
Internal behavior reduction for partner synthesis

Niels Lohmann

Universität Rostock, Institut für Informatik, Rostock, Germany
niels.lohmann@uni-rostock.de

Abstract. Communication is a unique feature of services and allows for
reusing services in different compositions. To make a statement about
the correctness of a service in isolation, partner synthesis is a proven
technique. It overapproximates the service’s behavior in any possible
composition. Unfortunately, the complexity of partner synthesis is an
order of magnitude higher than that of classical model checking techniques.
This paper approaches this problem by tackling one source of complex-
ity, namely internal behavior (also called silent or τ -transitions). By
applying rules known from compositional verification, we reduce the in-
ternal behavior of a service while preserving its external behavior, viz. its
communication protocol.

 Introduction

Correctness plays an important role in service-oriented systems, as they in-
creasingly realize business processes or other important infrastructures. Because
failures of a single service may affect all other participants of the composition,
thorough testing or verification is of paramount importance. In previous work [],
we argued that partner synthesis is not only an effective means to check the
correctness of single services, but can also be used to synthesize communication
skeletons, construct operating guidelines, generate test suites, realize interac-
tion models, correct choreographies, configure business processes, or synthesize
adapters. Further references can be found in a survey []. Thereby, a part-
ner of a service is another service such that their composition is correct (e. g.,
deadlock-free, sound, or weakly terminating).

Conceptually, a partner is synthesized by first overapproximating the service’s
behavior in any possible composition and then removing undesired states yielding
deadlocks or livelocks. Unfortunately, the complexity of the partner synthesis is
exponential in the size of the service; that is, both in the number of states and the
size of the interface. Even worse, the service’s behavior itself can already suffer
from the state space explosion problem [], which makes the overall complexity
of partner synthesis devastating.

As partner synthesis focuses on the external behavior of a service (i. e., its
communication protocol), the internal behavior is only important when internal
decisions are modeled. To this end, this paper aims at reducing internal behavior
of a service while preserving its external behavior. As a result, we can construct
partner services with reduced effort. We therefore sketch partner synthesis in the

next section. As one contribution, we also survey in Sect. different approaches
to leverage the complexity to classify our reduction. Section provides the main
contribution of this paper: We adjusted several state space reduction rules to
reduce internal service behavior. To assess our approach, we implemented it and
discuss in Sect. some first experimental results and the impact of the reduction
to the partner synthesis, before Sect. concludes the paper.

 Partner synthesis in a nutshell

We shall briefly sketch the partner synthesis approach of Wolf []. Given a
service model, a partner cannot observe the service’s state at runtime. Hence, the
only information a partner can rely on are () the service model and its behavior
(i. e., its state space), () its own actions from the past, and () the asynchronous
messages it receives from the service or synchronizations with the service.

Consequently, a partner can only make a vague statement on the concrete
state of a service, and can only guess a set of states (called knowledge) the service
might be in. For instance, the initial knowledge of a partner consists of all states
of the service it can reach without influence of the partner; that is, all states
the service can reach by performing internal transitions (also called silent or
τ -transitions) or by sending asynchronous messages to the partner. Each action of
the partner results in changed knowledge. For instance, sending a message to the
service may result in additionally enabled receiving transitions. After building all
possible knowledges and removing “bad” knowledges; that is, knowledges which
imply unwanted behavior of the composition (such as deadlocks or livelocks), the
remaining graph (unless empty) can be used as a partner. The partner synthesis
algorithm is implemented in two tools, Fiona [] and Wendy [], we shall discuss
later.

 Reduction techniques for partner synthesis

There are several aspects that yield in the high complexity of the partner synthesis
approach. For some of theses aspects already exist approaches to leverage the
associated complexity.

State space. On source of complexity is the size of the state space of the service.
Each knowledge is a subset of the service’s states. Since services often employ
concurrency, already this state space may be exponentially in the size of the
service model. This state explosion can be fought in different fashions, and these
state space reduction approaches can be classified as follows.

One idea is to reduce the original model (e. g., the Petri net or WS-BPEL
process) before the calculation of the state space. The most prominent example
for such an a priori reduction are Petri net reduction rules []. Applied to service
models, these rules already allow to remove some internal behavior. However,
experiments with business process models [] show that their effect does not
hardly justifies the required calculation time.

