
Many-to-Many: Some Observations on
Interactions in Artifact Choreographies

Dirk Fahland, Massimiliano de Leoni,
Boudewijn F. van Dongen, and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
(d.fahland|m.d.leoni|b.f.v.dongen)@tue.nl, w.m.p.v.d.aalst@tm.tue.nl

Abstract. Artifacts have been proposed as basic building blocks for
complex processes that are driven by life-cycle aware data objects. An ar-
tifact choreography describes the interplay of several artifacts from which
the process “emerges”. By design, an artifact choreography is tightly
coupled to the process’ underlying data model which gives rise to complex
interactions between artifacts. This paper presents a simple model for
these interactions and outlines open challenges in artifact choreographies.

Keywords: artifacts, choreography, interaction, synchronous, asynchronous

1 Introduction

The artifact-centric approach emerged in the last years as an alternative approach
for precisely describing complex inter-organizational processes in a modular way [1–
4]. The approach assumes that a process is driven by its data objects, called
artifacts. Each artifact has its own life-cycle and can interact with other artifacts.
In a service-oriented setting, each artifact’s state can be updated by other artifacts
via a well-defined interface, and the entire inter-organizational process follows
from a choreography of its artifacts [3, 4].

What pushes artifact-centric choreographies beyond service choreographies is
their tight coupling to the process’ underlying data model. A process typically
exhibits many-to-many relationships between its different data objects. For
example, an order at an online-shop may be delivered in several packages where
each package is delivered in a different truck. In turn, each truck usually delivers
several packages of different orders. An artifact choreography inherits these
many-to-many relations as a first-class concept: it describes how several instances
of one artifact (e.g., order) interact with several instances of another artifact
(e.g., deliveries).

This paper is devoted to explaining the subject of many-to-many relationships
in artifact choreographies in more detail, and to highlighting specific challenges
that arise in this setting. Using an instructive example, we present in Sect. 2
a minimal extension of service models that expresses cardinality constraints
between artifact instances. This simple extension yields behavioral phenomena
that only arise in the artifact-centric setting. We study these phenomena in
Sect. 3 and note that a complete artifact choreography also must describe stateful

interaction protocol between artifact instances, and which instances interact with
each other. We then show that the interaction between artifact instances can
itself be expressed as a meaningful coordinating artifact that becomes part of the
choreography. We conclude the paper in Sect. 4 by outlining two open research
problems: (1) an automated generation of coordinating artifacts, and (2) ways to
fully specify dynamic synchronization of artifact instances.

2 The Artifact-Centric Approach

The artifact-centric approach [1, 2] aims at a “more natural” approach of de-
scribing complex inter-organizational processes. Any process materializes itself
in the artifacts (i.e., objects) that are involved in the process, and the artifacts’
states. Examples of artifacts are a paper form, an electronic order, a package, or
a delivery truck. State changes of an artifact usually follow a specific life-cycle: an
artifact is instantiated; the state of an instance changes only via actions provided
by the artifact; each artifact instance eventually reaches a goal state (e.g., a
form gets signed, or a package is delivered). The key idea of the artifact-centric
approach is that by just describing the artifacts’ life-cycles and relations between
artifacts, the process simply “emerges” from interactions of its artifact instances.

To better understand the subject, we consider the following example of an
online shop’s delivery process driven by 2 artifacts: order and delivery tour.
The shop splits each order into several packages based on the availability of the
ordered items. Several packages from different orders are then delivered in one
tour. In case a package cannot be delivered, it is scheduled for another delivery
tour or returned to the shop as undeliverable. The order is billed to the customer
once all packages are processed. This behavior can be described by (1) for each
artifact

order delivery

split

notify

bill

create

+

*

*

deliver

finish

load* *

undeliv. retry 11

1 next

Fig. 1. An artifact choreography of a delivery
process where orders can be split into multiple
deliveries that can be retried and that can fail.

We formally describe this pro-
cess in an artifact choreography
by describing the life-cycles of the
artifacts order and delivery and
how instances of these interact
with each other. Many techniques
are available for this purpose [5,
2–4]. Here, we employ proclets [5]
as a formal model. Proclets mini-
mally extend operational service
models, e.g., [4], with cardinality
constraints to express relations
between artifact instances.
Artifact life-cycles, ports,
and choreographies. To begin
with, one proclet describes the
life-cycle of one artifact as a Petri net. Figure 1 shows the life-cycles of an order
and of a delivery tour inside the respective dashed boxes; the additional modeling

2

elements will be explained subsequently. A customer creates an order that is split
into several packages by the availability of the ordered items; the order completes
by notifying the customer about the order and sending the bill. A delivery tour
begins with loading a delivery truck with all packages of the tour: each package is
delivered, rescheduled for another another tour (retry), or declared as undeliverable
before the next package is processed, until the tour finishes.

