WebRelievo: A System for Browsing and Analyzing the Evolution of
Related Web Pages

Masashi Toyoda and Masaru Kitsuregawa
Institute of Industrial Science, University of Tokyo

4-6-1 Komaba Meguro-ku, Tokyo, JAPAN
E-mail: toyoda,kitsure@tkl.iis.u-tokyo.ac.jp

Abstract

WebRelievo is a system for browsing and analyzing the evolution of the web graph structure based
on link analysis. This system enables us to answer historical questions, and to detect changes in topics
on the Web. WebRelievo extracts web pages related to a focused page using link analysis, and visualizes
the evolution of their relationships with a time series of graphs. This visualization enables us to under-
stand when related pages appeared, and how their relationships have evolved over time. The user can
interactively browse those related pages by changing the focused page and by changing layouts of graphs.
WebRelievo is implemented on six Japanese web archives crawled from 1999 to 2003.

1 Introduction

The Web has been growing and changing its structure by reflecting real social activities. For example, when
important events such as war and terrorism occur in the real world, many web pages about these events
are created, and become connected by hyperlinks. Since hyperlinks represent attention of page authors to
the destination pages, we could detect changes in trends on the Web from the evolution of the hyperlink
structure. Now, it becomes an important issue to track structural changes in the web.

We propose the WebRelievo system for browsing and analyzing the evolution of the web structure based
on a series of large web archives. Currently, we use six web archives of Japanese web pages crawled from
1999 to 2003. This system allows us to answer historical questions, and to detect changes in topics on the
Web. Figure 1 shows a screen snapshot of WebRelievo. Six graphs represent the same part of those six web
archives. In those graphs, each node represents the URL, and each edge represents the relationship between
URLs extracted by link analysis. These graphs are aligned from left to right then top to bottom by their
time. Positions of URLs are synchronized over time, so that the user can easily recognize the changes in
graphs.

To visualize the structure of the web, we do not use directly the web graph, in which nodes are web
pages and edges are hyperlinks. It is because the web graph itself is too complicated to understand and to
visualize its structure. Since, famous web pages are linked to by thousands of other pages, it is difficult to
display even a subgraph of the web in limited screen space.

Therefore, WebRelievo visualizes relationships between web pages calculated by a link analysis technique,
and show the evolution of their relationships. To calculate relationships, we use a related page algorithm
(RPA) based on HITS [9] that takes a seed page as an input, and outputs related pages to the seed, by
extracting a specific pattern of densely connected subgraph in the web. We visualize the relationships in
each web archive by a derivation graph that is a directed graph representing how each page derives other
pages by RPA.

106

File Edit

URL: [nttn o kaza com] | [changes || ©c v Rankthreshold: —
® Navigate > Edit [Zoom =] [4 O

1999/08 2000/08 200110 =
m\
/ﬂ
]
/
[napster.co] 'm. ; ;EM\ er col
anarp con) | ey —\[7 e
| ash [) -
2002102 2003102 2003’07
asttrack. f
rorstorc] morcory /- W’
><1 NN /1
T
N
L.
7\
U peto colgnuiala w W aimsiorco
\\ ‘ - \ \
\ l
1cq.co
|cq comf{ q ~
[winamp.com 7 wmamp comr ['] “ ||
TN, =

[v]

Figure 1: A screen snapshot of WebRelievo

For all web archives, WebRelievo makes derivation graphs around a focused page given by the user, then
align these graphs as shown in Figure 1. The direction of each edge is shown by its thickness at each ends.
That is, each edge starts at the thick end, and goes to the thin end.

This visualization enables the user to understand when related pages appeared and disappeared, and
how their relationships have changed over time. In addition, the user can interactively browse those related
pages by changing the focused page and by dragging nodes.

The rest of this paper is organized as follows. Section 2 shows some related work. Section 3 explains de-
tails of the derivation graph. Section 4 describes how to visualize the evolution and how the user can interact
with WebRelievo. Section 5 shows some evolution examples with WebRelievo. The system architecture and
implementation are described in Section 6. Finally, we conclude in Section 7.

2 Related Work

2.1 Visualizations of Evolution

There have been some work on visualizing evolution of information structure [3, 4, 5, 13]. Chen examined
animated visualization of the evolution of co-citation networks of scientific publications [3]. Chen compared

107

two link reduction techniques to show which one is suitable for animation of the evolution [4]. Chi proposed
the time tube technique [5] to visualize the evolution of a single web site structure, and accesses patterns
on that site. It visualizes the hierarchical structure of the web site as a disk tree, in which the root page is
put on the center, and child pages fan out from the root. Multiple disks are created for each time period,
and aligned left to right by their time, so that the user can observe changes over time. The time tube
visualization is basically similar to WebRelievo, while we mainly visualize relationships between web sites,
and we do not restrict the structure to the tree.

