
Top-k Search in Product Catalogues
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Abstract. In the era of huge datasets, the top-k search becomes an effective way 

to decrease the search time of top-k objects. The original top-k search requires a 

monotone combination function and lists of objects ordered by attribute values. 

Our approach of the top-k search is motivated by complex user preferences over 

product catalogues. Such user preferences are composed of the local user prefe-

rences of the attributes’ values (user defined arbitrary fuzzy functions, one for 

each attribute) and a user defined monotone combination function. This paper 

compares two different approaches of the top-k search for this type of non-

monotone query. The first approach uses several B+trees, one for each attribute, 

and it is based on ordered lists. The second approach is new for this type of 

query and requires an R-tree index. 

1   Introduction 

The top-k search becomes more popular with increasing datasets sizes. Users are 

usually interested in a few best objects rather than a large list of objects as a result. 

Top-k algorithms usually follow two main goals. First, they minimize the number of 

source data to be processed. Second, the algorithms try to minimize the number of 

accesses to the sources and the computation time as well. 

Our research in the area of the top-k search is motivated by product catalogue 

search. Users of the common e-catalogues have usually limited options of a preference 

specification. Typically, the only way to simplify product selection is to order the 

products by a single attribute. Sometimes, a user can restrict the object set by an inter-

val of attribute values. 

Our goal is to enable usage of more complex user preferences. Complex user prefe-

rences allow user to specify his top-k objects more accurately. On the other hand, 

preferences should be easy to specify and understandable for common user. Our mod-

el of user preferences consists of local preferences to attribute values and a global 

monotone combination function. 

User’s local preference to the values in domain DA of attribute A is represented by a 

fuzzy function fA: DA → [0; 1]. The fuzzy function gives the value 1 for the attribute 

values the most preferred by user and the value 0 for the attribute values that the user 

does not accept. Values between 0 and 1 represent the rates of the user acceptance of 

the attribute value. 
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Example 1: Imagine a user searching for a cheap laptop with medium screen size. 

Such preferences can be expressed by fuzzy functions similar to the ones shown on 

figure 1. We can see that user accepts laptops cheaper than approximately 700 € with 

a screen size between 11” and 15,5”. Moreover, we know that preferred screen sizes 

are between 12” and 14” and that the cheaper the laptop is the better preference it has. 

 
Fig.1. User’s local preferences to the screen sizes and the laptops prices 

 

The fuzzy functions can be specified explicitly by user using sliders [4]. Alterna-

tively they can be learned from objects’ ranking or by a click analysis on the catalogue 

website [12, 13]. 

The second part of user preferences is a global monotone combination function that 

combines the fuzzy values of the local preferences to the overall object value. If user 

considers m attributes in his preferences, the combination function C: [0; 1]
m
 → R 

expresses the overall value of the user preferences to the object. The higher the overall 

value, the more preferred the object is. 

Example 2: Let us consider the previous example. Our user can specify that the 

price is twice as important as the screen size. We can express this importance as 

weights wsize= 1 and wprice= 2. Then the combination function can be expressed as 

weighted sum of the fuzzy values: 

C(fsize(size), fprice(price)) = 1*fsize(size) + 2*fprice(price) 

The monotone combination function is quite difficult to express by a common user. 

Therefore the preferred approach uses a predefined combination function (sum, mini-

mum and product) or it can be learned as well as the local preferences [12, 13]. A 

learned combination function has usually a form of a weighted sum or a set of mono-

tone fuzzy rules [13]. 

Top-k search algorithms like Threshold algorithm (TA), algorithm No Random 

Access (NRA) [1] or 3 phased-No Random Access (3P-NRA) can be used with user 

preferences mentioned above [4, 12]. 

