
XML Document Versioning and Revalidation?

Jakub Malý, Jakub Kĺımek, Irena Mlýnková, and Martin Nečaský

XML Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1
The Czech Republic

{klimek,maly,mlynkova,necasky}@ksi.mff.cuni.cz

XML Document Versioning and Revalidation?

Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

XML Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University in Prague

Malostranské náměst́ı 25, 118 00 Praha 1
The Czech Republic

{klimek,maly,mlynkova,necasky}@ksi.mff.cuni.cz

Abstract. One of the prominent characteristics of XML applications is
their dynamic nature. When a system grows and evolves, old user require-
ments change and/or new requirements accumulate. Apart from changes
in the interface, it is also necessary to modify the existing documents with
each new version, so they are valid against the new specification. The
approach presented in this work extends an existing conceptual model
with the support for multiple versions of the model. Thanks to this ex-
tension, it is possible to define a set of changes between two versions of
a schema. This work contains an outline of an algorithm that compares
two versions of a schema and produces a revalidation script in XSL.

Keywords: XML, schema, schema evolution

1 Introduction

Recently, XML [12] has become a corner stone of many information systems. It
is a de facto standard for data exchange (i.e. Web services [4]) and it is also a
popular data model in databases [3]. XML schemas are utilized in two scenarios:
1) to describe structure and check validity of internal documents, and 2) to
define the interface of a component of the system for other components or of the
system to the outer world.

Requirements change during the life cycle of the system and so do the
XML schemas. Without any tools to help, the old and new schema need to
be examined by a domain expert. Each change must be identified, analyzed and
all the relevant parts of the system modified and the existing documents up-
dated. This can be a time-consuming and error-prone process, but, in fact, a
significant portion of the operations could be performed automatically.

The existing approaches work directly at the level of XML schemas, which
leads to problems with recognizing the semantics of each change. Our approach
utilizes the conceptual model for understanding the semantics. Also, most of
the existing approaches require the user to either revalidate the documents after

? This work was supported in part by the Czech Science Foundation (GAČR), grant
number P202/10/0573, and by the grant SVV-2011-263312.

V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2011, pp. 49–60, ISBN 978-80-248-2391-1.

50 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

every performed evolution operation, other require at least all the operations
to be performed in one session and directly modify the old version (effectively
replacing it with the new version). Our approach imposes no limits on the amount
of operations performed between the versions and the amount of versions present
in the systems.

The main aim of this paper is to simplify the whole process of system evolu-
tion and make the transition to the new version semi-automatic using our con-
ceptual XML modeling framework with the support for multiple versions. We
carry on by formally defining possible changes between versions. When changes
are detected, we use this information to decide, whether the revalidation is nec-
essary and if it is the case, we generate a script that revalidates existing XML
documents against the new version.

1.1 Outline

The rest of this paper is organized as follows: in Section 2, we analyze the existing
approaches. In Section 3, we introduce the XSEM conceptual model. In Section
4, we extend the model with versioning support. In Section 5, we formally define
changes between versions. In Section 6, we outline how a revalidation script is
generated. Section 7 concludes and lists the open problems and areas of future
research.

2 Related Work

Approaches can be categorized on the basis of the level where the changes are
made by the designer and detected by the algorithm as suggested in [10]:

– in XML schemas (in one of the XML schema languages), so-called logical
level. At the logical level, changes are detected directly in the evolved schema.

– in diagrams visualizing the XML schema (diagrams directly visualizing con-
structs of a specific XML schema language).

– in a UML diagram used to model an XML format (usually annotated using
comments or stereotypes to specify the translation to an XML schema).

X-Evolution, proposed in [5], is an example of a system built upon a graphical
editor for creating schemas in the XML Schema language [14]. At first, the
authors defined a set of evolution primitives, i.e. basic operations that modify the
evolved schema (e.g. insert local element, remove type). Impact of each primitive
on the validity of the existing XML documents is examined. The presented Adapt
algorithm takes as an input an evolution primitive, an XML schema and an
XML document valid against the schema and returns an evolved document valid
against the schema on which the evolution primitive is applied.

