
A Dataflow Approach To Efficient Change Detection of

HTML/XML Documents in WebVigiL∗

Anoop Sanka, Shravan Chamakura, Sharma Chakravarthy

Department of Computer Science & Engineering

The University of Texas at Arlington

{asanka,chamakur,sharma}@cse.uta.edu

Abstract

The burgeoning data on the Web makes it dif-
ficult for one to keep track of the changes that
constantly occur to specific information of inter-
est. Currently, the most widespread way of de-
tecting changes occurring to Web content is to
manually retrieve the pages of interest and check
them for changes. This mode of action not only
wastes useful resources, but also presents infor-
mation that may not be relevant to the given
context.

In this paper, we present a change-monitoring
system – WebVigiL – which efficiently monitors
user-specified web pages for customized changes
and notifies the user in a timely manner. We
present the dataflow approach used for detect-
ing multiple types of changes to a page. This
approach has been optimized to group simi-
lar/same specifications to reduce the computa-
tion of changes. Multiple changes to the same
page can also be handled in our approach. We
also provide the overall architecture of Web-

∗This work was supported, in part, by the Office of
Naval Research & the SPAWAR System Center-San Diego
& by the Rome Laboratory (grant F30602-01-2-05430),
and by NSF (grant IIS-0123730).

VigiL to highlight role of change detection graph
(CDG) which forms the core of the WebVigiL
system.

1 Introduction

The world wide web has outdone traditional me-
dia such as television, to become an indispens-
able source of information. There is data for
everyone and everything on the Web, and this
data is increasing at a rapid pace. This plethora
of information often leads to situations wherein
users looking for specific pieces of information
are flooded with irrelevant data. For example, an
information technology professional who is only
interested in news related to his areas of inter-
est, is flooded with news on many topics when
he goes to any popular news website. There are
other situations in which users are interested in
knowing about the updates happening to a par-
ticular web page of their interest. For example,
students might want to know about the updates
that are made to their course websites regard-
ing any new projects. In other scenarios there
are large software development projects where
there are number of documents, such as require-

1

76

ments analysis, design specification, detailed de-
sign document and implementation documents.
Typically, a large number of people are work-
ing on the project and managers need to be
aware of the changes to any one of the docu-
ments to make sure the changes are propagated
properly to other relevant documents. In gen-
eral, the ability to specify changes to arbitrary
documents and get notified in different ways will
be useful for reducing the wasteful navigation.
The proposed architecture also provides a pow-
erful way to disseminate information efficiently
without sending unnecessary or irrelevant infor-
mation.

Today, information retrieval is mostly done us-
ing the pull paradigm where the information of
interest is pulled from its source by the user giv-
ing a query (or queries). The user takes the
burden of analyzing the pulled information for
any changes of interest. Although there are ap-
proaches, such as mailing lists, to notify users of
the changes that happen to information of inter-
est, there is little or no scope for the user to cus-
tomize those notifications. The user has to be
satisfied with whatever information the source
wishes to send rather than what specific infor-
mation the user wants.

A great deal of research has been done in the
field of active technology to provide the capa-
bility of timely responses for many applications.
Event-Condition-Action (or ECA) rules are used
to provide active capability to a system. In
the case of large-scale distributed environments
such as the Web, users are interested in mon-
itoring changes to a particular web page. But
there are instances in which the change detec-
tion is required at a finer granularity, such as
specifying changes to links, images, phrases or
keywords in a page. Web pages that are moni-
tored for detecting changes may be either HTML

or XML pages. Changes to pages and changes
to images, links, keywords and etc. correspond
to primitive events when mapped to the ECA
paradigm and their combinations form compos-
ite events. Thus, some of the techniques devel-
oped for active databases, when extended appro-
priately, will provide a solution to detect changes
to web pages. This paper focuses on developing
a framework and to provide a selective propa-
gation approach to detect changes that are of
interest to the users in the context of web and
other large-scale network-centric environments
by adapting and extending the existing active
technology.