Another idea is not to generate the complete state space, but only a smaller
fragment of it. An example for such an on-the-fly reduction are partial order tech-
niques, for instance CTL∗ preserving partial order reduction []. First experiments
with such a technique implemented in the tool Fiona are promising.

Finally, state space reduction techniques can also be applied a posteriori ;
that is, after the full state space is built, but before the partner synthesis. Such
reduction rules [] were already employed to reduce a characterization of all
livelock-freely interaction partners [], but not for the partner synthesis itself.
This shall be the contribution of this paper.

Knowledge. Once the state space is built, the number of knowledges is another
source of complexity. Here, we face two problems. First, a lot of “bad” knowledges
are generated, but later removed because they contain unwanted behavior. For
instance, a service model may contain a deadlock which is only reached after
following a certain communication protocol. To avoid such unnecessary calculation,
static analysis techniques can be used to preprocess the state space and to avoiding
the calculation of “bad” knowledges as early as possible [].

Second, not all knowledges need to be calculated in case only the existence of
a partner is relevant. Such a (possibly less permissive) partner is usually much
smaller. Weinberg [] presents several partner reduction rules which turn out to
be very effective during the partner synthesis of industrial service models [].

Representation. Finally, symbolic data structures such as binary decision dia-
grams [] may help to represent the state space and the knowledges in a compact
manner. Early experiments [] show that this technique known from model
checking is also very effective when applied during partner synthesis.

The presented reduction techniques are modular, although they cannot be
arbitrarily mixed. For instance, the tool Fiona [] generates the state space on
the fly and implements partial order reduction techniques, partner reduction
rules, and symbolic representation. A reimplementation of Fiona, Wendy [],
generates the complete state space a priori to perform static analysis to avoid
the calculation of “bad” knowledges. It also implements partner reduction rules.
A case study [] demonstrates that Wendy clearly outperforms Fiona. As Wendy
does not implement any state space reductions, we shall focus on this aspect in
the remainder of the paper.

 Reduction of internal behavior

As mentioned earlier, Petri net reduction techniques are not effective enough
to fight the state space reduction. Furthermore, on-the-fly reduction techniques
cannot be combined with the powerful preprocessing techniques that avoid the
generation of “bad” knowledge. Consequently, we shall investigate how a posteriori
reduction techniques can be combined with partner synthesis.

To reduce the complexity of partner synthesis, we follow one idea: States of the
service, that would always appear in the same knowledge, should be merged before

x x

s1

s2

x

s1

s2

(a) redundant parallel transitions

s1

s2

s12τ τ τ

(b) fusion of internal loops

s1

s2

τ

x

y
s3

s4
x

y

s3

s4
x

ys12

(c) states linked by internal transition ()

s1

s2

s12τ
✗

(d) states linked by internal transition ()

Fig. . Reduction rules

the actual partner synthesis. As sketched in Sect. , this reduction particularly
affects internal transitions, because—by definition—knowledge consists of those
states that can be reached without interaction with the partner. Our approach
takes the state space of a service model as input and constructs a reduced state
space such that both the original and the reduced state space yield the same
generated partner.

To achieve this goal, we employed state space reduction rules from Juan et
al. []. These rules were defined to preserve IOT failure equivalence [], which is
very closely related to the preservation of external behavior we are interested in.
Figure depicts four of these rules. Thereby, a dashed arc stands for an arbitrary
number of transitions with an arbitrary label.

Redundant parallel transitions. As the environment cannot distinguish
which transition was taken, and both transitions reach the same state s2,
one transition can be safely removed, see Fig. (a). Note that this rule is not
restricted to τ labels, but can also be applied for arbitrary communication
transitions.

Fusion of internal loops. The internal transitions between the two states s1
and s2 are not observable. When in either state, the other state remains
reachable without influence of a partner. Consequently, both states can be
merged to a new state s12. The internal loop is replaced by a self-loop, see
Fig. (b).

States linked by internal transition. s1 and s2 are linked by an internal
transition. For each outgoing transition of s1 exists an outgoing transition of
s2 with the same label that reaches the same state. As a result, s2 does not
restrict any behavior compared to s1 and the states can be safely merged to
a new state s12, see Fig. (c).