X-Evolution system provides the user with a narrow set of evolution prim-
itives that can be performed upon XML schemas of a certain format. There
are no links to the conceptual model which could be utilized when new content

XML Document Versioning and Revalidation 51

needs to be added during document revalidation; thus, it is up to the user to
write the adaptation clauses or update the documents after revalidation. Some
very common real-world evolution operations are not considered in the evolu-
tion primitives, e.g. moving content, adding a wrapping element for elements
or transforming attributes to subelements and vice versa. All algorithms and
operations expect a single evolution primitive as an input. And only a single
change is supported in each evolution cycle, evolution with multiple changes is
not elaborated.

XML Evolution Management, XEM [6] is an approach to manage schema
evolution where DTD is used as a schema language. It deals both with changes
in DTD and XML documents (instance documents).

The proposed primitives are divided into two categories: 1) changes in DTD
2) changes in instance documents. It is proven that the proposed set of primitives
is complete, in the sense that any possible change in DTD can be expressed as a
sequence of application of the primitives. However, the method used in the proof
in many common cases degenerates in removing a large part of the tree and
creating it from scratch (e.g. when an element is renamed, it must be removed
and then added under new name; if the root element is removed, the whole XML
document is first deleted and its structure recreated again). In this process, the
structure is created properly by the algorithm, but the data is lost. Again, as in
the case of X-Evolution, the conceptual model is not considered and thus cannot
be utilized when new content is added in the instance documents.

Unlike the previous approaches, CoDEX, Conceptual Design and Evolution
of XML schemas [7], allows the user to perform a sequence of evolution operation
before the documents are revalidated. Each user’s single action is recorded by
the logging component. When the user is satisfied with the new version of the
model, the recorded design steps are minimized and normalized. The proposed
conceptual model is closer to a visualization of the XML Schema language than
to a platform-independent model and the lack of a conceptual model is directly
responsible for problems declared as in-built (e.g. the algorithm can not detect
such a change where the same structural element acquires different semantics).

3 XSEM Conceptual Model

Conceptual modeling is a top-down approach to system and data design, which
concentrates on correct depicting the problem domain – defining the particular
concepts comprising the system and relationships between these concepts.

XSEM is an approach to modeling XML data using Model Driven Architec-
ture (MDA) [8]. A prototype implementation of XSEM in a CASE1 tool called
XCase [1] is available. The model has two interconnected layers – platform-
independent model (PIM) which utilizes UML [11] class diagrams and platform-
specific model (PSM) which again utilizes UML class diagrams but extended
with so-called XSEM profile. In the rest of this paper, we will use the formal
definitions of PIM (Definition 1) and PSM (Definition 2) levels.
1 Computer-aided software engineering

52 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

3.1 PIM Level

A schema in a platform-independent model (PIM) models real-world concepts
and relationships between them without any details of their representation in a
specific data model (XML in our case). As a PIM, we use the classical model
of UML class diagrams in our work. This model is widely supported by the
majority of tools for data engineering and there exists the XMI [2] standard for
exchanging diagrams between them. Therefore, it is natural to use UML in our
approach as well. We introduce PIM schemas formally in Definition 1.

Definition 1. A platform-independent schema (PIM schema) is a triple S =
(Sc,Sa,Sr) of disjoint sets of classes, attributes, and associations, respectively.
In addition, PIM schema defines functions name, card, type, class and partici-
pant:

– Class C ∈ Sc has a name name(C).
– Attribute A ∈ Sa has a name, data type and cardinality name(A), type(A)

and card(A), respectively. A is associated with a class from Sc class(A).
– Association R ∈ Sr is a set R = {E1, E2} where E1 and E2 are called asso-

ciation ends of R. R has a name name(R). E ∈ R has a cardinality card(E)
and is associated with a class from Sc participant(E). For R, participant(E1)
and participant(E2) are called participants of R.