The contribution of this paper is: 

 new efficient algorithm for the top-k search based on R-tree (see section 4) 

 experimental efficiency comparison of R-tree based algorithm to algorithms 

TA and 3P-NRA (see section 5) 

In [2], algorithms like TA, NRA (or 3P-NRA) are used for searching over several 

types of attributes i.e. ordinal, metric, hierarchical, etc. Our new solution based on R-

tree supports only ordinal attributes so far. Ordinal attributes in TA, NRA (or 3P-

NRA) algorithms are handled by B+trees. In this paper we call these algorithms 

B+trees based approach. 
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2   Problem definition 

For a given set S of objects we have to find k most preferred objects for the user. Each 

object O ∊ S has the same m attributes with real values v1(O),…, vm(O), where func-

tion vi: S → R for all i ∊ {1, …, m}. Input obtained from the user consists of m fuzzy 

functions f1,…,fm (or less if user does not consider all attributes) and a monotone com-

bination function C. The overall value of object O is C(f1(v1(O)),…, fm(vm(O))). For 

example, if C is a weighted sum, user is expected to specify only nonnegative weights 

– one for each considered attribute. Then we have:  

C(f1(v1(O)),…, fm(vm(O))) = w1* f1(v1(O)) + … + wm* fm(vm(O)) 

where w1,…,wm are the weights. The bigger the overall value, the more preferred the 

object O is to user. Output is a list of k objects from S ordered from the most preferred 

objects to the less preferred ones. 

3   B+trees based approach 

The original TA [1] and its derivates (NRA, 3P-NRA) require: 

 m lists of pairs having form <object identifier, attribute value> previously or-

dered by attribute values  

 a monotone combination function 

In the TA, NRA, 3P-NRA algorithms, the ordered lists are read sequentially and 

the values from the lists are used as an input for a monotone combination function. 

Typically a top-k algorithm returns top-k objects after processing only a part of the 

lists. 

Our approach requires the monotonicity of a combination function C, having fuzzy 

values of the local preferences as an input. In the naïve approach, the lists could be 

sorted according to the local preferences. Then, having the lists ordered by fuzzy 

values of the local preferences and a monotone combination function, we can use any 

TA-like algorithm to find top-k objects. Unfortunately, every user usually has different 

local preferences as well as different combination function. The sorting prior to every 

top-k search is highly ineffective – it is cheaper to do a table scan and compute the 

overall values for all objects in S. 

Instead of ordering the lists, a B+tree can be prepared over each attribute of objects 

in S [2]. The main idea of this approach is that it does not need an ordered list to offer 

the ordered sorted access. 

Example 3. Let us assume that the price and screen size attributes are indexed sepa-

rately each in one B+tree. According to the fuzzy functions shown on figure 1, i.e. the 

user local preferences, the B+trees can be traversed to simulate the sorted accesses. 

The price tree is traversed from a minimal attribute value in ascending direction using 

pointers between leafs of the B+tree. In the case of the screen size two pointers are 

created, both starting at the some attribute value with the highest fuzzy value, i.e. 13” 

with fuzzy value 1. The first pointer traverses leafs of the B+tree in descending direc-

tion and the second one in ascending direction (see Fig.2). 
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Fig.2. Traversing B+tree organized by attribute screen size during the sorted access simulation 

for TA-like algorithms 

 

Having simple functions (partially linear), the points to identify the pointers and di-

rections, i.e. the extremes of the fuzzy function, can be found very easily. The entry of 

a B+tree leaf with the highest fuzzy value can be identified by simple traversing from 

the root to the appropriate leaf. 

At the beginning of the sorted access simulation [2] the entries with the local max-

imums of a fuzzy function are identified, based on which a set of pointers to leaf en-

tries is obtained. Each pointer points to a leaf entry that should be returned as the next 

entry in the sorted access simulation. For each pointed entry a fuzzy value is com-

puted. The entry with the highest fuzzy value is returned and its pointer is shifted to 

the neighbor entry of the corresponding direction. 

The sorted access simulation allows us to use any TA-like algorithm. Instead of the 

original NRA, we prefer to use an improvement of the NRA algorithm called 3P-NRA 

with significantly better search time as shown in [2] especially in combination with the 

proposed heuristics. Hence we use 3P-NRA in our experiments in section 5. 

4   Searching over R-tree 

A contribution of this paper is a top-k search algorithm based on R-tree. As shown in 

the experiments, this approach is much more effective than B+trees based approach. 

