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Abstract. A service T can substitute a service S if T interacts with
every partner of S in a deadlock-free manner. We introduce the notion of
a filtered service of a service S with less or the same traces of external
messaging behavior as S, yet can substitute S. We propose a finite
representation of all filtered services of S called filtering guidelines.
Given a service T that cannot substitute S, we can employ the filtering
guidelines based techniques to construct a filtered service for S from T
by filtering out certain undesirable behavior of T that are not described
by the filtering guidelines.

1 Introduction

Service-orientation supports process evolution by considering a complex business
process as a collaboration of several simpler, interacting services. Substituting
one or more of these services by another may endanger the proper interaction in
unexpected ways.

In this paper, we study the evolution of the business protocols [7] which
specifies the external messaging behavior that are exchanged between stateful
services. We consider the behavioral substitution criterion that is formalized
by the notion of accordance [9]. A service T can substitute a service S under
accordance if T can interact with every partner R (in every context) of S in a
deadlock-free manner.

Whenever a service S changes due to various reasons, e.g. changes in reg-
ulations or the operational behavior of services, an incremental modification
of an existing protocol requires a construction of new service T without the
need of redefining T from scratch. Yet, constructing a new service T that can
substitute a service S is a time-consuming and error-prone task, typically based
on trial-and-error methods. The activity to construct a substitutable service
requires a systematic support from formal approaches and tools that naturally
optimize the time and effort to construct such a service.

Nevertheless, the languages and tools that are currently available on the
market offer only limited support. The language WS-BPEL, for example, has
rules (called profiles) allowing to transform a service S into a service T that can
substitute S. These syntactical rules are usually restricted and their extensions
regarding behavioral compatibility (e. g., in [1]) are still incomplete, and hence it



is not possible to construct every service that can substitute a given service S by
means of transformation.

To systematically support such a construction, a finite representation of all
services that can substitute a given service has been proposed in [6, 8]. Such a
finite representation describes all services that can substitute a given service
S under accordance, and therefore, this approach realizes several analysis and
synthesis challenges of service substitution such as deciding and constructing a
service that can substitute S under accordance.

Consider a service T that cannot substitute S under accordance, this means T
is not describing by a finite representation proposed by [6, 8]. In many situations,
a new service that is constructed from such a representation introduces either
additional external message behaviors (e. g., a new order of sending message
activities) or completely new behavior where none of behavior of T is preserved.
Nevertheless, we may want to promote reusability and rapid development of
services by removing undesirable behavior of T rather than introducing new
behavior, and by doing so, we derive a new service T ′ from T such that T ′
can substitute S under accordance. Such a filter operation on service behaviors
should allow the construction of a new service T ′, that can substitute S under
accordance, from service T with optimal amount of time and effort.

In this paper, we extend the approach of [6, 8] by presenting filtering guidelines
that realizes the filter operation for services. The filtering guidelines for service
S describes all services that have less or the same traces of external messaging
behavior as S, yet can substitute S under accordance. With our approach, one
can construct a new filtered service using the filter guidelines to filter out the
undesirable behavior that possibly introduces a deadlock when interacting with
a deadlock-free partner of S. We ensure that the filtered service can substitute
service S under accordance.

The remainder of this paper is organized as follows. Section 2 describes
preliminary notions and related works. Section 3 defines filtering services and
presents a finite representation of all filtering services. Finally, Section 4 concludes
the paper and sketches possible extensions of the approach and future work.

2 Background and Related Works

A service consists of a control structure describing its behavior and an interface
for asynchronous communication with other services. An interface is a set of
(input and output) channels. We abstract from the syntax of service description
languages and use service automata to model service behavior.

A service automaton [4] (or service, for short) consists of a finite set Q of
states, an initial state q0 ∈ Q, a set I of input channels, a set O of output channels
(I and O are disjoint and do not contain internal message τ), a non-deterministic
transition relation δ ⊆ Q × (I ∪ O ∪ {τ}) × Q, and a set Ω of finals states. A
non-final state with no outgoing transition is a deadlock.

Example 1. Figure 1 shows the communication skeleton (or abstract processes
in terms of BPEL) of three customer services S, T1, and T2 as service automata.
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Fig. 1. Running examples

All customers have the same interface (I = {r, c} and O = {a, o}) and can
send an order (labeled !o), send an abort message (labeled !a), receive a reject
message (labeled ?r), or receive a confirm message (labeled ?c). Each customer
has different behavior described by its control flow. Final states are depicted
with double circles.