For simplicity, we will also use the notation attributes (C) to denote the set
{A ∈ Sa : class(A) = C} and associations (C) to denote the set {R ∈ Sr : (∃E ∈
R)(participant(E) = C)} for each class C ∈ Sc.

PIM schema components have a usual semantics. A class models a real-world
concept. An attribute of that class models a property of the concept. And, an
association models a kind of relationships between two concepts modeled by the
connected classes. We display each PIM schema as a UML class diagram.

Example 1. Figure 1 shows a sample PIM in XSEM modeling a component ac-
cepting purchases. Classes (Address, Purchase, . . .) are depicted as boxes with
the list of attributes (street, city, . . .), associations as labeled lines connecting
classes (bill-to, ordered, . . .).

3.2 PSM Level

A schema in a platform-specific model (PSM) models how a part of the reality
modeled by the PIM schema is represented in a particular data model. In our
case, we consider XML as the data model and our PSM schema specifies rep-
resentation in a particular XML format. Our PSM allows for specifying more
different XML formats on the base of the same PIM schema. As a PSM we also
use UML class diagrams extended for the purposes of XML data modeling. We
introduce PSM formally in Definition 2.

XML Document Versioning and Revalidation 53

Purchase

 - code

 - date

 - status

Address

 - street

 - city

 - country

 - gps [0,1]

Customer

 - login

 - name

 - phone

 - email [1,*]

Item

 - amount

 - price

 - tester

Product

 - code

 - price

 - color

Supply

 - date

 - price

 - amount

Supplier

 - name

 - phone

 - email

bill-to

ship-to

ordered

contains

delivers

provides

1..*

1..*

0..*

0..*1..*

1..*

0..1

Fig. 1. Sample PIM schema

Definition 2. A platform-specific schema (PSM schema) is a 5-tuple S ′ =
(S ′c,S ′a,S ′r,S ′m, C′S′) of disjoint sets of classes, attributes, associations, and con-
tent models, respectively, and one specific class C′S′ ∈ S ′c called schema class. S ′
must be a forest with one of its trees rooted in C′S′ . In addition, PSM schema
defines functions name’, card’, type’, xform’, cmtype’ class’ and participant’:

– Class C ′ ∈ S ′c has a name denoted name′(C ′).
– Attribute A′ ∈ S ′a has a name, data type, cardinality and XML form denoted

name′(A′), type′(A′), card′(A′) and xform’′(A′) ∈ {e, a}, respectively. More-
over, it is associated with a class from S ′c denoted class′(A′) and has a posi-
tion denoted indexOf(A′) within the all attributes associated with class′(A′).

– Association R′ ∈ S ′r is a pair R′ = (E′1, E
′
2) where E′1 and E′2 are called

association ends of R′. E′ ∈ R′ has a cardinality denoted card′(E′) and is
associated with a class from S ′c denoted participant′(E′). participant′(E′1) and
participant′(E′2) are called parent and child of R and denoted parent’′(R′)
and child’′(R′), respectively. R′ has a name denoted name′(R′) and has a
position denoted indexOf(R′) among associations with the same parent.

– Content model M ′ ∈ S ′m has a content model type cmtype’′(M ′) ∈ {sequence,
choice, set}.

For simplicity, we will also use the notation attributes (C ′) to denote the se-
quence (A′i ∈ S ′a : class(A′) = C ′ ∧ i = indexOf(A′)) for each class C ∈ Sc.

Let us denote N ′ = S ′c ∪ S ′m. The graph Ŝ ′ = (N ′,S ′r) with classes and
content models as nodes and associations as ordered edges must be a directed
forest with one of its trees rooted in the schema class C ′S′ . Members of S ′c, S ′a,
S ′r, and S ′m are called components of S ′. The set of all PSM schemas will be
denoted S∗′. Finally we define the set of all constructs (PIM and PSM): M =
Sc ∪ Sr ∪ Sa ∪ (

⋃
S′∈S∗′(S ′c ∪ S ′r ∪ S ′a)).

