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Abstract. In a service-oriented architecture, a provider publishes its
service in a service repository. A requester approaches a broker which
returns a service S matching the requester’s service R. Then, S and R
are coupled. The provider of S may require a specific relation between
the expenses and rewards for an execution of S, summarized in a policy ϕ.
The control flow of S may contain both internal and external decisions:
By sending messages, R may trigger a certain execution path. Based on
models of S and R, the broker may decide if R violates ϕ before coupling.
If so, the broker may not couple S and R. In this paper, we provide a
formal framework to model policies, and introduce a decision procedure
for policy violation based on open net models of the services.

1 Setting and problem

We understand a service as a component with an inner control flow and an
interface to exchange messages asynchronously with other services. Thereby,
it provides a certain functionality which may be used by other services. A
provider publishes its service in a repository. A requester approaches a broker
for accessing a previously published service. The provider earns a reward for
providing its service. This reward may manifest as a usage fee, or a provision from
the repository owner, or from any third party. Usually, a provider desires some
beneficial relation between this reward and the expenses for providing its service.
As an example, a provider might want the expenses to be covered by the reward.
We specify such requirements as policies. A partner either violates a policy or
not. The provider aims at its service being coupled only with non-violating
partners. Both reward and expenses may have fixed and variable components.
This is a quite usual problem in economics and solutions for this problem are
known for a long time. However, in our case, we encounter another difficulty:
We consider stateful services. A stateful service has its own control flow which
is influenced by internal and external decisions. External decisions are made
through asynchronous message exchange. Therefore, reward and expenses for
providing a service vary from requester to requester.

As a running example, consider a vending machine which sells coffee and tea,
modeled as an open net [1] in Fig. 1(a). In its initial state, it waits for one of



three messages: Either an order for coffee, an order for tea, or a quit message. To
receive an order it executes the respective transition c or t. Subsequently, it serves
the beverage by executing b. A quit message may be consumed by executing q,
resulting in a final state ω. The machine may serve up to three beverages, as
indicated by the three tokens in the place in the bottom. The provider of the
vending machine may have fixed expenses of 10 units for providing its service and
variable expenses for each served beverage depending on the type: 20 units for
coffee and 10 units for tea. As a reward, the provider collects a fixed amount of 5
units and additionally 25 units per served beverage. Assume the provider desires
the expenses to be fully covered by the reward, specified in a policy ϕV. We find
that a customer ordering at least one beverage is a good customer, whereas a
customer ordering nothing and simply quitting is not. However, asynchronous
message exchange induces a subtle problem: A customer ordering a beverage and
then sending the quit message before receiving the beverage is a bad customer:
The vending machine might receive the quit message first. A simple partner for
V is shown in Fig. 1(b): D orders either a tea or a coffee, receives the beverage,
and sends a quit message. Obviously, D does not violate ϕV.
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Fig. 1. Services V and D, modeled as open nets, a finite representation V(ϕ) of all
ϕ-violating partners of V, and a finite automaton A(D) characterizing D.

There exists work on quality of service (QoS), e.g. [2] and pricing of services,
e.g. [3], focusing on non functional properties of stateless services. Such services
do not have their own control flow. Therefore, for each dimension, for example
costs, a value is given. Research is centered on finding composites of many services



which reach a specific goal in the least expensive way, e.g. [4]. For stateful services,
there exists work on over-approximating the costs incurring while running the
service with a given partner service or a set of partner services described as
constraints [5]. This analysis gives the service provider an idea on the QoS of
its service. However, it does not provide a sufficient basis to decide if a partner
violates the provider’s policy or not. Likewise, [6,7] compute the costs for running
a business process. In our setting, the closed system is not known beforehand.
Instead, we consider open systems.

We sketch our solution. Upon publishing, the provider states its requirements
in form of a policy ϕ. Upon requesting, the broker decides whether the requester
violates the policy or not. This procedure is similar to that of Operating Guide-
lines [8] which allows the broker to decide policy violation: We use an automaton
characterizing partner behavior which may lead to policy violation.

We illustrate our approach on the running example: Figure 1(c) shows au-
tomaton V(ϕV) which finitely represents violating partner behavior. For instance,
the sequence !tea!quit (read: send tea, send quit) may result in expenses that are
not covered by the reward and therefore violates ϕV. By comparing V(ϕV) with
an abstract model of a requester, the broker may decide policy violation. For
example, automaton A(D) in Fig. 1(d) is an abstract model of open net D in
Fig. 1(b). Comparing V(ϕ) and A(D), we find no common path to a final state.
Therefore, D does not violate ϕV. As a consequence, the broker may return V.