The remainder of the paper is organized as fol-
lows. In section 2 we present the related work
that has been done in the field of change detec-
tion of web content. In section 3 we present the
architecture of the WebVigiL system. In section
4 we show how the ECA paradigm is incorpo-
rated into the system. In section 5 we present the
core component of the WebVigiL system which
is the Change Detection Graph (CDG). Finally,
we discuss future work in section 6.

2 Related Work

Many tools have been developed and are cur-
rently available for tracking changes to web
pages. AIDE (AT&T Internet Difference En-
gine) [4], developed by AT&T shows the differ-
ence between two HTML pages. The granular-
ity of change detection is restricted to a page in
AIDE. It is not possible to view changes at a
finer level of granularity, such as links within a
page, keywords, images, tables, lists or phrases.

NetMind [9] formerly known as URL-minder
provides keyword or text-based change detection
and notification service over web pages. Net-

2

77

Mind detects changes to links, images, keywords
and phrases in an HTML page. The media of
notification are e-mail or mobile phone. The sys-
tem lacks the support to specify ignoring changes
which the user is not interested in. Also, it lacks
the support to specify composite changes (when
both links AND images change) on a page. Also
there is no provision for the user to come back
later and view the last changes that have been
detected. The frequency of when to poll the page
is predefined.

WebCQ [8] is a prototype system for large-
scale web information monitoring and deliv-
ery, which makes use of the structure present
in hypertext and the concept of continuous
queries. WebCQ is designed to discover and de-
tect changes to the web pages and to provide a
personalized notification of the changes to the
users. User’s monitoring requests are modelled
as continuous queries on the web. The authors
specify that composite changes can be detected
but , currently the system does not seem to
support them. WebCQ lacks a fine grouping
strategy which results in the change being com-
puted more than once for two users having the
same type of request. The system only supports
HTML documents and the frequency of fetching
is at the level of day which does not prove good
for situations which require a short frequency of
fetching. Also there is no provision to specify
new requests based on old requests.

WYSIGOT [11]is a commercial application
that can be used to detect changes to HTML
pages. This system has to be installed on the
local machine, which is not always possible. The
system has the feature to monitor an HTML
page and also all the pages that it points to.
But the granularity of change detection is at the
page level.

Some of the salient features of WebVigiL when

compared with the above systems are:

1. Properties of monitoring requests can be in-
herited: The user has the option of specify-
ing the monitoring request to be dependent
on the status of other monitoring requests.
One can specify the start/end of a request
to be the start/end of another request.

2. Flexible specification of versions: All the
above systems compute changes between
two successive pages. In WebVigiL, the user
can explicitly specify the pages that can par-
ticipate in change detection.

3. Composite change detection: WebVigiL pro-
vides an elegant way to specify multiple
change types, such as ’changes occurring to
either images or links’, which none of the
above systems provide.

3 WebVigiL Architecture

WebVigiL is a change-detection and notification
system, which can monitor and detect changes to
unstructured documents in general. WebVigiL
aims at investigating the specification, manage-
ment and propagation of changes as requested by
the user in a timely manner while meeting the
quality of service requirements. Figure 1 summa-
rizes the complete architecture of WebVigiL. The
functionality of each module is described briefly
in the following sections.

3.1 Sentinel

WebVigiL provides an expressive language with
well-defined semantics for specifying the moni-
toring requirements pertaining to the Web. Each
monitoring request is termed a Sentinel. A Sen-
tinel encompasses the following: the target URL,

3

78

the change type desired (which can be links,
images, phrases, keywords or a combination of
these using the OR, AND, NOT operators),
specifying a fetch frequency if known or leaving it
to the system to adapt to the changes, what ver-
sions of fetched pages to compare changes (pair-
wise, every n or moving n) and the change notifi-
cation mode (e-mail, PDA, fax). A Sentinel can
also inherit the properties of previously defined
sentinels and depend on their life-cycles.

For example, the Sentinel created for a request
to monitor http://www.cnn.com for any updates
related to Iraq, for a period of 2 years starting
from now, would be mapped as follows:

Create Sentinel s1 on the URL
http://www.cnn.com

Monitor for keywords “Iraq”, Fetch using
‘Best effort’

From NOW to NOW + 2 Years

Notify by e-mail to user@uta.edu every 4th day

Compare alternate versions of fetched pages.