The PSM constructs in a concrete PSM schema are linked to the PIM schema
constructs (we will say that the PSM schema is derived from the PIM schema
and the PSM constructs have an interpretation in the PIM). We will not include
formal definition of interpretation in this paper and use these terms intuitively
instead.

Example 2. Figure 2(a) shows a sample PSM schema modeling an XML docu-
ment with a purchase. Again, classes, associations and attributes are depicted

54 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

Purchase

@ code

@ date

@ version

 - gps

Customer

@ login

 - name

 - email[0..1]

Items

Item

Product

@ code

ItemAmount

 - amount

 - price

ItemTester

@ tester

|

item

shipto

billto

cdetail

items

Address

 - street

 - city

 - country

PurchRQSchema

purchaseRQ

ShipAddr

BillAddr

Address

Address

1..*

0..1

(a) PSM schema

<purchaseRQ code="#"
 date="#" version="#">
 <shipto gps="#">
 <street>#</street>
 <city>#</city>
 <country>#</country>
 </shipto>
 <billto>
 <street>#</street>
 <city>#</city>
 <country>#</country>
 </billto>
 <cdetail login="#">
 <name>#</name>
 </cdetail>
 <items>
 <item code="#" tester="#"/>
 <item code="#">
 <amount>#</amount>
 <price>#</price>
 </item>
 </items>
</purchaseRQ>

(b) XML document

Fig. 2. Sample PSM schema of a purchase order request with a sample XML document

similarly as in PIM schemas, the difference is in associations, which are now
directed. The diagram also contains one content model of type choice (parent
node of classes ItemAmount and ItemTester). The XML document depicted in
Figure 2(b) illustrates how PSM schema models XML documents. Briefly, named
associations model element-subelement nesting, unnamed association inline the
content to the element above (see association Item-Product), associations start-
ing at the schema class model allowed root elements. Attributes model XML
attributes or elements with simple content (depending on the value of xform’ for
the attribute, value a is depicted by @ before the name of the attribute). Struc-
tural representatives are used for content reuse (see ShipAddr and BillAddr
reusing content of Address). The in-depth description of the relation of PSM
schemas and modeled documents can be found in [9].

4 Evolution

For the goal of determining whether XML documents were invalidated due to
schema evolution, the system must recognize and analyze the differences be-
tween the old (S ′) and new (S̃ ′) version of the schema. There are two possible
approaches: 1) recording the changes as they are conducted during the design
process or 2) comparing the two versions of the diagram. Table 1 compares both
approaches, for the stated reasons we chose the second approach for our work.

As a motivation for our further progress, take a look at Figure 3. It contains
two versions of a fragment of a PSM schema. In the old version, class Item has
an attribute price, in the new version, class Purchase has an attribute price.

XML Document Versioning and Revalidation 55

recording changes schema comparison

the recorded set should be normalized to eliminate re-
dundancies (repeated changes in the same place etc.).

No redundancies; the set of
changes is always minimal.

Once the evolution process is started, the old version
can not be easily changed.

Both versions and new can be
edited without limitations.

Possibility to interrupt the work and continue in an-
other session later. The sequence of recorded changes
would have to be stored and recording resumed later.

The process of evolution can
be arbitrarily stopped and re-
sumed.

To retrieve the sequence for reverse process, the user
will have to either start with the new version and record
the operations needed to go back to the old version
again, or the system will have to be able to create in-
verse sequence for each sequence of operations.

The reverse operation can be
easily handled by the same
algorithm, only with the two
schemas on the input swapped.

For a schema from an outer source, the sequence of
operation changes can not be retrieved directly; the
user must start with the old version of the schema and
manually adjust it to match the new schema.

A schema from an outer source
can be imported2 and serve as
an input to the change detec-
tion algorithm.