As the overall process follows from an interaction of orders and delivery tours,
each proclet exposes some of its actions to other proclets via a port. A proclet
choreography defines channels between proclet ports which describe how proclet
instances interact with each other, e.g., by exchanging messages. The decisive
difference to a service choreography comes by port annotations (1, +, ∗) which
specify how many messages an action sends to or receives from other proclet
instances.

Formally, a proclet is a Petri net extended by ports; a choreography is a set
of proclets with channels between ports.

Definition 1 (Proclet). A proclet P = (N, ports) is a Petri net N = (S, T, F)
with ports ⊆ 2T × {in, out} × {1, ∗, +} where each port p = (Tp, dir , card)

1. is associated to a set Tp ⊆ T of transitions;
2. has a direction of communication (in: incoming port, the associated transi-

tions receive a message, out: outgoing port, the associated transitions send a
message);

3. has a cardinality card ∈ {1, ∗, +} specifying how many messages may or have
to be sent or received upon an occurrence of one t ∈ Tp.

Definition 2 (Artifact choreography).
An artifact choreography ({P1, . . . , Pn}, C) consists of a finite set {P1, . . . , Pn}
of proclets together with a set C of channels s.t. each channel (p, q) ∈ C is a pair
of ports p, q ∈

⋃n
i=1 portsi with direction of p being in and direction of q being

out.

In Fig. 1, a half-round shape denotes a port and a dashed line a channel between
two ports, e.g., there is a channel from split to load.
Artifact instances. During a process execution, artifacts of the choreography
are instantiated and instances change their states according to the artifact life-
cycle. We generally assume that each proclet P has a unique transition with an
empty pre-set (no incoming arcs), and a unique transition with an empty post-
set, which describe the creation and termination of instances, respectively. For
example, an occurrence of create instantiates a new order of Fig. 1, an occurrence
of bill terminates the instance; an instance of delivery is created by load and
terminated by finish.
Data model and cardinality constraints. Yet, the notion of an artifact
instance is much more crucial in artifact choreographies than in service chore-
ographies. The artifacts describe the objects that drive the process. The process’
underlying data model determines how many instances of one artifact (e.g., order)

3

delivery
1

order2

delivery
2

order1

split

notify

bill

create

finish

load

deliver

next

retry

finish

load

deliver

next

undeliv.

split

notify

bill

create

Fig. 2. A partially ordered run of the artifact choreography of Fig. 1.

may or must be related to how many instances of another artifact (e.g., delivery).
For example, each order is delivered in one or more delivery tours (because it can
be split), each delivery tour handles packages of several orders, and a delivery
attempt of a tour can have a follow-up delivery tour.

In the artifact-centric setting, the process is driven by its artifacts. Hence,
any two artifact instances that are related to each other also have to interact as
the process evolves. The decisive contribution by proclets [5] is to incorporate
this underlying data model of the process in the interaction specification. The
annotations (1, +, ∗) at the source and target ports of a channel from proclet A to
proclet B specify how many instances of A interact with how many instances of
B via the channel. This way, the port annotations at a channel define cardinality
constraints on artifact instances.

For example, an order instance is split into one or more packages, each being
handled by a different delivery instance (annotation +). Conversely, each delivery
instance loads on a delivery truck packages from several (∗) order instances and
from several (∗) previous delivery instances. The packages are delivered one by
one: in case of success a single notification (1) is sent to the order instance; in
case of failure the single package (1) is either handed over to the order instance
or a follow-up delivery instance. These instances in turn collect all incoming
notifications or packages (∗) before proceeding.

Figure 2 shows an execution of the process as a partially ordered run [6]. The
execution involves two instances of order and two instances of delivery; order1
is split into two packages, one handled by delivery1 and one by delivery2; the
only package of order2 cannot be delivered in the first attempt and hence is
rescheduled to participate in delivery2 that also handles the second package of
order1. Behavior of this kind naturally arises in an artifact-centric setting and
cannot be expressed with service choreographies.

4

3 Interaction in Artifact Choreographies

When relating the partially ordered run of Fig. 2 to the artifact choreography of
Fig. 1 we see that the run satisfies all requirements of the choreography model.
Yet, the run also exhibits crucial properties that are not reflected in the model.

(1) The choreography allows a variant of the run of Fig. 2 where the undelivered
second package of order1 is just dropped and not handed over to order1. In
another variant delivery2 could send 6 messages to order2 instead of 1. Both kinds
of runs are intuitively undesired and should be excluded. Intuitively, not only each
artifact instance has a life-cycle to complete, but also each artifact interaction
has a life-cycle to complete; such a life-cycle is not specified in the choreography.

(2) The choreography would also allow for a run that hands the undelivered
package of delivery2 over to order2 instead of its original order1. Although the
interaction completes, it completes with the wrong participants. Likewise, one
can easily think of a process where such a forwarding of packages to another
artifact instance is required. Currently, the choreography does not specify which
instances interact with each other, but only how many.

In other words, the many-to-many relations between artifact instances require
a more detailed artifact model than just expressing cardinality constraints.

package

split load1 1

retry 1

1

1

deliver

undeliv.
bill1

Fig. 4. The artifact package mod-
els the life-cycle of an interaction
between an instance of order and an
instance of delivery (Fig. 1), but not
which instances synchronize with
each other.