A detailed explanation is given in [7].

3.2 Verification Module

This module processes user requests for syntac-
tic and semantic correctness. Valid sentinels are
populated in the Knowledge base (currently, Or-
acle) and a notification of the valid sentinels is
sent to the change detection module. Briefly, the
main functions of this module are: load balanc-
ing and syntactic validation between client and
server and semantic validation of sentinels at the
server, as the dependency information specified
in the sentinel is available at the server.

3.3 Knowledge Base

Knowledge base is a persistent repository con-
taining meta-data about each user, count and

details of the sentinels set by them. The details
of the sentinels have to be stored on a persistent
medium for the purposes of various modules and
also to provide recovery to a stable state in case
of system failure. All the modules in the sys-
tem interact with the Knowledge base for their
proper functioning.

3.4 Change Detection Module

Every valid user request arriving at WebVigiL
initiates a series of operations that occur at dif-
ferent points in time. Some of these opera-
tions are: creation of a sentinel (based on start
time), monitoring the requested page, detecting
changes of interest, notifying the user(s) of the
change, and deactivation of sentinels. This mod-
ule generates ECA [1] rules to perform the ac-
tions of: activating and deactivating sentinels,
constructing and maintaining Change Detection
Graph and generating fetch rules. Change detec-
tion algorithms that give the difference between
two HTML/XML pages have been developed [7]
[10].

3.5 Fetch Module

The fetch module [3] is responsible for retrieving
the pages registered with it and thus serves as a
local wrapper for the task of fetching pages de-
pending upon the user-set fetching policy. This
module informs the version controller of every
version it fetches, stores it in the page reposi-
tory and notifies the CDG of a successful fetch.
The wrapper fetches a page only when its prop-
erties indicate that a change has occurred. These
properties are: the last-modified time for static
web pages and checksum for dynamic web pages.

4

79

Figure 1: WebVigiL Architecture

3.6 Version Management

An important feature of WebVigiL architec-
ture is its server-based repository service, which
archives and manages different versions of pages.
The primary purpose of the repository service
is to reduce the network traffic by reducing the
number of network connections made to the re-
mote server. When a request is made for a page,
the version management checks for the page in
its cache and returns it if it is present. Other-
wise, the page is fetched and stored for future
requests.

3.7 Presentation Module

The primary functionality of this module is to
clearly present the detected changes in a legible

manner. The different ways in which changes
can be displayed are: merging two documents
with the changes highlighted, displaying only the
changes in a single page and highlighting the dif-
ferences in both the pages side-by-side. Notifi-
cation of changes can be done according to the
user-specified frequency or whenever a change is
detected.

4 Activation & Deactivation of

ECA rules

WebVigiL uses the Java Local Event Detec-
tor(LED) to incorporate active capability in the
system. LED is a library designed to provide
support for primitive and composite events, and
rules in Java applications in a seamless manner.

5

80

Figure 2: Event Generation

Primitive and composite event detection in vari-
ous parameter contexts and coupling modes has
been implemented.

During its lifespan, a sentinel is active and par-
ticipates in change detection. A sentinel can be
disabled (does not detect changes during that pe-
riod) or enabled (detects changes). By default,
a sentinel is enabled during its lifespan. The
user can also explicitly change the state of the
sentinel during its lifespan. The start/end of a
sentinel can be time points or events. When a
sentinel’s start time is now, it is enabled imme-
diately. But in cases where the start is at a later
time point or depends on another event that has
not occurred, we need to enable the sentinel only
when the start time is reached or the event of
interest has occurred. In WebVigiL, the ECA
rule generation module creates the appropriate
events and rules to enable/disable sentinels. We
achieve this as follows. Consider the scenario
where S1 is defined in the interval [06/02/04,
01/02/05]. At time 06/02/04 sentinel S1 has to
be enabled. Figure 2 shows the events and rules
that are generated to enable sentinel S1.