Table 1. Approaches to Evolution: Recording Changes vs. Schema Comparison

Without any further information, there can be
two interpretations of the change: 1) attribute
price was moved from Item to Purchase or 2)
the attribute was removed from Item and a new
attribute was added to Purchase, coincidentally
having the same name. Revalidation of the doc-
uments is even more difficult to decide. In the
second case, a correct value must be assigned to
the new attribute3. In the first case, the value
of attribute price should be set to the sum of
the values of price in all the items in the first
version.

Purchase

Item

item

 - name

 - price

Purchase

Item

item

 - name

 - price
1..*

1..*

PurchaseSchema

purchase

PurchaseSchema

purchase

version v version v~

Fig. 3. Evolved PSM Schema

To achieve correct identification of “addition/removal” from “move” (as op-
posed to existing approaches), we need to extend the XSEM framework with
a support for having multiple version in the model and possibility to link con-
structs in different versions.

Definition 3 (ver, version link, getInVer). Let V be the set of versions
for the model M. Function ver : M ∪ S∗′ → V returns the version a given
construct belongs to. We require a natural condition of all the constructs of a
PSM schema S ′ to belong to the same version, i.e. (∀S ′ ∈ S∗′)(x ∈ S ′all ↔
ver(x) = ver(S ′)). An equivalence relation of version links VL ⊂ M × M
3 This is an open problem for our future work, see Section 7.

56 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

change description

classAdded new class was added to the schema
classRemoved class was removed from the schema
classRenamed existing class was renamed
classMoved class is moved to the PSM tree

attributeAdded/Removed/Renamed attribute was added/removed/renamed
attributeTypeChanged attribute type changed
attributeIndexChanged attributes were reordered in the class
attributeCardinalityChanged cardinality of an attribute was changed
attributeMoved attribute was moved from one class to another

associationAdded/Removed/Renamed association was added/removed/renamed
associationIndexChanged associations were reordered in the class
associationCardinalityChanged cardinality of an attribute was changed
associationMoved association is moved in the PSM tree

Table 2. Changes Identified in XSEM-Evo between two Versions of the same Schema

contains pairs of constructs that are different versions of the same construct.
Partial function getInVer : (M× V) → M , getInVer(e, v) = ẽ ↔ ∃ ẽ ∈ M :
(e, ẽ) ∈ VL ∧ ver(ẽ) = v returns a construct in a desired version (if e does not
exist in version v, getInVer(e, v) is undefined). If (x, x̃) ∈ VL, x and x̃ must both
be constructs of the same kind (e.g. both classes, attributes, PSM associations...).

In the following text, we will assume |V| = 2, unless explicitly stated other-
wise (i.e. we expect that there are two versions in the system - an old version
(v ∈ V) and a new version (ṽ ∈ V)). Values of ver function form the input of
the change detection algorithm (and so does the relation VL). In XCase, values
of ver are assigned automatically by the system during and maintained As the
user edits the schema (either the old or the new version).

5 Changes

Based on Definitions 1 and 2, we can identify all possible changes that can occur
between two versions. Each change is formally defined as a predicate with cer-
tain amount of parameters characterizing the change. Detecting changes means
finding the constructs that match each respective predicate. Table 2 lists all
recognized changes.

Describing each change and it’s revalidation is beyond the scope of this paper.
Therefore we will describe only attributeMoved change in detail (an example of
this change is depictend in Figure 3), other changes are treated in a similar
manner. Change attributeMoved means that the value of class’(A′) is changed
i.e. an attribute is moved from class C ′o to another PSM class C̃ ′n (and the new
index of Ã′ is ĩ′). Formally attributeMoved is defined as a ternary predicate:

attributeMoved(Ã′, C̃′
n, ĩ′) ↔ Ã′ ∈ S̃ ′

a ∧ C̃′
n ∈ S̃ ′

c ∧ ĩ′ ∈ N0 ∧ getInVer(Ã′, v) 6= null∧
class’(Ã′) = C̃′

n ∧ (∃C′
o ∈ S ′

c)(class’(getInVer(Ã′, v)) = C′
o ∧ getInVer(C̃′

n, v) 6= C′
o)