In particular, the language has to describe
(1) the life-cycle of an interaction between ar-
tifact instances, and (2) which instances syn-
chronize with each other.

Artifact interaction life-cycle. In the fol-
lowing, we show that the desired interaction
between artifact instances can easily be de-
scribed by the life-cycle of a new, meaningful
artifact. Figure 3 decomposes the desired run
of Fig. 2 in a specific way. Instead of con-
sidering an asynchronous interaction between
orders and deliveries, Fig. 3 describes exactly
the same behavior as Fig. 2 in terms of syn-
chronous interaction of orders with packages
and packages with deliveries. The dashed lines
describe which transitions occur synchronously, e.g., split of order1, package1, and
package3 occur synchronously.

The synchronous interactions caught in the packages describe how we expect
the artifact-interactions to complete. These can easily be modeled as a separate
artifact package as shown in the proclet of Fig. 4. The package interacts on either
side with exactly one instance of order and delivery, i.e., it describes the life-cycle
of one interaction between two related instances. The choreography of Fig. 1 can
be refined to reflect this artifact-interaction life-cycle by placing proclet package
between order and delivery. The refinement comes with a paradigm shift: a channel

5

package2

delivery2

package1

order1 order2

package3

delivery1

split

bill

finish

load

deliver

next

retry

finish

load

deliver

next

undeliv.

split

bill

split

notify

bill

create

split

notify

bill

load

deliver

split

bill

load

undeliv.

load

retry

load

deliver

create

Fig. 3. The messages exchanged between the artifacts in Fig. 2 follow the packages
handled in the process.

between two transitions now specifies synchronous occurrences of transitions
instead of message exchange.

4 Conclusion: Data Specification at the Interaction Level

In this paper, we have shown that artifact choreographies naturally describe
behavior that cannot be expressed by services. By lifting the underling data model
to the behavioral specification, artifact choreographies particularly express many-
to-many relations between artifact instances. Section 3 showed that a complete
artifact choreography requires to specify life-cycles of artifact interactions. To
this end, a choreography can be refined with further artifacts.

Two main challenges remain open in this context. First, a choreography
description language needs to describe which instances interact with each other.
It particularly needs to express that an instance A1 of an artifact A synchronizes
with instances B1, . . . , Bk of an artifact B which possibly have not been created
yet. In our example, a delivery is only instantiated after all participating orders

6

have been split. A possibility could be to adapt WS-BPEL’s correlation handling
mechanism [7] to the artifact-centric setting.

Second, as artifact interactions can be very complex, it may be reasonable to
synthesize the artifacts that describe artifact interaction life-cycles. An approach
from controller synthesis allows to automatically complete a given choreography
in case of 1-to-1 relations [4]. It is worth exploring whether the approach can be
leveraged to many-to-many relations.

Alternatively, process mining techniques [8] might be applied in this context.
Process mining comprises techniques to discover process models from observed
behaviors. Such behaviors are extracted from the execution logs of running
systems. For an artifact-centric setting, the recorded executions would contain
events of artifact-life cycles as well as of artifact interactions. So, execution
logs could be an alternative source of information to obtain artifact interaction
life-cycles which then lead to a complete artifact choreography.

In controller synthesis, as well as in process mining, the open problem is
concerned with the fact that these techniques assume service instances to work in
isolation w.r.t. other instances for the same service. In this paper, we have shown
that artifact choreographies introduce many-to-many relations among artifacts,
which do not exist in traditional service-oriented approaches. As a consequence,
the definition of a case concept needs to be rethought. For instance, coming back
to the working example, there is no evident preference to consider a diverse case
for each order, rather than for each delivery. Every order is associated to several
delivery, but also every delivery is associated to several orders.

Acknowledgements. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme FP7/2007-2013
under grant agreement no 257593 (ACSI).

References
1. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specification.

IBM Systems Journal 42 (2003) 428–445
2. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business

operations and processes. IEEE Data Eng. Bull. 32 (2009) 3–9
3. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business

processes. In: ICDT’09. Volume 361 of ACM ICPS. (2009) 225–238
4. Lohmann, N., Wolf, K.: Artifact-centric choreographies. In: ICSOC 2010. Volume

6470 of LNCS., Springer (2010) 32–46
5. van der Aalst, W., Barthelmess, P., Ellis, C., Wainer, J.: Proclets: A Framework for

Lightweight Interacting Workflow Processes. Int. J. Cooperative Inf. Syst. 10 (2001)
443–481

6. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28 (1991) 575–591
7. Web Services Business Process Execution Language Version 2.0, 11 April 2007.

OASIS Standard (2007)
8. van der Aalst, W., Reijers, H., Weijters, A., van Dongen, B., Medeiros, A., Song,

M., Verbeek, H.: Business Process Mining: An Industrial Application. Information
Systems 32 (2007) 713–732

7