Fetch S1 is a periodic event created with
Start S1 as the start event, the frequency of page
fetch, and End S1 as the end event. The rule as-
sociated with it handles the fetching of page for
S1. A rule associated with an event is fired when
the event is triggered. More than one rule can be
associated with an event. When event Temp1 is

triggered at the specified time point, rule T1 is
executed, which in turn raises the event Start S1.
Triggering of the event Start S1 activates the
sentinel S1 and also initiates the periodic event
used for fetching the pages of URL specified in
S1. Now, if another sentinel S2 which is defined
over the interval [start(S1), end(S1)] arrives, the
events and rules are generated in order to enable
S2 are shown in Figure 2. Here, we are associat-
ing the rule R start S2 with the event Start s1,
which was created at the arrival of sentinel S1.
This rule actually raises the Start S2 event to
activate the periodic event associated with S2.
In this manner, ECA rules are used to asyn-
chronously activate and deactivate sentinels at
run time. Once the appropriate events and rules
are created, the local event detector handles the
execution at run time. By enabling/disabling of
sentinel, we mean addition/deletion of that sen-
tinel to the change detection graph.

5 Change Detection Graph

The assumption while developing the WebVigiL
system has been that even though there will
be requests for different change types on differ-
ent URLs, there will be overlaps among URLs,
types of changes, frequency of access, etc. One
of the goals of WebVigiL is to process sentinels
efficiently and be able to scale to a very large
number of sentinels. A very näıve approach for
change detection is to maintain a hash table with
the pages of interest as the keys and the values
being the list of sentinels monitoring that page.
When a page is fetched, the sentinel(s) on that
page are extracted and change type is detected
for each sentinel. This approach is not efficient
as it results in redundant change calculations if
more than one sentinel is interested on the same

6

81

page for the same change-type. To remove the
redundant calculations, a different approach can
be employed wherein the sentinels in the hash-
table are grouped based on the change-type.
This means that the values present in the hash-
table will contain a list of sentinel lists which
are grouped on the same change-type. This re-
sults in some efficiency, but it becomes difficult
to implement composite change types (like im-
ages AND links) using this approach.

We need a data structure that will allow us
to asynchronously feed fetched pages for change
detection, allow parallelism where possible, opti-
mize the computation by grouping sentinels over
URL’s and change types, and facilitate compos-
ite change detection using the same paradigm as
primitive change detection. Deletion and prop-
agation of delete semantics must be straightfor-
ward in the representation chosen. Although a
number of data structures have been proposed
in the literature for event detection, such as
Petri nets [5], extended automata [6], it has been
shown that event graphs support the require-
ments at the granularity and grouping that is
appropriate for our problem. Hence, we have
adapted and extended the event graph approach
proposed for snoop [3] for detecting primitive as
well as composite change.

Primitive change detection involves detecting
changes to links, images, keywords, etc., in a
page. In order to facilitate primitive change de-
tection, grouping of sentinels, and data flow we
construct a graph. This graph is referred to as
the Change Detection Graph (CDG). The
graph is constructed bottom-up as shown in Fig-
ure 3.

The different types of nodes in the graph are
as follow:
• URL node (Un): A URL node is a leaf

node at level-0 (L0) that denotes the page of

37

detection, such as Petri nets [19], extended automata [20], it has been shown that event

graphs [14, 21] support the requirements at the granularity and grouping that is

appropriate for our problem. Hence, we have adapted and extended the event graph

approach proposed for snoop [8] for detecting primitive as well as composite changes.

Below, we describe the extended structure along with its advantages.

Primitive change detection involves detecting changes to links, images, keywords

etc., in a page. In order to facilitate primitive change detection, grouping of sentinels, and

data flow we construct a graph. This graph is referred to as the change detection graph

(CDG). The graph is constructed bottom up as shown in Figure 5.3. The different types of

nodes in the graph are as follows:

Figure 5.3: Change Detection Graph

• URL node (Un): A URL node is a leaf node at level-0 (L0) that denotes the

page of interest (e.g., “www.uta.edu”). The number of URL nodes in the

graph is equal to the number of distinct pages the system is monitoring at

that particular instant of time. At this level whenever the version of a page

is fetched (treated as fetch event), it is propagated to respective nodes at

level-1.