XML Document Versioning and Revalidation 57

Moving an attribute is an evolution operation that requires more in-depth
enquiry. The aim of our approach is to keep the semantics of the revalidated doc-
ument and not to lose the existing data during revalidation. The trivial solution
– deleting the attribute from its former location in the document and creating
a new attribute in the new location (as used in [6] and [5]) – is not suitable, be-
cause the value of the attribute is lost. The most general approach is to couple
each instance (Ã′, C̃ ′n, ĩ′) of attributeMoved change with a revalidation function
attMoveÃ′(oldLocations, newLocation): XSEMPath × XSEMPath → type’(Ã′)4

where oldLocations is an expression returning all existing instances of A′ and
newLocation is an expression containing the path to one instance in the new
document. The result of the function is the new value for the instance of Ã′ in
the new document. In the general case the function attMoveÃ′ is defined by the
user, but the system can give the user a suggestion in certain cases – several
types of the most common scenarios can be distinguished.

a

b c d

f g

h i

e

The figure on the left shows an example of tree function,
the result of tree(f, g, i) is the set {a, b, d, f, g, i, a−b, b−
f, f−i, a−d, d−g}, a is the root of the common subtree
and a− b the edge from a to b.

Fig. 4. Example for tree function

In the following text we expect that the attribute was moved between classes
C ′o and C̃ ′n, A′ ∈ attributes’(C ′o), Ã′ ∈ attributes’(C̃ ′n). Let C̃ ′o = getInVer(C ′o, ṽ)
and C ′n = getInVer(C̃ ′n, v), be the new version of class C ′o and the old version
of class C̃ ′n respectively, both can be null. In the situation depicted in Figure
3 A′ = price1, Ã

′ = price2, C
′
o = Item1, C

′
n = Purchase1, C̃ ′o = Item2, C̃ ′n =

Purchase2 (we use subscripts to distinguish constructs in version v and ṽ).
Let tree(X ′) return the subgraph of the smallest common subtree for a set

X ′ ⊆ N ′ containing the root B′ of the common subtree, members of X ′ and for
each X ′ ∈ X ′ path between X ′ and the root B′ (see Figure 4 for an example).
We define predicate stable(X ′) ↔ X ′ ⊆ {S ′all \ S ′a} ∧ {∀X ′ ∈ X ′ : X ′ is present
in the new version, it was not moved, added or deleted and cardinality was not
changed (if X ′ is an association)}. The intuitive meaning of predicate stable(X ′)
is that there were no radical changes in the structure for the members of X ′. If
C ′n 6= null, T ′ = tree({C ′o, C ′n}) and stable(T ′) holds, than if:

4 The formal definition of XSEMPath expressions is beyond the scope of this paper.
Intuitively, the notation and usage is similar to XPath [15], only the XSEMPath
expressions refer to the constructs from a PSM schema instead of the names of
XML elements and attributes in the document. When executed upon a document
T ∈ T (S ′), XSEMPath query is translated to XPath query and the result of this
query upon T is returned.

58 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

1. ∀ association R′ ∈ T ′ : card’(R′) = mR′ ..1 (only cardinalities 0..1 and 1..1
are allowed in the affected part of the schema). In this simplest case the at-
tribute Ã′ will have 0 or 1 instance in the old schema. Then this instance can
be copied to the only one new location (attMoveÃ′ will be identity function).

2. C ′o is a descendant of C ′n in the PSM tree (the attribute is moved upwards,
but the associations between C ′o and C ′n can have arbitrary cardinalities).
Then all instances of A′ under each instance of C ′n should be “aggregated”
to one instance of Ã′ (this is the case depicted in Figure 3). Several aggre-
gation functions can be offered (e.g. sum, count, avg, max, min known from
relational databases or concat inlining the respective values).