Since each object O can be represented by the point p(O) = (v1(O),…, vm(O)) in m-

dimensional space (note that p: S → R
m
) the set S of objects can be stored in multidi-

mensional R-tree index [8, 9]. The figure 3 shows an example of R-tree index used for 

point data. For searching top-k objects we adapted algorithm Incremental Nearest 

Neighbor (INN) [10] (also known as sorted access) commonly used for searching k-

nearest neighbors. For formal description of our algorithm we first have to define 

some concepts. 

 

Definition 1: Point P in m-dimensional space is vector P = (P1,..., Pm) ∊ R
m
. 

 

Remark 1: Having O ∊ S and point P such that P = p(O) then Pi = vi(O) for all 

i ∊ {1,…, m}. 

 

Definition 2: Rectangle R (parallel with axes) is a pair of points R = (L, H) where     

Li ≤ Hi for all i ∊ {1,…, m}. 
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Fig.3. Example of R-tree for two-dimensional point data and capacity of nodes equal to 4 

 

For the implementation and the tests the more effective variant R*-tree [9] was 

used. R*-tree has the same structure and properties as the R-tree, it differs only in the 

way of construction. However, the algorithm for k-nearest neighbors and for top-k 

search is the same for both of them. 

Real values of objects’ attributes come from different ranges (screen sizes of lap-

tops are from 8” to 17” while the prices are from 400 € to 3000 €) and they are in 

different units. Therefore we will not build an R-tree index over real values of 

attributes but we will build it over linear normalized values where all values are within 

interval [0; 1]. The user defined local preferences (fuzzy functions) will be adjusted 

according to such normalized data. The normalization is necessary for effective utili-

zation of R*-tree because of R*-tree aims e.g. to have as quadratic nodes as possible. 

INN algorithm offers the objects within R-tree in the incremental way and in order 

from the nearest ones from a query point Q. In top-k search the input is not a single 

point but it consists of the user’s preferences. Objects on the output should be ordered 

from best for the user. This can be easily achieved by ordering the priority queue 

within INN algorithm by some other value – not by minimal distance from Q but by 

maximal overall value (using combination function). For a node N we have to com-

pute the maximal possible overall value for any object in a sub-tree rooted by the node 

N. For this purpose we define function h. 

 

Definition 3: Function h: S U V → R, where V is a set of nodes of R-tree, is defined 

as follows: h(E) = C(y1,…, ym) where for all i ∊ {1, …, m} yi = fi(vi(E)) if E ∊ S or 

yi = max{fi(x): Li ≤ x ≤ Hi} if E ∊ V and (L, H) is minimal bounding rectangle of E. 

 

Even though user’s preferences can be specified by arbitrary fuzzy functions, nev-

ertheless it must be possible to compute the maximum of the fuzzy function on an 

arbitrary interval and also to compute a value in any permissible x. We prefer to work 

with the partially linear fuzzy functions. They are easy to define by users using sliders 

in a graphic interface and they are also simple in computations. 

The figure 4 shows a graphical representation of an example of function h. The 

value h(O) of object O is greater than the value h(N) of node N. Object O is therefore 

better for user than any possible object in a sub-tree of node N (any point in rectangle 

(L, H)). 
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Fig.4. Graphical representation of the function h(E) = C(y1, y2) = y1 + 2 * y2 over normalized 

data having two attributes of objects with user-defined fuzzy functions f1 and f2 on the right 

 

Algorithm preferential top-k search over R-tree: 
Input: R-tree index of objects from S, fuzzy functions  

 f1,…, fm, combination function C and number k 

Output: ordered list of k objects with the highest value  

  of the h function 

1. pqueue = empty priority queue ordered by the value of 
the h function of its elements in descending order 

2. result = empty list of objects 

3. add the root node of the R-tree in the empty pqueue  

4. while the result does not contain k objects do 

a. let E be the first element of the pqueue, remove 
E from the pqueue 

b. if E is an inner node then add all its child 
nodes to the pqueue 

c. if E is a leaf node then add all its objects to 
the pqueue  

d. if E is an object then add object E to the end 
of the result 

5. return result 

 

Algorithm starts with the root node as the only element in the priority queue. At the 

beginning all the objects are taken into account (root contains all the objects in its sub-

tree). The idea of the algorithm is to remove the node at the top of the priority queue, 

insert all its child nodes instead (or objects if the node was a leaf) with respect to 

ordering. This is repeated until some object appears on the top of the priority queue. 