Table . Experimental results: effect of reduction to internal behavior

sizes before reduction sizes after reduction reduction
service model states trans. τ trans. states trans. τ trans. time

Deliver goods 4,148 13,832 9,288 150 397 12 3 s
Car analysis 11,381 39,865 27,231 420 1,211 164 64 s
Identity card 14,569 71,332 66,500 25 37 0 108 s
Product order 14,990 50,193 34,159 504 1,458 135 104 s
SMTP protocol 26,667 110,065 80,137 23,381 99,304 70,646 2,101 s
Philosophers 92,206 427,312 113,023 19,683 98,415 0 7,236 s

The rules are defined on the behavior of a service model and may appear very
technical when considered in isolation. Nevertheless, the first two rules may allow
the application of other rules. As special case of the third rule is when s1 has no
outgoing transitions other than the internal transition, see Fig. (d). Only this
restricted setting is covered by a Petri net reduction rule []. In general, state
space reduction rules allow for more reduction, because they can be applied on a
simpler model and do not need to take concurrency into account.

Juan et al. [] present more rules, but we refrain from a discussion of all of
them. For instance, several rules deal with initial states. Furthermore, no original
rule was aware of final states which are important in the area of services to
distinguish desired final states from deadlocks or to detect livelocks.

 Experimental results: effect to partner synthesis

We implemented the reduction rules described in the prior section as a component
of Wendy []. It takes a Petri net service model as input, calls LoLA [] to
generate a state space and then iteratively applies the reduction rules until a fixed
point is reached; that is, no more rules can be applied. The output is a reduced
state space which is then used during the partner synthesis. The integration of
the reduction component is still in an early stage of development.

As a proof of concept, we analyzed several WS-BPEL services from a con-
sulting company. Each process consists of around WS-BPEL activities and
models communication protocols and business processes of different industrial
sectors. We translated the WS-BPEL processes into Petri nets using the compiler
BPEL2oWFN implementing a feature-complete Petri net semantics []. Further-
more, the “Philosophers” service is an academic example.

Table summarizes the results regarding the reduction: For most industrial
models, nearly all internal transitions could be removed and the state space could
be reduced dramatically. This is particularly important, because knowledges
consist of subsets of these state spaces, so even a small reduction may have an
exponential effect. The SMTP protocol shows, however, that the reduction is

Table . Experimental results: effect of reduction to partner synthesis

synthesis without reduction synthesis with reduction
service model knowledges time memory knowledges time memory

Deliver goods 1,376 3 s 18MB 1,376 0 s 3MB
Car analysis 1,448 75 s 368MB 1,176 2 s 13MB
Identity card 1,536 88 s 427MB 1,536 0 s 2MB
Product order 57,996 299 s 1,467MB 53,324 12 s 75MB
SMTP protocol 13,456 210 s 249MB — — —

Philosophers 481,646 4,098 s 6,078MB 19,682 35 s 98MB

not always effective. One reason might be that we have not implemented all
applicable rules of Juan et al. [] yet.

The partly devastating runtime can be explained by the prototypic status
of the implementation. Nevertheless, the runtime of the reduction can be seen
as a worthwhile investment, as shown by Table . We see that the synthesis
times are usually much faster when the reduction is applied. Of course, we also
need to take the reduction time into account. Nevertheless, only when analyzing
the “Philosopher” model, the additional time does not pay off. Experiences from
the implementation of Petri net reduction rules (i. e., parallel execution or index
structures) may help to decrease the runtime by an order of magnitude.

More importantly, we can observe a dramatical reduction of around % in
the consumed memory. This allows us to synthesize partners for service models
using a few megabytes rather than gigabytes.

 Conclusion

Summary. In this paper, we discussed several sources of complexity of partner
synthesis. We identified a large state space and in particular internal transitions
as one reason partner synthesis might be intractable for larger service models. To
tackle this problem, we presented a reduction technique that aims at reducing
the internal behavior of service models. This technique is modular; that is, can
be integrated in existing partner synthesis approaches. A prototypic integration
into the partner synthesis tool Wendy [] demonstrated principal effectiveness of
the reduction. We observed a dramatic decrease in memory consumption which
allowed us to apply partner synthesis to models we could not analyze before.
This reduced memory reduction, however, is currently traded by a suboptimal
runtime of the reduction.