3. C ′o is a descendant of C ′n in the PSM tree, card’(A′) = m′..1 and card’(Ã′) =
m̃′..∗. Then this case is similar as the case above, but the cardinality of
attribute Ã′ is adjusted, so all the values from existing instances can be used
as values of Ã′, no aggregation is needed (attMoveÃ′ can be called toList).

4. C ′o is an ancestor of C ′n in the PSM tree, card’(A′) = m′..∗ and card’(Ã′) =
m̃′..1. Then this is an inverse case to the one above. The respective values
of A′ can be distributed to the new locations. Nonetheless, a user may have
to specify the distribution precisely (attMoveÃ′ can be called distribute).

When none of the conditions above is satisfied, a possible general approach is
to use the function attMoveÃ′ = identityN which returns the value of the n-th
instance of A′ when required on the n-th location in the revalidated document.
Other attMoveÃ′ functions must be entered by the user.

6 Revalidation

In the first step, the revalidation algorithm detects all changes between two
versions of the model. If changes that require revalidation occur, a revalidation
script is generated. Applying the script on a document valid against the old
version produces a document valid against the new version. Since changes are
defined as changes in the XSEM model, similarly as XSEM model can be trans-
lated to an XML schema in any XML schema language, the set of changes can be
used to generate a revalidation script in any kind of implementation language.

Example 3. The in-depth description of the process of generating the revalida-
tion script is beyond the scope of this paper. As an example, we will show the
revalidation script in XSL for the schema depicted in Figure 3, concretely if
the first interpretation from Example 4. In that case, we have to revalidate the
attributeMoved change. In this example, we will use the subscript 1 for constructs
from the old version and 2 for constructs from the new version. We are revali-
dating attributeMoved(price2, Purchase2, 0). Since there are no other changes,
stable({Purchase1, Item1}) also holds and since the association Purchase-Item
has cardinality 1..∗ and Purchase is a parent of Item, this case belongs to the
second group mentioned on page 9 during the description of the revalidation
of attributeMoved change (aggregation upwards). Before generating the script,

XML Document Versioning and Revalidation 59

The XSL revalidation script consists
of four templates. The first template
processes purchase element – it cre-
ates the wrapping tag and calls a tem-
plate for the moved PSM attribute
pur-price and for item elements.
The second template processes item el-
ements (the template is necessary, be-
cause we need to remove the price
subelement from item elements).
The fourth template copies the content
of each name element to the output.
The third, named, template pur-
price calls the attMoveprice1 func-
tion (the XSEMPath expressions are
converted to regular XPath expres-
sions – oldLocations to ‘item/price’
and newLocation to ‘price’). The
user selected the function sum as
attMoveprice1 , a generic function built
in the system. If none of the built-in
function is suitable for the situation,
the user can extend the system with
a custom set of functions (having the
same header as sum).

<xsl : stylesheet>
<xsl : template match=‘/purchase ’>

<purchase>
<xsl : cal l−template

name=”pur−pr i ce ’ />
<xsl : apply−templates

select=‘item ’ />
</purchase>

</xsl : template>
<xsl : template

match=‘/purchase / item ’>
<item>

<xsl : copy−of select=‘name’ />
</item>

</xsl : template>
<xsl : template name=‘pur−pr i ce ’>

<pr i ce >
<xsl : value−of select=

‘ xc : sum(item/ p r i c e ,
p r i c e) ’/>

</pr i ce >
</xsl : template>
<xsl : template

match=‘/purchase / item/name’>
<xsl : copy−of select = ‘. ’ />

</xsl : template>
<xsl : function name=‘xc : sum ’ >

<xsl :param
name=‘ oldLocat ions ’ />

<xsl :param
name=‘newLocation ’ />

<xsl : value−of select=
‘sum($o ldLocat ions) ’ />

</xsl : function>
</xsl : stylesheet>

Fig. 5. Example of a Revalidation Script in XSL

the user selects the function sum to be used as attMoveprice1 . The resulting
revalidation script in XSL is depicted and explained in Figure 5.