Figure 3: Change Detection Graph

interest (e.g., “www.uta.edu”). The number
of URL nodes in the graph is equal to the
number of distinct pages the system is mon-
itoring at that particular instant of time. A
page is fetched at this level and propagated
to respective nodes at level-1.

• Change type node (Cn): All level-1 (L1)
nodes in the graph are change type nodes.
These nodes represent the the type of change
on a page (links, images, keywords, phrases
etc.,). Change detection of pages is per-
formed at this level. The maximum number
of change type nodes that are created in the
system is equal to the product of the number
of change types supported and the number
of URL nodes present at that instant.

In the graph, to facilitate the propagation
of changes, the relationship between nodes at
different levels is captured using the subscrip-
tion/notification mechanism. The higher-level
nodes subscribe to the lower level nodes in the
graph. This subscription information is main-
tained in the subscriber list at each node. This
subscriber list at each node contains the follow-
ing:

Level-0: Contains references of level-1
nodes.

Level-1: Contains references of sentinels

7

82

39

type node. The arrows in the graph represent the data flow. For example, consider two

sentinels, S1 monitoring changes to links and S3 monitoring changes to images on pagei

as shown in Figure 5.4. The node references are maintained at the URL node (pagei).

When the new version of the pagei is fetched, it is propagated to the links and images

node. At each change type node, the previous version is retrieved from the version

controller and the appropriate (links, images) change is computed. If there is change, the

sentinels subscribed to it are notified, in this case it is notified to S1 and S3.

Figure 5.4: Primitive Change Example

When a sentinel reaches its end time or is explicitly disabled by the user, the

sentinel no longer participates in change detection. This information is propagated to the

change type node with which the sentinel is associated. Since the change type node is a

subscriber to the URL node, it decides on whether to remove its subscription based on the

other sentinels that are associated with it. Once this information is propagated to the URL

node it removes the references of the corresponding change type node and does not send

the next version of the page for change computation. For example, if sentinel S1 shown in

Figure 5.4 is disabled, the next version of the page is not propagated to the links node

from URL node (pagei), since there are no other sentinel that are interested in links

Figure 4: Primitive Change Example

monitoring that change.

The arrows in the graph represent the data flow.
For example, consider two sentinels, S1 monitor-
ing changes to links and S3 monitoring changes
to images on URLi as shown in Figure 4. When
a new version of the page with URLi is fetched,
it is propagated to the links and images node.
At each change type node, change is computed
using a previous version of the page. If there is
a change, sentinels S1 and S2 are notified.

When a sentinel is disabled, the information to
stop it from performing change computation is
propagated to the change type node with which
it is associated. The change type node decides
on whether to propagate this information to the
URL node based on other sentinels on that URL.
Once the URL node gets the information, it re-
moves the references of the corresponding change
type nodes and does not send any more new ver-
sions to it. For example, if S1 shown in Figure 3
is disabled, the next version of the page fetched is
not propagated to the links node from the URL
node.

To attain system scalability and better per-
formance, sentinels are grouped when there is
more than one sentinel interested on the same
change type on the same URL. For example, con-
sider a course webpage listing the assignments

42

Table 5-2. Compare-options supported

Compare-
options

Descriptions Point of detection

Pair-wise Detects changes to consecutive
versions of the same page

Once the subsequent version
arrives

Moving:n Detects changes to versions “i” and (i-
n+1) (where “i” is the version of the
page fetched and “n” is the moving
window size) of the same page

Once the nth version arrives

Every:n Detects changes to every “n” versions
of the same page

Every change is detected after
waiting for “n” versions. These
versions are termed as waiting
versions.

Figure 5.5: Compare-Options with Every: 4.