The rest of the paper is structured as follows: Section 2 shortly recalls basic
formal concepts, especially open nets. We introduce a framework for policies in
Sect. 3. We sketch our approach to compute a finite representation of violating
behavior in Sect. 4. Finally, we conclude our paper and present ideas for future
work in Sect. 5.

2 Basic notions

As usual, Z denotes the set of all integers. We write Σ∗ for the set of all finite
sequences over an alphabet Σ. For σ ∈ Σ∗, we write σ(i) for the i-th character in
σ. We denote the restriction of σ to Σ′ ⊆ Σ with σ|Σ′ . We recall the basic notions
of Petri nets: A Petri net is a tuple N = 〈P, T, F,m0〉 of places P , transitions
T , arcs F and initial marking m0. We denote the set of all markings of N with
MN . We denote the preset and postset of x ∈ P ∪T with •x and x•, respectively.
We canonically extend these notions to sets of net elements by union. We call a
sequence σ ∈ T ∗ firing sequence if the transitions in σ may be fired subsequently
starting in m0. We write beh(N,m) for the set of all firing sequences resulting in
a marking m.

Open nets are Petri nets with an interface declaration and a set of final
markings: We define an open net as a tuple N = 〈P, T, F,m0, I, O,Ω〉 where
〈P, T, F,m0〉 forms a Petri net, I,O are disjoint subsets of P with •I ∪O• = ∅,
called input and output places, respectively, and Ω ⊆ MN is a set of final
markings. We call the Petri net ip(N) = 〈P ′, T, F ′,m′0〉 the inner process of N
where P ′ = P \ (I ∪ O), F ′ = F ∩ ((P ′ × T ) ∪ (T × P ′)), and m′0(p) = m0(p)



for all p ∈ P ′. We call two open nets N1, N2 partners if their inner processes
are component-wise disjoint, I1 = O2, and O1 = I2. We compose two partners
N1, N2 by accordingly merging the interface places, yielding N1 ⊕N2.

Example 1. Figure 1(a) shows an open net V with input places quit, coffee and
tea, and output place beverage. The set ΩV of final markings cannot be seen
from the figure. We define ΩV = {m | m ∈MV ∧m(ω) > 0}. The open net D in
Fig. 1(b) and V are partners.

3 A formal framework for policies

A policy specifies the allowed behavior of a provided service N in composition
with an arbitrary partner Q. The main building blocks of a policy are cost
functions and constraints. For the following definitions, we assume a given open
net N with transitions TN .

Cost functions. There are different approaches to define cost functions based
on behavior. The most general is to define a cost function as a mapping from
transition sequences to some value domain. Throughout this paper, we use the set
of integers Z for this purpose. In our approach, we specify the costs for executing
a single transition after having executed a (finite) history. This covers varying
costs for executing a single transition based on the knowledge which transitions
have been fired. A cyclic service usually has infinitely many and arbitary long
(finite) runs. To ease up analysis, we encode histories into hash values.

A hashing from a set A into a set B is a function f : A→ B. Usually, the idea
is that the elements of B, called hash values, are more lightweight than those
of A. Thus, a hash function may be used for efficient table lookups and the like.
Typically, a hash function is required to fulfill a number of properties ensuring
its usability. In this paper, we use finite histories as input: a finite sequence of
transitions. We define a history hashing h as a hashing from T ∗N into some set H
having two properties: Continuity and Finiteness.

Definition 1 (Continuity, finiteness, history hashing).We define two prop-
erties for functions h : T ∗N → H:
1. Continuity. Let σ, σ′, σ′′ ∈ T ∗N . If h(σ) = h(σ′), then h(σσ′′) = h(σ′σ′′).
2. Finiteness. H is finite.
We call h a history hashing if h has both properties continuity and finiteness.

Intuitively, continuity demands that, given two histories with the same hash
value, each equal continuation of the two results in the same hash value again.
Finiteness restricts history hashings to finite sets of hash values. We elaborate
on the value of these properties for analysis in Sect. 4. For the definitions of this
section, we assume a given history hashing h into a set of hash values H.

As mentioned above, we define cost functions for executing single transitions
based on the hash values. Thus, the domain of such a function is the cross product
of the set of transitions and the set of hash values. Induction yields the semantics
of the cost function: The costs for a complete transition sequence.



Definition 2 (Cost functions). We call a function f : TN × H → Z cost
function. We define the semantics of f as the function ‖f‖ : T ∗N → Z with

– ‖f‖ (ε) = 0, and
– ‖f‖ (σt) = f(t, h(σ)) + ‖f‖ (σ) if t ∈ TN , σ ∈ T ∗N .