Our previous work [12, 13] visualized evolution of web communities. A web community is a set of web
pages with a common interest on a topic. In [12], we proposed a method for extracting all web communities
from a single web archive using the derivation graph. In [13], we extracted all web communities from
periodically crawled web archives, and visualized changes of these communities, such as growth, shrinkage,
merge, and split. Rather, WebRelievo visualizes page level changes of relationships by the derivation graph.
It can be used for detailed examination of web communities.

2.2 Related Page Algorithms

WebRelievo uses a related page algorithm (RPA) that takes a seed page as an input, and outputs related
pages to the seed. We adopt a RPA based on the notion of authorities and hubs proposed by Kleinberg [9].
An authority is a page with good contents on a topic, and is pointed to by many good hub pages. A hub
is a page with a list of hyperlinks to valuable pages on the topic, that is, points to many good authorities.
HITS [9] is an algorithm that extracts authorities and hubs from a given subgraph of the Web with efficient
iterative calculation.

RPA first builds a subgraph of the Web near the seed, and extracts densely connected authorities and
hubs in the graph using HITS. Then authorities are returned as related pages. There are some variants
of RPA based on HITS, such as Companion [6]. Since existing RPAs provide insufficient precision, we use
an improved algorithm Companion— [12] in our previous work. The algorithm of Companion— is given in
Appendix.

There are also some RPAs that are not based on HITS. Lempel and Moran [10] proposed another
approach based on a random walk model for calculating authorities. Flake et al. [7] redefined a community
including given seed pages as a subgraph that is separated from the Web using a maximum flow /minimum
cut framework. Although we use a HITS based RPA, what we need is ranked lists of pages related to seeds.
Therefore, it is easy to replace RPA to other algorithms such as SALSA.

3 Derivation Graph

In this section, we first introduce the notion of derivation graph proposed in [12]. Then we describe how to
select and build a time series of derivation graphs that is newly required by WebRelievo.

Since the structure of the web graph is too complicated to visualize and to understand, we simplify the
web graph using a related page algorithm (RPA) that returns related pages to a given page. That is, we
visualize how each page derives other pages by RPA. To represent such relationships, we use a notion of
derivation graph DG = (V, E). Each node v € V represents a page. Each directed edge e € F from a node
p to another node ¢, represents that p derives ¢ as one of the top N related pages.

An appropriate value of N would differ according to the focused topic. By changing the parameter IV, we
can change the density of the derivation graph. When N becomes smaller, DG only connects more densely
connected authorities, and becomes sparser. When N becomes larger, DG connects less densely connected
authorities, and DG becomes denser. Note that the notion of DG does not depend on a specific RPA. We
can use any RPAs, such as HITS, Companion, and SALSA, for building DG.

108

When a DG is still complicated to understand, we can make the DG more simple by extracting mutually
connected nodes by derivations in DG. That is, p derives ¢ and vice versa. Using a HITS based RPA,
we found that such nodes are closely related in our previous work[12]. The extracted graph is called the
symmetric derivation graph (SDG). In SDG, we only use symmetric derivations between nodes in DG. That
is, a edge between p and ¢ exist in SDG when p derives ¢ and vice versa. Note that the density of SDG can
also be changed by N. In WebRelievo, the user can choose from DG and SDG for visualizing relationships
between pages.

WebRelievo shows the evolution, using a time series of derivation graphs built from a time series of web
archives: {DG; = (V;, E;)|1 <t < T}. The subscript ¢ denotes the time when each archive crawled (1 is
the first time and 7" is the last time). Since each DG, is too large to browse in a single screen, WebRelievo
extracts and shows subgraphs of DGs around a given focused node p: {DG(p) = (Vi(p), Ex(p))|1 <t < T}.

To show appearance and disappearance of all nodes related to p over time, we extract pages related to
p for each time, and track all of these pages. The following is the process to build a time series of those
subgraphs:

1. For each time ¢, extract a set R¢(p) of nodes related to p. It means that each node in R;(p) is pointed
to by p in DG;.