We assume asynchronous communication between services with bounded and
unordered message buffer (i. e., messages may overtake each other in a bounded
channel). Two services R and S can be composed if they have compatible interface
(input channels ofR are the output channels of S, and vice versa). The composition
yields a service with empty interface. Two services R and S interact properly if
their composition is deadlock-free (every reachable non-final state has an outgoing
transition). In that case, R is a controller (i. e., deadlock-free partner) of S.
The set Controllers(S) denotes the set of all controllers of S. The notion of a
controller is symmetric; if R is a controller of S, then S is also a controller of R.
If S has at least one controller, then S is controllable.

A service T can substitute a service S under accordance [9] if (1) S and T have
the same interface (same input and output channels) and (2) every controller of
S is a controller of T (i. e., Controllers(S) ⊆ Controllers(T )). The set Accord(S)
denotes the set of all services T that accords with S (i. e., T can substitute a
service S under accordance).

Example 2. In Fig. 1, service T1 cannot substitute service S under accordance.
This is because T1 terminates after sending abort message, but there is one
deadlock-free partner of S (not shown in the examples) which, after receiving
abort message, will send back a reject message. Obviously, T1 cannot interact



deadlock-freely with this partner of S. However, T2 can substitute S under
accordance, because T2 can interact deadlock-freely with every partner of S.

Each controllable service S has a most-permissive controller of S, denoted
by mp(S), which can exhibit all behaviors that any controller of S can exhibit
(i. e., if R ∈ Controllers(S), then mp(S) must simulate R [10]). The set of
all controllers of a controllable service S can be represented by the operating
guidelines OG(S) of S [4], denoted by OG(S). The operating guidelines OG(S) of
S, is the Boolean annotated most-permissive controller mp(S)φ of S, where each
state q of mp(S) of S is annotated with a Boolean formula φ(q). These formulas
consist of conjunctions ∧, disjunctions ∨, and atomic propositions I∪O∪{τ,final},
indicating for a state whether certain outgoing edges are present and whether
the state is final.

To determine whether a service R is a controller of S, we analyze whether R
matches with OG(S), denoted by R ∈ Match(OG(S)). Service R matches with
OG(S) if R has the same interface as mp(S) and mp(S) simulates R such that,
for each pair of simulated states (qR, qm) the Boolean formula φ(qm) at state qm
of mp(S) is satisfied in the assignment β of state qR of R. An assignment β is a
Boolean function on I ∪O ∪ {τ,final} that assigns x, for x ∈ I ∪O ∪ {τ}, to true
if there exists an outgoing transition from qR with labels x, and assigns final to
true if qR is a final state of R.

Proposition 1 ([4]). Controllers(S) = Match(OG(S)).

In addition to the operating guidelines of service S, the set of all controllers
of a service S can also be represented by a single controller called maximal
controller (or called maximal strategy in [8]) of S, denoted by M (S). For each
controlllable service S, every controller R of S can substitute M (S) under
accordance [5]. A maximal partner M (S) for S has several useful applications to
service substitution [6, 8] and one of them is to characterize the set Accord(S) of
all services that can substitute a service S under accordance.

To represent the set Accord(S) of all services that can substitute a service S
under accordance, we calculate the operating guidelines of a maximal controller
M (S) of S, denoted by OG(M (S)). To determine whether a service T accords
with S (i. e., if T ∈ Accord(S)), we analyze whether T matches with OG(M (S)) [6,
8], denoted by R ∈ Match(OG(M (S))).

Proposition 2 ([6, 8]). Accord(S) = Match(OG(M (S)).

Example 3. OG(M (S)) depicted in Fig. 1 represents the set Accord(S) of all
services that can substitute S under accordance. T2 matches with OG(M (S))
because OG(M (S)) simulates T2 and every state of T2 fulfills an assignment of
a Boolean formula at the respective state of OG(M (S)). However, T1 does not
match with OG(M (S)) because T1 terminates after sending abort message !a;
this means, the assignment at the state in T1 after sending abort message !a does
not satisfy the formula ?r at the respective state of OG(M (S)). Therefore, T1 6∈
Match(OG(M (S)) and T2 ∈ Match(OG(M (S))). We conclude from Proposition 2
that T2 can substitute S under accordance, but T1 cannot do so.



3 Filtering Guidelines

Given service S, we propose filtering guidelines for S which can describe all
services S′ each has less or the same traces of external messaging behavior to S,
yet can substitute S under accordance.

For a service S, a trace of S is a finite or infinite sequence of non-internal
messages from the initial state of S. The set Traces(S) denotes the set of all
traces of S. A service T refines service S if every trace of T can be replayed in S
(i. e., Traces(T ) ⊆ Traces(S)). For the attentive reader, this relation is also known
as trace refinement relation. The set Refine(S) denotes the set of all services that
refines S.