Then the object is put to the end of the result list (the next best object to user). Priority 

queue ensures that on the top there is an element (i.e. a node or an object) with the 

maximal value of the function h among all elements in the priority queue. Moreover 

the priority queue can be organized to prefer object to a node with the equal value of 

function h. If the element on the top of the priority queue is a node, then its sub-tree 
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can contain an object with higher value of function h than any other object present in 

the priority queue. On the other side, if there is an object on the top of the priority 

queue, its value of function h is higher than or equal to the value of function h of any 

other object in the priority queue and also of any object in sub-trees of nodes in the 

priority queue. Hence the first object appeared on the top of the priority queue is the 

best of all objects. The second object appeared on the top of the priority queue is the 

best of all remaining objects (i.e. the second best of all objects) and so on. 

Inserting all child nodes to the priority queue requires the data (rectangles of child 

nodes) from the node itself only. Therefore it is possible to store only pointers to 

nodes in the priority queue for better efficiency and load real nodes when the informa-

tion about their child nodes or objects is needed. 

5   Tests and results 

In the tests the time and number of IOs of the following three algorithms are com-

pared: TA, 3P-NRA and the preferential top-k search over R-tree. Since R*-tree is the 

most efficient variant of R-tree, we used it in all the following tests. The utilization of 

R*-tree nodes was within the range from 30 to 90. In the tests we used three different 

distributions of artificial random data: Gaussian, exponential and uniform. We used 

sets of 100 000 and 1000 000 objects. The combination function was weighted sum 

where weights were chosen randomly from interval [1; 5]. Fuzzy functions for the 

evaluation of objects were chosen also randomly from 4 types (familiarly called: as-

cending, descending, hill, valley) used in [21]. All the tests were done on computer 

with 2GB of RAM, 2core Intel Centrino processor and SSD hard disk. The purpose of 

the tests was to reveal the influence of the data distribution, user preferences or the 

number of considered attributes on time and number of IOs. Presented values are the 

average values of 5 identical tests. 
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Fig.5. Search time of the top-1, 5, 10, 20, 50 objects in ms over 100 000 random objects with 

10 attributes of exponential (top-left), Gaussian (top-right) and uniform (bottom) distribution 

with all 10 attributes in a query 

 

First set of charts (figure 5) describes the search time of top-k objects. We can ob-

serve significant speedup of searching when data are indexed in R*-tree and the query 

uses all 10 attributes of objects. The dependence of number of IOs copies the time 

dependence for all three algorithms. 

The question is whether the R*-tree based algorithm will be so fast if the query 

would contain only some of all indexed attributes. TA and 3P-NRA algorithms can be 

considered faster trivially (because they read fewer ordered lists). The R*-tree based 

algorithm always searches over the R*-tree structure containing all the attributes inde-

pendently of the user query. 

Next set of charts (figures 6, 7) describes the search time of the top-10 and the top-

50 objects of 10 attributes with less than 10 attributes used in a query. 
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Fig.6. Search time of the top-10 (left) and the top-50 (right) objects in ms over 100 000 random 

objects of 10 attributes with uniform distribution with 2, 3, 5, 7, 9 attributes in a query 

 

  
Fig.7. Search time of the top-10 (left) and the top-50 (right) objects in ms over 1 000 000 

random objects of 10 attributes with exponential distribution with 2, 3, 5, 7, 10 attributes in a 

query 

 

As we can see on the charts above the R*-tree based algorithm is fast even for a 

small number of attributes in the query. In farther tests we observe that this property of 

R*-tree based algorithm is preserved also for a bigger set of objects (1 000 000), more 

attributes (20) and also for other distributions (exponential, Gaussian). 