2. For each DGy(p), Vi(p) = Vi N (UtR(p)).
3. For each DGy(p), Ei(p) = {(u,v) € E¢|lu,v € Vi(p)}.

4 Visualization and User Interaction

WebRelievo visualizes a time series of DG using an automatic and dynamic graph layout algorithm based
on a kind of force-directed model [8]. When visualizing a time series of DGs, the system should clearly show
the difference between DGs. The following is the requirements for layouting DGs.

e The same node should be located at the same position over multiple DGs.

e Changes in nodes and edges of neighboring DGs should be easily recognized.

4.1 Synchronized Layout

To satisfy the first requirement, we modify the force-directed model by adding the feature to synchronize
the position of the same node in multiple DGs. The force-directed model considers a graph as a physical
system, in which attractive forces F, are exerted on all pairs of connected nodes, and repulsive forces F;. are
exerted on all pairs of nodes. In WebRelievo, F,, and F;. is defined as a function of the distance d between
two nodes as follows:

Fo(d) = d?*/k? F.(d) = —k/d

Where k is the ideal length between nodes.

The synchronization of node positions is performed between neighboring DGs. That is, each node in
each DG is attracted to the position of the same node in the previous and next DGs. We add the following
two forces for each node.

Fprev(dp) = p/2a Fnemt(dn) = dn/2
In these equations, d, and d,, are the distances from the node to the same node in the previous and next
DG, respectively. These distances are zero, when the same node does not exist in the neighboring DGs.

Initially, nodes are randomly located in each panel, then each nodes are iteratively moved by those forces.
The layout is fixed, when the total movement of nodes become less than a threshold. This iterative layout
is shown by animation in WebRelievo.

109

4.2 Showing Differences between DGs

For the second requirement, nodes and edges are colored by their types of changes. For example, if a node
or an edge appeared at time ¢, we use a red color for it. In this way, the user can see what kinds of changes
have occurred and will occur on each node and edge.

Each DGy(p) is compared with the previous one DG;_;(p), and the next one DGyy1(p), then changes in
each node (or edge) are classified into four types and colored as follows:

Stay—Stay When the node (or edge) exists in both DG;—1 and DG}y, it is colored black to show its
stability.

Stay—Disappear When the node (or edge) exists in DGy_1, but does not exist in DGy 1, it is colored light
gray to show its stay from ¢ — 1 and disappearance at ¢ + 1.

Appear—Stay When the node (or edge) does not exist in DGy_1, and exists in DGy 1, it is colored red to
show its appearance and stay to ¢ + 1.

Appear—Disappear When the node (or edge) exists neither in DGy and in DGyy1, it is colored light
red to show its volatility.

4.3 User Interaction

WebRelievo supports the following user interaction.

e The user can designate the focused URL by typing the URL in the input box, which is in the top-
left of Figure 1. Then all derivation graphs around the URL are built and displayed. When the user
designate another URL in the input box, graphs are built for the another URL, and merged to existing
graphs. The same operation can be done on existing URL using a pop-up menu.

e The user can scroll and zoom into graphs. These kinds of changes in a graph are immediately propa-
gated to all graphs for keeping layouts synchronized. Nodes in all graphs can be moved by dragging.
When the user dragged a node in a graph, the node with the same URL is moved to the same position
in each graphs. Layouts of all graphs are re-calculated and animated by the force-directed model,
simultaneously. The user can easily keep track of the evolution after those operations.

e The user can examine the effect of parameter NV in Section 3, by dynamically changing N with the
slider that is in the top-center of Figure 1. When N is changed by the user, all graphs are immediately
changed using .

e The user can choose visualization of graphs from DG and SDG (See Section 3). When SDG is chosen,
the user can reveal asymmetric edges around a selected URL using the pop-up menu of the URL. This
change is also propagated to all graphs.

5 Evolution Examples

In this section, we show two evolution examples with WebRelievo. The first example in Figure 2 shows the
evolution of P2P file sharing systems. In this case, the user wants to know the history of P2P systems,
and designates the URL of a famous P2P system Kazaa (www.kazaa.com). Figure 2 shows the evolution
by SDG (Figure 1 uses DG). From this result, the user can see that the first P2P system is Napster, and
then various systems appeared such as Gnutella (2000), WinMX (2001), and Kazaa (2001). Famous systems
became densely connected, and formed an almost clique.