Example 4. In Fig. 1, T2 ∈ Refine(T1) and T1, T2 6∈ Refine(S).

Definition 1. A service T is a filtered service of a service S if T refines S and
T accords with S. We define the set of all filtered services of S as Filter(S) =
Refine(S) ∩Accord(S).

Observe that the set Filter(S) is never an empty set, as it always includes S.
Our first goal is to construct a finite representation of Filter(S). As suggested

by Definition 1, the set Filter(S) is an intersection of the two sets Refine(S) and
Accord(S). Technically, if each set can be represented by a Boolean annotated
service automaton [4, 9], we can employ the operating guidelines-based technique
proposed by [9] to characterize the intersection of two given sets using the product
of two Boolean annotated service automata.

For this purpose, we require two main ingredients: (1) a finite representation
of Accord(S) and (2) a finite representation of Refine(S).

The first ingredient has been proposed by [6, 8] to compute a finite represen-
tation of Accord(S) as the operating guidelines of a distinguished controller of S,
called a maximal controller M (S) of S (see also Proposition 2 in Section 2).

For the second ingredient, we require a finite representation of Refine(S).
Observe that service automaton S is also a natural candidate for our second
ingredient. Nevertheless, we would like to employ the operating guidelines-based
techniques from [4, 9] to characterize the intersection of two service sets using
the product of Boolean annotated service automata. Therefore, we require both
of our ingredients to be represented as Boolean annotated service automata.

To compute a finite representation of Refine(S), we first define a liberal service
of a service S as the deterministic service automaton L(S) such that L(S) has
the same interface as S, the same set of traces as S, and simulates S.

Next, we define the annotation function ψ of L(S) as a mapping ψ from the
set of states of L(S) to the Boolean formulas over literals IL(S)∪OL(S)∪{τ,final}.
A formula ψ(q) at each state q of L(S) is a disjunction ∨ of atomic propositions
x ∈ IL(S) ∪OL(S) ∪ {τ,final} where each atomic proposition indicates that either
from state q there is an outgoing edge with label x (in case x ∈ IL(S)∪OL(S)∪{τ}),
or state q is a final state (in case x = final).

The following lemma shows that an annotated liberal service L(S)ψ charac-
terizes the set Refine(S).



Lemma 1. Refine(S) = Match(L(S)ψ).

Proof. We will prove this lemma in two directions.
⊆ : Suppose T ∈ Refine(S); i. e., Traces(T ) ⊆ Traces(S) holds. Because L(S)
simulates S by construction, it follows that L(S) also simulates T . Because the
formula ψ(q) at state q in L(S) is the disjunction of all literals x ∈ I ∪O∪{τ} for
an outgoing transition from q with labels x, and of literal final if q is a final state
in L(S); the Boolean formula ψ(q) at every state q of L(S) is always satisfied
in the assignment β of state qT in T that is simulated by state q in L(S). Thus,
T ∈ Match(L(S)ψ) holds.
⊇ : Suppose T ∈ Match(L(S)ψ); i. e., L(S) simulates T and for each simu-
lated pair (qT , qL) the state qT satisfies the formula φ(qL). Consider σ ∈
Traces(T ). We have σ ∈ Traces(L(S)) following from L(S) simulates T . Be-
cause Traces(S) = Traces(L(S)) by construction, it follows that σ ∈ Traces(S)
holds and Traces(T ) ⊆ Traces(S) follows. Thus, T ∈ Refine(S) holds. ut

Example 5. Figure 1 shows two annotated liberal services L(S)ψ of S and L(T1)ψ
of T1. We can see that T2 ∈ Match(L(T1)ψ) but T2 6∈ Match(L(S)ψ). We conclude
from Lemma 1 that T2 ∈ Refine(T1) but T2 6∈ Refine(S).

Given the two ingredients, we employ the product of Boolean annotated
service automata [9] to characterize the intersection of Refine(S) and Accord(S).
The product of the two annotated service automata is an annotated service
automaton that characterizes the intersection of all services that match with
these two service automata. The product of annotated service automata assumes
two input annotated service automata with the same interface. Technically, the
product can be derived from the synchronous product of two annotated service
automata where each state of the product is annotated by the conjunction ∧ of
two formulas that contribute to the synchronizing state.

Proposition 3 ([9]). Let OG⊗ = OG(S1)⊗OG(S2) be the product of two anno-
tated service automata OG(S1) and OG(S2), Then Match(OG⊗) = Match(OG(S1))
∩ Match(OG(S2)).

We refer to the product of annotated service automata L(S)ψ and OG(M (S))
as filtering guidelines FG(S) for S, i. e., FG(S) = L(S)ψ ⊗ OG(M (S)). Theorem 1
shows that FG(S) describes the set Filter(S) of all filtered services of S.