Example 2. We define the cost functions mentioned in Sect. 1 for open net V
in Fig. 1(a). For both functions, we need to know whether a coffee or a tea
order has been received last. We cover those two cases by the hash values coffee
and tea. For totality, we introduce a third hash value, other. We define a hash
function h : T ∗V → H with TV = {c, t, b, q} and H = {coffee, tea, other}. We
define the sets of occurrences of c and t in σ ∈ T ∗V : OCσ = {i | σ(i) = c} and
OTσ = {i | σ(i) = t}.

h(σ) =


other if OCσ = OTσ = ∅,
coffee if OCσ 6= ∅ ∧ (OTσ 6= ∅ ⇒ max(OCσ) > max(OTσ)),
tea otherwise.

Based on this hashing, we define the cost functions f and g over TV with
hashing h to specify the expenses and the reward for the provider to execute V:

– ∀t ∈ TV \ {b}, a ∈ H : f(t, a) = g(t, a) = 0,
– f(b, coffee) = 20, f(b, tea) = 10, f(b, other) = 0, and
– g(b, coffee) = g(b, tea) = 25, g(b, other) = 0.

The choice of the history hashing determines the class of cost functions that
may be build. We propose to make use of deterministic finite automata (DFA). A
history may be interpreted as a word. Using a history σ as input for a DFA, the
resulting state q may be understood as a hash value for σ. Such a history hashing
obviously satisfies continuity as a DFA is deterministic and total. Additionally,
since its set of states is finite, finiteness holds. Utilizing such a hashing, we can
express any cost function where conditions consist of checking membership of
the history in regular languages.

Constraints. We introduce constraints as restrictions on behavior by specifying
conditional bounds for cost functions. As conditions, we use markings. As bounds,
we use integer intervals. Intuitively, a transition sequence meeting the condition
satisfies a constraint if its costs are inside given bounds. If the transition sequence
results in a different marking or cannot be fired, it trivially satisfies the constraint.

Definition 3 (Constraints). We call a pair p = 〈m, τ〉 constraint over a set
G of cost functions, iff m ∈Mip(N) is a marking of the inner process of N and
τ maps each cost function f to an integer interval.

A transition sequence σ ∈ T ∗N satisfies p = 〈m, τ〉, written σ |= p, iff σ ∈
beh(ip(N),m)⇒ ∀f ∈ G : ‖f‖ (σ) ∈ τ(f).



Example 3. We model the constraint informally described in Sect. 1: Upon
reaching a final marking, all expenses should be covered by the reward. We define
this as one constraint pm per final marking m ∈ ΩV. Each pm is defined over cost
function (g − f) as defined in Example 2. At first glance, the acceptance interval
for this cost function is [0,∞). However, we did not model the fix costs yet.
We thus shift the acceptance interval by the difference of the fix costs yielding
i = [5,∞). We inspect some example firing sequences and decide constraint
satisfaction for each. The firing sequence cb trivially satisfies each pm since it
does not result in a final marking. The firing sequences σ = cbq and σ′ = q result
in a final marking. While σ satisfies each pm, σ′ does not: (g − f)(σ) = 5 ∈ i,
(g − f)(σ′) = 0 6∈ i.

Policies. A policy is basically a collection of constraints over a given set of
cost functions. Policy violation requires a change of the viewpoint: Policies are
defined over the behavior of a fixed open net N . However, policy violation is
not a property of N but of a partner Q of N . By sending messages to N , Q
may influence the control flow of N . Intuitively, Q violates a policy ϕ, if it sends
messages, such that N may choose a firing sequence which does not satisfy all
constraints in ϕ. Formally, we define policy satisfaction for a transition sequence
of N and based thereon policy violation.

Definition 4 (Policies). We define a policy as a tuple ϕ = 〈N,h,G,C〉 where
G is a set of cost functions and C is a set of constraints over G. A transition
sequence σ ∈ T ∗N satisfies ϕ, written σ |= ϕ, iff ∀p ∈ C : σ |= p. A partner Q of
N violates ϕ iff there exists a firing sequence σ of N ⊕Q, such that σ|TN

6|= ϕ.

Example 4. We combine the open net V from Fig. 1(a), the hashing h from
Example 2, the cost functions f, g from Example 2, and the constraints pm
(m ∈ ΩV) from Example 3 to policy ϕV = 〈V, h, {(g − f)}, {pm | m ∈ ΩV}〉. We
find cbq |= ϕV and q 6|= ϕV. Consider open net D from Fig. 1(b) as a partner for
V. We answer the question if D violates ϕV or not: There are two firing sequences
σ, σ′ of V ⊕ D which result in a final marking of V: σ|TV = cbq, and σ′|TV

= tbq.
To decide whether D violates ϕV, we need to decide σ|TV |= ϕV ∧ σ′|TV

|= ϕV
which boils down to deciding ∀m ∈ ΩV : σ|TV |= pm ∧ σ′|TV

|= pm. D does not
violate ϕV because {(g − f)(σ|TV ), (g − f)(σ′|TV

)} = {5, 15} ⊆ [5,∞).