7 Conclusion and Future Work

In this paper we proposed a formal model for schema evolution. We formally
defined changes that can be detected between two versions of a schema. We
sketched an implementation of an algorithm that produces revalidation script
on the basis of the detected set of changes.

The set of the detected changes is useful not only for the revalidation al-
gorithm, but it is also possible to immediately decide, whether revalidation is
needed or not and help the user to locate the changes in the schema.

The revalidation script can deal with structural modifications and with a sig-
nificant part of the content modifications automatically, user input is required

60 Jakub Malý, Jakub Kĺımek, Irena Mlýnková, Martin Nečaský

only where necessary (e.g. when a new content must be added during revalida-
tion). We plan to extend its capabilities in adding content in our future work.

The algorithm in its current version deals mainly with revalidation of 1)
structure and 2) data already present in the document. Because new data are
often required for new versions, we will focus our future work on obtaining this
data for the revalidated documents. For this purpose, we will utilize the existing
connection between PIM and PSM and and a new similar connection between
PIM and the model of a data storage (e.g. an ER schema [13]).

The change detection algorithm requires semantic links between the two com-
pared versions of the schema, which are not available for schemas were imported
and not created with an XSEM-enabled tool. Existing approaches to schema
comparison and matching can be utilized as heuristics for creating these links.

Type inheritance is a fundamental part of large specifications, but support
for inheritance is limited in the current version of XSEM. We intend to extend
both PIM and PSM levels with inheritance support.

References

1. XCase – tool for XML data modeling. http://xcase.codeplex.com/.
2. MOF 2.0 / XMI Mapping Specification, v2.1.1. OMG, 2009.
3. R. Bourret. XML and Databases. September 2005. http://www.rpbourret.com/

xml/XMLAndDatabases.htm.
4. D. Booth, C. K. Liu. Web Services Description Language (WSDL) Version 2.0

Part 0: Primer. W3C, June 2007. http://www.w3.org/TR/wsdl20-primer/.
5. G. Guerrini, M. Mesiti, and M. A. Sorrenti. Xml schema evolution: Incremental

validation and efficient document adaptation. In XSym, volume 4704 of Lecture
Notes in Computer Science, pages 92–106. Springer, 2007.

6. Hong Su, D. K. Kramer, E. A. Rundensteiner. XEM: XML Evolution Management,
Technical Report WPI-CS-TR-02-09. 2002.

7. M. Klettke. Conceptual xml schema evolution — the codex approach for design
and redesign. In Workshop Proceedings Datenbanksysteme in Business, Technologie
und Web (BTW 2007), pages 53–63, Aachen, Germany, March 2007.

8. J. Miller and J. Mukerji. MDA Guide Version 1.0.1. Object Management Group,
2003. http://www.omg.org/docs/omg/03-06-01.pdf.

9. M. Necasky. Conceptual Modeling for XML, volume 99 of Dissertations in Database
and Information Systems Series. IOS Press/AKA Verlag, January 2009.

10. M. Necaský and I. Mlýnková. Five-level multi-application schema evolution. In
DATESO, pages 90–104, 2009.

11. Object Management Group. UML 2.1.2 Specification, nov 2007. http://www.omg.
org/spec/UML/2.1.2/.

12. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau. Extensible
Markup Language (XML) 1.0 (Fifth Edition). W3C, November 2008. http://

www.w3.org/TR/2008/REC-xml-20081126/.
13. B. Thalheim. Entity-Relationship Modeling: Foundations of Database Technology.

Springer Verlag, Berlin, Germany, 2000.
14. H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema Part

1: Structures (Second Edition). W3C, October 2004. http://www.w3.org/TR/

xmlschema-1/.
15. W3C. XML Path Language (XPath) 2.0. http://www.w3.org/TR/xpath20/.