Theorem 1. Filter(S) = Match(FG(S)).

Proof. Filter(S)= Refine(S) ∩ Accord(S), [by definition]
= Match(L(S)ψ) ∩ Match(OG(M (S))), [Lemma 1, Proposition 2]
= Match(L(S)ψ ⊗OG(M (S))), [Proposition 3]
= Match(FG(S)). [by definition] ut

Example 6. Figure 1 shows filtering guidelines FG(S) for S which describes all
filtered services of S.



Given two services T and S with the same interface but T cannot substitute
S, we generalize our filtering guidelines to describe all services T ′ that have less
or the same traces of external messaging behavior to T , yet T ′ can substitute S
under accordance. To this end, we first define a filtered service of T for S.

Definition 2. A service T ′ is a filtered service of T for S if T ′ refines T and T ′
accords with S. We define the set of all filtered services of T for S as Filter(T, S)
= Refine(T ) ∩ Accord(S).

Clearly, Filter(T, S) is possibly an empty set, this means there exists no filtered
service of T for S.

Next, we propose a procedure to decide if the set Filter(T, S) of all filtered
services of T for S is empty. In case it is not empty, we provide an artifact that
represents the set Filter(T, S).

The result from Theorem 1 suggests that we can employ the product of
annotated service automata technique to characterize the intersection of Refine(T )
and Accord(S). This means, we compute an annotated liberal service L(T )ψ of
T as a finite representation of Refine(T ), the operating guidelines OG(M (S))
as a finite representation of Accord(S), and then the product of the two service
automata L(T )ψ and OG(M (S)) as a finite representation of Filter(T, S). The
product of the L(S)ψ and OG(M (S)) is called filtering guidelines FG(T, S) of T
for S, i. e., FG(T, S) = L(T )ψ ⊗ OG(M (S)).

Corollary 1. Filter(T, S) = Match(FG(T, S)).

To decide if there exists a filtered service of T for S, we check if FG(T, S)
is empty. An empty FG(T, S) means that it is not possible to synthesize from
T a service that both refines T and accords with S. In case of non-empty
FG(T, S), we can synthesize a filtered service T ′ from FG(T, S) by removing
all annotations from FG(T, S). The underlying service automaton of FG(T, S)
without annotation represents a most-liberal filtered service where all undesirable
behaviors have been removed only if it is necessary to do so.

Example 7. Figure 1 shows the filtering guidelines FG(T1, S) of T1 for S. We see
that T2 matches with FG(T1, S); therefore, T2 is a filtered service of T1 for S
(i. e., T2 ∈ Filter(T1, S)). However, T1 does not match with FG(T1, S); therefore,
T1 itself is not a filtered service of T1 for S (i. e., T1 6∈ Filter(T1, S)). Given T1
that cannot substitute S. We can use FG(T1, S) as guidelines to remove the
sending abort message !a from T1 as it is not described by FG(T1, S). By doing
so, we can derive T2 that can substitute S from T1.

We can also apply all existing techniques for operating guidelines to our
filtering guidelines Filter(S) and Filter(T, S). For example, suppose we want
to impose additional requirements on the service T ′ that is described by either
Filter(S) or Filter(T, S). Then we can restrict our filtering guidelines to services
that satisfy certain behavioral constraints [3], or perform certain activities [9].

In case it is not possible to synthesize a service that refines T and accords
with S, we can employ the simulation-based graph edit distance approach from [2]



on the finite representation of Accord(S) to compute edit actions that are needed
for transforming T into T ′ that accords with T , possibly by means of adding new
messaging behavior into T ′. Though the simulation-based graph edit distance
approach is applicable only for acyclic and deterministic services.

4 Conclusion and Future Work
We presented the notion of a filtered service which has less or the same traces
of external messaging behavior as a given service, yet can substitute a given
service under the substitution criterion called accordance. To describe all filtered
services, we proposed a finite representation of all filtered services called filtering
guidelines. The filtering guidelines realizes the filter operation by suggesting
all possible construction of a filtered service by removing certain undesirable
behaviors that are not described by the guidelines. We ensure that the filtered
service can substitute a given service under accordance.

The idea of the filtering guidelines for services is related to [3] in the sense
that all trace-refined services are expressed as behavioral constraints and all trace-
refined services that are not substitutable services can be filtered out, yielding a
customized operating guideline which represents the set of all filtered services.

It is further work to implement our filtering guidelines and obtain experimental
results. We also plan to extend our approach to realize the filter operation for
services with different input and output channels by blocking some channels of a
given service in addition to its external messaging behavior.
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