Consider the following example where S1 and S2 are on-change sentinels

monitoring the same change on the same page (P) with the compare-option of “every:4”

as shown in Figure 5.5. The points on the time line denote either the arrival of sentinels

or the versions of page P. For S1, change is detected between the versions (p1, p4) and so

on. When S2 arrives, since there is already a cached version p2 the change is detected

between (p2, p5) and so on. For S3 the change is computed with (p4, p7). Hence S1 and S2

cannot be grouped together whereas S1 and S3 can be grouped. This behavior is

applicable only to sentinels with every as the compare-option since only selected versions

Figure 5: Compare-Options with Every:4

and projects related to that course. This web-
page is updated as the course progresses and all
the students would be interested in the updates
happening to this page. Similarly, many users
might be interested on updates happening to a
news website on different topics. One might be
interested in sports while another might be in-
terested in politics. The sentinels on these key-
words can be grouped and the page can be mon-
itored for a union of the keywords {sports, pol-
itics, ...}. But sentinel grouping is not possible
for fixed-interval sentinels as each sentinel has a
different version. In spite of a sentinel belong-
ing to on-change, the other attribute that plays
a role in the grouping strategy is the compare-
options (pair-wise, moving:n, every:n). For ex-
ample, requests for pairwise comparison cannot
be grouped with requests for every:3 (i.e, the
current version compared with the third ver-
sion from now). Consider the following example
where S1 and S2 are on-change sentinels mon-
itoring the same change on the same page (P)
with the compare-option of “every:4” as shown
in Figure 5. The points on the time line denote
the arrival of sentinels and version os page P.
For S1, change is detected between the versions
(p1, p4). When S2 arrives, since there is already
a cached version p2, the change is detected be-
tween (p2, p5) and so on. For S3, the change is
computed with (p4, p7). Hence S1 and S2 cannot
be grouped together whereas S1 and S3 can be

8

83

43

of the page participate in change detection. For S1, p2 and p3 are not used even though

fetched whereas this is not the case for other compare-options (pair-wise and moving). If

there is a sentinel S4 on “moving:4” and has arrived along with S 1, p1 and p4 participate in

change initially, but later on (<p2, p5>, <p3, p6>…) all versions fetched will participate

in change detection. Hence any other sentinel Si interested on “moving:4” arriving at a

later time will be grouped along with S4. The same applies to sentinels having pair-wise

as their compare-option.

Thus the sentinels are grouped on a combination of change type, fetch type (on-

change), compare-options. When the compare-option is “every:n” then the corresponding

time at which the sentinel arrives is taken into consideration.

Figure 5.6: Grouping Data Structure

Figure 5.6 shows the information used for grouping sentinels based on the

strategy explained above. The “subscriber list ptr” contains all sentinels that belong to the

same group. The “word set” attribu te is null for links, images and any-change or union

Figure 6: Grouping Data Structure

grouped.

Thus, the sentinels are grouped on a combina-
tion of change type, fetch type (on-change) and
compare-options. When the compare-option is
“every:n”, then the corresponding time at which
the sentinel arrives is taken into consideration.
Figure 6 shows the grouping data structure.

So far primitive change detection has been dis-
cussed. A composite event is an event expression
comprising a set of events connected through
one or more composite event operators which are
NOT, AND, OR. As shown in Figure 7, compos-
ite event nodes are at levels L2 and above.

The change is computed for all the sentinels
present in the subscriber list at the change type
node. Hence, for sentinels monitoring compos-
ite changes, a representation at its constituent
change type node is needed. This is implemented
by creating proxy sentinels with the same prop-
erties of the original sentinel at each of the con-
stituent change type node. Consider the scenario
where sentinel S5 is interested in links and im-
ages change on pagei (Figure 8). When a new
version of the pagei is fetched, it is propagated to
the links and images nodes. If there is a change,
sentinels subscribed to it are notified. Sentinel
Sand acts as a proxy for S5. When Sand is noti-
fied, the change computed is propagated to the

46

Figure 5.9. Composite Change Detection Graph

 As shown in Figure 5.9 composite event nodes are in the levels L2 and

above. Composite Node represents a combination of change types through the operators

NOT, AND, and OR. They can extend to any number of levels. These nodes are created

for every sentinel monitoring a composite event. Level-2 and above contains references

of the nodes belonging to the immediate higher level (composite event containing more

than two constituents) or sentinels.