 

  
Fig.8. Search time of the top-10 (left) and the top-50 (right) objects in ms over 1 000 000 

random objects of 20 attributes with Gaussian distribution with 2, 3, 4, 6, 8, 10, 12, 15, 20 

attributes in a query 
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Fig.9. Number of IOs in the search of the top-10 (left) and the top-20 (right) objects over 

1 000 000 random objects of 20 attributes with Gaussian distribution with 2, 3, 4, 6, 8, 10, 12, 

15, 20 attributes in a query 

 

The tests show that R*-tree based approach is much faster than the B+trees based 

approach. The remarkable speedup is reached by decreasing the number of IOs – from 

several B+trees to one R*-tree. 

6   Related work 

This paper studies the top-k search for complex user preferences composed of arbi-

trary local preferences and a monotone combination function. Local preferences and 

combination function together generate a non-monotone function giving the overall 

value.  

The area of the top-k search was extensively researched in the last 7-11 years. The 

main stream of the top-k search algorithms [1, 14, 15, 16, 17], we call them TA-like 

algorithms, considers having a monotone combination function and possibly distri-

buted ordered lists for each attribute. 

The query composed of local preferences and monotone combination function was 

introduced in [2]. As shown in section 3 the simulation of sorted access to the lists 

allows us to use TA-like algorithms. 

A special branch of top-k algorithms is considered to be embedded in RDBMS 

[18, 19, 20]. These approaches are concerned with augmenting the query optimizer to 

consider rank-joins during plan evaluation. Optimization can be effective especially in 

the case of very selective attributes. The rank-join algorithms require ordered data on 

input similarly to TA-like algorithms. The way of ordering is not considered or the 

ordering of attribute domains is used implicitly. 

The approaches in [5, 6] do the top-k search with an arbitrary (also non-monotone) 

query analyzing the aggregation function with mathematical methods. If a ranking 

function analysis over any domain sub-region is possible (to find the maximum and 

possibly recognize monotonicity), according to authors this approach is able to find 

the top-k objects in an effective way. In our opinion this analysis is rather difficult to 

be done for an arbitrary function. However, we could not proceed in further analysis 

of this approach because the source codes or a deeper description of the algorithms 

are not available. 
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R-tree is designed especially for multidimensional range queries and similarity 

search (nearest neighbor queries). Moreover R-tree can be effectively used for top-k 

queries. The idea of using R-tree for the top-k search is briefly presented in [7] where 

authors compare the top-k search over R-tree and over their new index called “Ranked 

Join Index”. They consider only a simple weighted sum as a top-k query. Note that our 

top-k query, consisting of m fuzzy functions f1,…,fm and a monotone combination 

function C, is more complex. The composition of fuzzy functions and a combination 

function is not monotone in general, thus our approach has a higher expressive power. 

Since the “Ranked Join Index” requires a monotone top-k query, it cannot be used 

with our query.  

7   Conclusions and future work 

Unlike separate ordered lists in the original TA-like algorithms our approach uses 

single R-tree or R*-tree. Since R-tree is a multidimensional index, each attribute can 

be represented as one dimension. A disadvantage in comparison to the original TA-

like algorithms is that we must know the values of all objects’ attributes and all the 

data must be stored locally in one structure. We must have the whole R-tree prepared 

prior to the query (we emphasize that we have to prepare the R*-tree only once, not 

prior to each query). We assume that a condition of locally accessible data prepared in 

advance is performable for almost all attributes. Nevertheless in the case of dynamic, 

remote or not ordinal attributes, the TA-like algorithms and the R-tree based approach 

can be combined. Since algorithm for the top-k search over R-tree can be used to 

produce an ordered list, we can carry out the top-k search using a TA-like algorithm. 

One ordered list for a TA-like algorithm can be simulated by the top-k search algo-

rithm over R-tree and several (not so many) ordered lists can be obtained in other way, 

i.e. simulation over remote B+tree. In this case we can dramatically decrease the num-

ber of ordered lists read by a TA-like algorithm and consequently the overall time of 

the top-k search as well. This is the idea of our future work. 
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