110

Year Period H Crawled pages Total URLs Links

1999 Jul. to Aug. 17™M 34M 120M
2000 Jun. to Aug. 17™M 32M 112M
2001 Oct. 40M 76M 331M
2002 Feb. 45M 84M 375M
2003 Feb. 66M 384M 1058M
2003 Jul 98M 601M 1587M

Table 1: Details of web archives

The second example shows the evolution of search engines for mobile phone internet services (mainly for
the i-mode service of NTT DoCoMo). In this case, the user want to know how the trend of those search
engines has changed, and designate a famous search engine (mobile.yahoo.co.jp). In Figure 3, we can
clearly see the changes in the trend of i-mode search engines. In 1999, search engines for i-mode were mainly
provided by small companies, and they formed a clique. In 2000, major companies such as Yahoo! and
Lycos began to provide i-mode search engines, and gradually the clique moved to these major companies.
In 2003, the clique in 1999 was disappeared.

6 Architecture and Implementation

The architecture overview of WebRelievo is shown in Figure 4. WebRelievo is based on three databases
built from web archives. We use six web archives of Japanese web pages crawled from 1999 to 2003 (See
Table 1). Our crawler collected pages in the breadth-first order. From 2001, the number of pages became
more than twice of the 2000 archive, since we improved the crawling rate. Until 2002, we collected pages in
only .jp domain. From 2003, we began to collect pages in other domains, such as .com, if they are written in
Japanese. Those collected documents are stored in the document archive on the right-bottom of Figure 4.
Each document can be retrieved by its URL and the time of crawling.

From each archive, we built a link database (on the right-center of Figure 4) with URLs and links by
extracting anchors from all pages in the archive. Our link database included not only URLs inside the
archive, but also URLs outside pointed to by inside URLs. As a result, the graph included URLs outside
.jp domain, such as .com and .edu. Table 1 also shows the number of links and the total URLs. For efficient
link analysis, each link database is implemented as a main-memory database that provided out-links and
in-links of a given URL. Its implementation was similar to the connectivity server [1].

The related page database on the right-top of Figure 4 is used to speed up the retrieval of derivation
graphs. It stores pre-calculated results of RPA for popular URLs. The popularity of a URL is determined
by the number of in-links. In our implementation, we pre-calculate related pages for URLs that have three
or more in-links from other web servers.

The related page manager, in the center of Figure 4, provides information of derivation graphs to the
evolution viewer on the top-left of Figure 4. This manager builds subgraphs of DGs for the focused URL
using the related page database. When required URLs are not stored in the related page database, it
calculates related pages by RPA using the link database. The RPA used by the manager can be changed to
any RPA based on link analysis. In that case, the related page database should be also replaced.

The evolution viewer is the user interface of WebRelievo. The viewer displays DGs provided by the
related page manager. We use the TouchGraph [11] to layout DGs, and modified the layout algorithm to
synchronize node positions. The web browser (e.g. Mozilla) is used to browse contents of URLs designated
by the user. The browser accesses the document database to show past documents.

111

File Edit

URL: _jnu”.ﬁz,\s;axmﬁm.ga __nsuzumm - _mwa:_:min * | Rank threshold: _HHH_

(® Navigate (' Edit | Zoom -
1999/08 2000i08

napster.co |

napster.co

2002/02 2003102

memm com/

n__o@m_mx Ig?

bearshare.

napster.co napster.co

geocities.

2001110

{ fastirack |

/

aimster co |

bearshare. |

n:..;m__m.iﬂ

\

napster.co Ll geocities.

2003107

napster.co

D]

L4

]

Figure 2: Evolution of P2P file sharing systems

112

File Edit

URL : [ntip:mobile yahoo co jg] __n__m_zm_mm - _@EEE-H +| Rank threshold: ——————

® Navigate (" Edit [Zoom = | [4 [

1999/08

imjp_co jp

2002102

imip.co jp |

2000108

iseek.info |

i yappo.ne |

imjp.co jp

2003102

mobile yah

e o <o

imjp.co_jp

Imnmqmomnm.

acaragate.

acaragate.

200110

2003107

imjp.co.jp

imjp_co jp|

acaragate.

acaragate.

]

v]

4]

Figure 3: Evolution of search engines for mobile phone internet services

113

=

Related page
database

Evolution Viewer

Related page
manager

e
<

e
Link database

Web Browser >
o S
3
Document
database

Figure 4: Architecture overview

¥

7 Conclusions

We have proposed the WebRelievo system for browsing and analyzing the evolution of the web structure
based on a HITS based link analysis technique. This system allows us to answer historical questions, and to
detect changes in topics on the Web, from appearance and disappearance of pages on a focused topic, and
evolution of their relationships. WebRelievo helps us understand the evolution by showing a time series of
derivation graphs, and their synchronized layouts.

WebRelievo can detect detailed changes in relationships of pages. However, it is difficult to see the global
changes in the Web. Now we are implementing clustering of web pages for showing larger areas of derivation
graphs. We also plan to crawl the web more frequently, and visualize more continuous evolution of the web.