The change is computed for all the sentinels present in the subscriber list at the

change type node. Hence, for sentinels monitoring composite changes, a representation at

its constituent change type node is needed. This is implemented by creating proxy

sentinels with the same properties of the original sentinel at each of the constituent

change type node. Consider the scenario where sentinel S5 is interested in links and

Figure 7: Composite Change Detection Graph

AND node. At the AND node, S5 is informed
only when it receives notifications from both its
constituent Sand sentinels.

6 Conclusion and Future Work

The first version of the WebVigiL system
has been implemented and can be accessed
from http://berlin.uta.edu:8081/webvigil. All
the modules shown in Figure 1 has been imple-
mented. The system is being extended in a num-
ber of ways. The current architecture of We-
bVigiL facilitates the monitoring of only pages
without embedded frames. To monitor a page
with frames, the exact URL of the frame has
to be given. Work is in progress to extend the
system to internally handle pages with frames.
This will be achieved by extending the system
to take sentinels which monitor more than one
URL. Work is also in progress to provide an in-
dependent fetch module that can be installed on

9

84

47

images change to “page i” (refer Figure 5.10). When the new version of the “page i” is

fetched it is propagated to the links and images node. If there is a change, sentinels

subscribed to it are notified. Sentinel Sand acts as a proxy for S5. When Sand is notified the

change computed is in turn propagated to the AND node. At the AND node, S5 is

informed only when it receives notifications from both its constituent Sand sentinels.

Figure 5.10: Composite Example

Following are the steps taken when a new sentinel is registered with the system:

1). The URL node corresponding to the target page of sentinel is created if there is

none.

2). The change type node associated with the target change is obtained; if there is

none, a new node is created.

3). The grouping structure is traversed to obtain the group to which the new sentinel

belongs. If there is no such group a new group is created and the sentinel is

Figure 8: Composite Example

the system hosting a website. This module will
locally detect changes and push that information
to the remote WebVigiL server thereby reducing
the network traffic.

References

[1] E. Anwar, L. Maugis, and S. Chakravarthy.
A new perspective on rule support for
object-oriented databases. In Proceedings,
International Conference on Management
of Data, pages 99–108, Washington, D.C.,
May 1993.

[2] S. Chakravarthy et al. Hipac: A research
project in active, time-constrained database
management, final report. Technical Report
XAIT-89-02, Xerox Advanced Information
Technology, Cambridge, MA, Aug 1989.

[3] S. Chakravarthy and D. Mishra. Snoop: An
expressive event specification language for
active databases. Data and Knowledge En-
gineering, 14(10):1–26, October 1994.

[4] F. Douglis et al. The at&t internet differ-
ence engine: Tracking and viewing changes

on the web. Technical report, AT&T Labs,
1998.

[5] S. Gatziu and K. Dittrich. Samos: an ac-
tive, object-oriented database system. IEEE
Quarterly Bulletin on Data Engineering,
1992.

[6] N. Gehani and H. Jagadish. Active database
facilities in ode. IEEE Bulletin of the
Technical Committee on Data Engineering,
1992.

[7] J. Jacob. Webvigil: Sentinel specificatin
and user-intent based change detection for
xml. Master’s thesis, The University of
Texas at Arilngton, 2003.

[8] L. Ling, P. Calton, and T. Wei. We-
bcq: Detecting and delivering information
changes on the web. In Proceedings of In-
ternational Conference on Information and
Knowledge Management (CIKM), Washing-
ton D.C, 2000.

[9] Mind-it. http://zen-
eco.com/divingparadise/netminder.htm.

[10] N. Pandrangi et al. Webvigil: User-profile
based change detection for html/xml docu-
ments. In Proceedings 20th British National
Conference on Data Bases, Coventry, UK,
2003.

[11] WYSIGOT. http://www.wysigot.com/.

10

85

