditions, people involved
in collaborative learning need to be advised to make use of CMC tools to establish the
communication with one another. The results of using these tools should be fed back to
the learning management system (LMS) that controls and coordinates the learning
process. A mechanism is needed to tie the CMC tools with LMSs.

In our work, we use the same event-trigger-rule mechanism used to achieve the
dynamic properties of learning process models in order to achieve this purpose. Using
the graphical user interface provided by the ETR Server, we can define anything of
interest in e-learning as an event, and the condition to be verified and the action to be
taken upon the occurrence of the event as a rule. The relationship between the event
and the rule is specified by a trigger. For example, a content user who is taking a course
encounters a specific problem (an event), which would trigger a rule to post a message
to a discussion board for assistance from some other people. Another example, a
potential content user, who searches the registry and fails to find a desirable content
object, would subscribe to the New-Object event or the Modify-Object event, and
specify an event filter to indicate the condition(s) under which he/she would like to be
notified by email or other means. Thus, when a new content object is registered with the
registry (i.e., the occurrence of the New-Object event) or an existing content object is
modified (i.e., the occurrence of the Modify-Object event), if the event filter
condition(s) is satisfied, the user will automatically be notified. Many content users can
subscribe to the same event with the same or different event filters. When the event
occurs, they can all be notified if their filtering conditions are satisfied. A third
example, when several students of an online course are working on a team project and
one of the team members encounters a problem (an event), a rule would be triggered to
send an email message to all team members to advise them of the time to participate in a
video conferencing session to discuss and resolve the problem.

In this work, we have developed servlets that are accessible through Web browsers to
allow people involved in e-learning to define and register events in a Web-service
registry (or registries) just like the registration of learning objects discussed in Section
2.1. These people can also browse or programmatically search the registered events and
subscribe to them. Rules and triggers can be defined by them and stored at their
corresponding sites with security and privacy access control. They will be processed by
the replicas of the Event-Trigger-Rule Server that are installed at these sites. The
processing of distributed triggers and rules is activated by the event notification
mechanism. Event, event filtering and event notification are powerful means to tie
loosely coupled systems and geographically distributed systems and people together.
By integrating them with the rule specification and processing mechanisms, learning
process modeling and execution mechanisms, and CMC tools, they can together form a

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference 76

powerful information infrastructure for achieving advanced distributed learning. In this
research, we are investigating the best way to integrate these tools and mechanisms.
This effort is based on our expertise and experiences in building event-trigger-rule-
based systems ([24], [25], [26], [27]).

References:

[1] Advanced Distributed Learning Initiative, http://www.adlnet.org

[2] IMS Global Learning Consortium Inc., http://www.imsglobal.org

[3] Schools Interoperability Framework, http://www.sifinfo.org

[4] O.K.I. and Eduworks, OKI White Paper; What is the Open Knowledge Initiative?
http://web.mit.edu/oki/product/whtpapers/whatis.html

[5] http://ocw.mit.edu/global/about-ocw.html

[6] http://dspace.org/what/definition.html

[7] http://chronicle.com/free/v49/i15/15a03101.htm

[8] Advanced Distributed Learning, Sharable Content Object Reference Model Version 1.2: The
SCORM Overview, October 1, 2001

[9] Advanced Distributed Learning, Sharable Content Object Reference Model Version 1.2: The
SCORM Run-Time Environment, October 1, 2001

[10] Barritt, C., "Reusable Learning Object Strategy version 4.0",Cisco Systems, Inc., Nov.
2001.

[11] Universal Description, Discovery, and Integration (UDDI), http://www.uddi.org/,
http://uddi.microsoft.com/ and http://www-3.ibm.com/services/uddi/

[12] World Wide Web Consortium (W3C), “Web Services Description Language (WSDL) 1.1”,
http://www.w3.org/TR/wsdl.