The approach has another advantage: it is compositional. Suppose the state
space of the net is too large to be calculated. As this calculation is a prerequisite
for the synthesis algorithm, no partner could be computed. The rules, however,
allow for a compositional approach. That is, we can () divide the net into parts,
() apply the reduction rules to the state space of each part, and () compose
 We currently face a software bug when analyzing the reduced SMTP protocol model.

reduced state spaces. The interested reader is referred to [] for a detailed
discussion.

Lessons learnt. In retrospective, the results of this paper seem obvious and
the approach straightforward. However, two questions were open in the run-up
of this paper: First, little experimental results were published on the practical
applicability of the reduction rules from Juan et al. [] and their effectiveness
to real-life service models. Second, the exact effect of the reduction to partner
synthesis was unclear. In particular, we did not foresee that reduced internal
behavior could have such a positive effect on the memory consumption. Also
the fact that already four reduction rules have such an effect was unclear. The
“Philosophers” model further showed that much fewer knowledges need to be
calculated when synthesizing partners.

We would like to point out that only a prototypic implementation and access
to realistic service models allowed us to perform experiments and to answer these
questions. Thereby, the modular architecture of the partner synthesis tool Wendy
facilitated the integration of the reduction rules to the partner synthesis. These
experiences follow the observations we described in a recent survey []. Both
the tool Wendy [] and the experimental results are available via the Web site
http://service-technology.org/live [].

Future work. In future work, several open issues need to be approached. As
already pointed out, we need to improve the efficiency of the rule application.
From a conceptual point of view, a combination of the presented approach and
partial order reduction techniques would be promising. Partial order reduction
aims at avoiding the state space explosion by not enumerating all possible orders
of transitions and intermediate states. This usually results in very small and
also simpler structured state spaces. This in turn should boost the applicability
of the reduction rules. Finally, a look at related rules [] may allow for further
reduction.

Acknowledgments. The author thanks Christian Stahl for his feedback on an
earlier version of this paper and for pointing out the compositionality aspect.

References

. Aalst, W.M.P.v.d., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From public
views to private views — correctness-by-design for services. In: WS-FM . pp.
–. LNCS , Springer ()

. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Computers C-(), – ()

. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf,
K.: Instantaneous soundness checking of industrial business process models. In:
BPM . pp. –. LNCS , Springer ()

. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching
time logic model checking. Inf. Comput. (), – ()

http://service-technology.org/live

. Juan, E.Y.T., Tsai, J.J.P., Murata, T.: Compositional verification of concurrent
systems using Petri-net-based condensation rules. ACM Trans. Program. Lang. Syst.
(), – ()

. Kaschner, K., Massuthe, P., Wolf, K.: Symbolic representation of operating guide-
lines for services. Petri Net Newsletter , – ()

. Lohmann, N.: A feature-complete Petri net semantics for WS-BPEL .. In: WS-FM
. pp. –. LNCS , Springer ()

. Lohmann, N.: service-technology.org/live – replaying tool experiments in a Web
browser. In: BPM Demos . pp. –. CEUR Workshop Proceedings ,
CEUR-WS.org ()

. Lohmann, N., Weinberg, D.: Wendy: A tool to synthesize partners for services. In:
PETRI NETS . pp. –. LNCS , Springer (), tool available at
http://service-technology.org/wendy.

. Lohmann, N., Wolf, K.: How to implement a theory of correctness in the area of
business processes and services. In: BPM . pp. –. LNCS , Springer
()

. Massuthe, P., Weinberg, D.: Fiona: A tool to analyze interacting open nets. In:
AWPN . pp. –. CEUR Workshop Proceedings Vol. , CEUR-WS.org
(), tool available at http://service-technology.org/fiona.

. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE (), – ()

. Valmari, A.: The state explosion problem. In: Advanced Course on Petri Nets. pp.
–. LNCS , Springer ()

. Weinberg, D.: Efficient controllability analysis of open nets. In: WS-FM . pp.
–. LNCS , Springer ()

. Wolf, K.: Generating Petri net state spaces. In: PETRI NETS . pp. –. LNCS
, Springer (), tool available at http://service-technology.org/lola.

. Wolf, K.: Does my service have partners? LNCS ToPNoC (II), – ()
. Wolf, K., Stahl, C., Ott, J., Danitz, R.: Verifying livelock freedom in an SOA

scenario. In: ACSD . pp. –. IEEE Computer Society ()

http://service-technology.org/wendy
http://service-technology.org/fiona
http://service-technology.org/lola