4 Toward deciding policy violation

In this section, let N be an open net and ϕ = 〈N,h,G,C〉 be a policy. Our
approach follows three steps: (1) Compute the ϕ-state space S(ϕ). (2) Finitely
represent all ϕ-violating behavior, yielding V(ϕ). (3) Decide policy violation
utilizing V(ϕ).

The ϕ-state space. The state space of a system is usually a directed graph where
each vertex represents a state of the system and each edge stands for a transition



from the source state to the target state. In case of a Petri net, a state is a
marking and an edge is a transition. Many properties may be decided on the
state space by exploring the set of all states or their order.

Our property of interest is the following: Which firing sequences satisfy the
given policy? The problem is that even a finite state space generally may represent
infinitely many firing sequence due to cyclic behavior. This can be easily overcome
if it is possible to transform the property into a state property, i.e. if it is sufficient
to inspect a state to conclude if the firing sequences resulting in this state have
the property or not.

We intend to do the same trick for our property of interest. In a first step,
we enrich states with the so far incurred costs for each cost function. However,
this is not sufficient: Let σ, σ′ be firing sequences resulting in the same costs
and marking. Let σ′′ be a transition sequence, such that σσ′′ and σ′σ′′ are firing
sequences again. Then, σσ′′ and σ′σ′′ do not necessarily result in the same costs
again.

Example 5. Consider the firing sequences σ1 = cbc and σ2 = cbt of the inner
process of open net V from Fig. 1(a). According to cost function f from Example 2,
both σ1 and σ2 result in the same state: Firing yields obviously the same
marking and the same costs of 20 units. However, continuing with b, we find that
f(cbcb) = 40 6= f(cbtb) = 30.

We thus add the hash value of the history. Formally, we define a ϕ-state as a
triple q = 〈m,x, τq〉 consisting of a marking m, a hash value x, and a mapping
τq : G→ Z.

Example 6. We continue Example 6. According to the history hashing h from Ex-
ample 2, the hash values for σ1 and σ2 are different: h(σ1) = coffee 6= h(σ1) = tea.
We can distinguish the resulting states of σ1 and σ2 by their hash values.

Given a ϕ-state q, it is trivial to decide if the firing sequences resulting in
q satisfy the policy or not: We check membership of the current values given
by τq with the intervals given by τ for each constraint 〈m, τ〉. Additionally, if
the ϕ-state space S(ϕ) is finite, we may compute it with a depth first search,
thereby exploiting property Continuity. Property Finiteness ensures that the set
S of reachable states is finite iff {〈m, τq〉 | 〈m,x, τq〉 ∈ S} is. Given S(ϕ), we may
compute V(ϕ), similarly as in [8]. So far, we do not have a solution for infinite
ϕ-state spaces.

Deciding ϕ-violation. We finitely represent the ϕ-violating partner behavior as
a finite automaton V(ϕ). Thereby, a word represents partner behavior: ?a!b?c
stands for receiving a, followed by sending b and receiving c. We can represent
the set of traces of the inner process of any open net Q as a finite automaton
A(Q), if it is finite state. By setting the set of final states to the complete state
set, policy violation may be decided by comparing the languages of V(ϕ) and
A(Q). If their intersection is non-empty, Q violates ϕ.



Example 7. Figure 1(c) shows V(ϕV) of ϕV from Example 4, Fig. 1(d) shows
A(D) of D from Fig. 1(b). V(ϕV) and A(D) do not share an accepting run, ϕV is
not violated.

Similarly, we believe that V(ϕ) may be used as a constraint automaton as
introduced in [9] to compute policy-aware operating guidelines. The result may
then be used to decide policy violation and behavioral compatibility in one step.

5 Conclusion and future work

We provided a formal framework to specify policies ϕ, describing acceptable
behavior of a partner based on cost functions and constraints. We explained how
a ϕ-state space may be computed and processed if it is finite. We sketched a
decision procedure based on this representation. In the future, we aim at solving
the problem that the ϕ-state space is not necessarily finite. We intend to apply
techniques similar to the coverability graph for Petri nets. We plan to extend
our proof of concept implementation to evaluate the practical usability of our
approach with a case study.
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