[13] World Wide Web Consortium (W3C), “Simple Object Access Protocol”,
http://www.w3.org/TR/SOAP/, and http://www.develop.com/soap/

[14] Degwekar, S., Lam, H. and Su, S. Y.W., “Constraint-based Brokering for Publishing and
Discovery of Web-services,” Technical Report, Database Systems R&D Center,
University of Florida, 2002.

[15] Su, Stanley Y. W., Huang, C., Hammer, J., Huang, Y., Li, H., Wang, L., Liu, Y.,
Pluempitiwiriyawej, C., Lee, M., and Lam, H., “An Internet-based Negotiation Server for
E-Commerce,” VLDB Journal, Vol. 10, No. 1, Aug. 2001, pp. 72-90.

[16] Advanced Distributed Learning, Sharable Content Object Reference Model Version 1.2:
The SCORM Content Aggregation Model, October 1, 2001

[17] SCORM Version 1.3 Application Profile – Draft

[18] J. Meng, S. Y. W. Su, H. Lam, and A. Helal, “Achieving Dynamic Inter-Organizational
Workflow Management by Integrating Business Processes, Events, and Rules,”
Proceedings of the 35th Hawaii International Conference on System Sciences, Hawaii,
USA, January 2002.

[19] Meng, Jie, Krithivasan, Raja, Su, Stanley Y.W., and Helal, Abdelsalam, “Flexible Inter-
enterpriseWorkflow Management using E-Services,” Proceedings of the 4th IEEE
International Workshop on Advanced Issues of E-Commerce and Web-based Information
Systems, June 2002, California, USA.

http://www.uddi.org/
http://uddi.microsoft.com/
http://www-3.ibm.com/services/uddi/
http://www.w3.org/TR/SOAP/
http://www.develop.com/soap/

Web-service-based, Dynamic and Collaborative E-learning

Proceedings of the PGL DB Research Conference77

[20] Su, Stanley Y. W., Meng, J., Kristhivasan, R., Degwekar, S. and Helal, S., “Dynamic Inter-
Enterprise Workflow Management in a Constraint-based E-service Infrastructure,”
Electronic Commerce Research, 3:9-24, 2003.

[21] Su, Stanley Y. W., Lam, H., Lee, M., Bai, S., and Shen, Z., “An Information Infrastructure
and E-services for Supporting Internet-based Scalable E-business Enterprises,”
Proceedings of the 5th International Enterprise Distributed Object Conference (EDOC
2001), Seattle, WA, Sept. 4-7, 2001, pp.2-13.

[22] Workflow Management Coalition, “Interface1: Process Definition Interchange V 1.1 Final
(WfMC-TC-1016-P)," 1999; http:// www.wfmc.org.

[23] http://www.warwick.ac.uk/ETS/Publications/Guides/Printer.htm

[24] Lam, H. and Su, Stanley Y.W., “Component Interoperability in a Virtual Enterprise Using
Events/Triggers/Rules,” Proc. of OOPSLA ’98 Workshop on Objects, Components, and
Virtual Enterprise, Vancouver, B.C., Canada, Oct. 18-22, 1998, pp. 47-53.

[25] Su, Stanley Y. W. and Lam, Herman, “IKnet: Scalable Infrastructure for Achieving
Internet-based Knowledge Network,” invited paper, Proceedings of International
Conference on Advances in Infrastructure for Electronic Business, Science, and Education
on the Internet, l’Aquila, Rome, Italy, July 31-Aug. 6, 2000.

[26] Lee, M., Su, S.Y.W., and Lam, H., “Event and Rule Services for Achieving a Web-based
Knowledge Network,” Proc. 2001 Int. Conference on Web Intelligence (WI-2001),
Maebashi City, Japan, Oct. 23-26, 2001, pp. 205-216.

[27]Lee, Minsoo, Su, Stanley Y. W., Lam, Herman, "A Web-based Knowledge Network for
Supporting Emerging Internet Applications," the WWW Journal, Vol. 4, No. 1/2, 2001,
pp. 121-140.

http://www.wfmc.org/