References

[1] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar, and Suresh Venkatasubramanian.
The Connectivity Server: fast access to linkage information on the Web. In Proceedings of the 7th
International World Wide Web Conference, pages 14-18, 1998.

[2] Krishna Bharat and Monika Henzinger. Improved Algorithms for Topic Distillation in a Hyperlinked
Environment. In Proceedings of ACM SIGIR 98, pages 104-111, 1998.

[3] Chaomei Chen and Leslie Carr. Visualizing the evolution of a subject domain: A case study. In
David Ebert, Markus Gross, and Bernd Hamann, editors, IEEFE Visualization ’99, pages 449-452, San
Francisco, 1999.

[4] Chaomei Chen and Steven Morris. Visualizing Evolving Networks: Minimum Spanning Trees versus
Pathfinder Networks. In IEEE Visualization 2003, pages 67-74, 2003.

[5] Ed H. Chi, James Pitkow, Jock D. Mackinlay, Peter Pirolli, Rich Gossweiler, and Stuart K. Card.
Visualizing the Evolution of Web Ecologies. In Proceedings of ACM SIGCHI ’98, pages 400-407, 1998.

[6] Jeffrey Dean and Monika R. Henzinger. Finding related pages in the World Wide Web. In Proceedings
of the §th World-Wide Web Conference, pages 389-401, 1999.

[7] Gary W. Flake, Steve Lawrence, and C. Lee Giles. Efficient Identification of Web Communities. In
Proceedings of KDD 2000, pages 150-160, 2000.

114

[8] Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed placement.
Software - Practice and Ezxperience, 21(11):1129-1164, 1991.

[9] Jon M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms, pages 668—677, 1998.

[10] R. Lempel and S. Moran. The Stochastic Approach for Link-Structure Analysis (SALSA) and the TKC
Effect. In Proceedings of the 9th World-Wide Web Conference, pages 387-401, 2000.

[11] Alexander Shapiro. Touchgraph. http://www.touchgraph.com/.

[12] Masashi Toyoda and Masaru Kitsuregawa. Creating a Web Community Chart for Navigating Related
Communities. In Conference Proceedings of Hypertext 2001, pages 103-112, 2001.

[13] Masashi Toyoda and Masaru Kitsuregawa. Extracting evolution of web communities from a series of
web archives. In Proceedings of the Fourteenth Conference on Hypertext and Hypermedia (Hypertext
03), pages 28-37, August 2003.

Appendix: Companion—

Companion— takes a seed page as an input, then outputs related pages to the seed. It first builds a subgraph
of the Web around the seed, and extracts authorities from the subgraph as related pages.

First, it builds a vicinity graph of a given seed, which is a subgraph of the web around the seed. A
vicinity graph is a directed graph, (V, E), where nodes in V' represent web pages, and edges in F represent
links between these pages. V consists of the seed, a set of nodes pointing to the seed (B), and an another
set of nodes pointed to by nodes in B (BF). When following outgoing links from each node in B, the order
of links in the node is considered. Not all the links are followed but only R links immediately preceding the
link pointing to the seed, and R links immediately succeeding the link. This is based on an observation that
links to related pages are gathered in a small portion of a page.

To each edge, it assigns two kinds of weights, an authority weight and a hub weight for decreasing the
influence of a single server. The authority weight is used for calculating an authority score of each node, and
the hub weight is used for calculating a hub score of each node. Companion— uses the following weighting
method proposed by Bharat and Henzinger [2]: (1) If two nodes of an edge are in the same server, the edge
has the value 0 for both weights; (2) If a node has n incoming edges from the same server, the authority
weight of each edge is 1/n; and (3) If a node has m outgoing edges to the same server, the hub weight of
each edge is 1/m.

Then it calculates a hub score, h(n) and an authority score, a(n) for each node n in V. The following
is the process of the calculation, where aw(n, m) and hw(n, m) represent the authority weight and the hub
weight of the edge from n to m, respectively.

Step 1. Initialize h(n) and a(n) of each node n to 1.

Step 2. Repeat the following calculation until h(n) and a(n) have converged for each node n.
For all node n in V, h(n) < 3, mycp a(m) x hw(n,m)
For all node n in V, a(n) < 3, nyep M(m) x aw(m,n)
Normalize h(n), so that the sum of squares to be 1.
Normalize a(n), so that the sum of squares to be 1.

Step 3. Return nodes with the IV highest authority scores.

115

