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Abstract. The paper addresses a landslide-prone area on Fruška Gora Mt. in 
NW Serbia. It proposes a model of relative landslide susceptibility based on 
fuzzy sets. Having a variety of spatial attributes (proven statistically significant) 
at disposal, as well as present landslide inventory map, we conducted systemat-
ic analysis through (i) assigning fuzzy memberships to attribute categories, and 
(ii) combining the memberships by means of fuzzy operators. The performance 
defined by Area Under Curve parameter of the Receiver Operating Character-
istics curve, led to preference of Frequency Ratio method for assigning mem-
berships, and Fuzzy Gamma Operator for combining those memberships in 2-
level experimenting configuration. Results are also well related with previous 
investigations with different approaches.

1   Introduction

Landslides and alike mass movements are one of the most widespread hazardous phe-
nomena [1]. They seem to be among the top seven natural hazards, and advancing 
[19] in the world of growing needs for urbanization, land exploitation, and yet un-
stable climate conditions. Accordingly, there has been a significant ascent of interest 
in landslide assessment topics, resulting in more frequent multidisciplinary case stud-
ies and rising number of scholars per investigation [11].

Common notion of landslide hazard is broadly misinterpreted in relation to its con-
ventional  definition,  which  regards  the hazard quantitatively  as  a  function of  fre-
quency of hazardous phenomena over specified area or volume [23]. Nevertheless, 
even such precise scientific formulation is not entirely straightforward, since literal 
hazard assessment appears to be feasible only for the limited areas with excellent data 
coverage [4]. Entire range of problems is encountered in this framework, including 
the input data quality, lack of evidence on previous occurrences or triggering events, 
lack of consistent evaluation of the modeling results [4]. Therefore, most of the stud-
ies actually address landslide susceptibility as non-temporal variant of the landslide 
hazard, which evaluates the landsliding potential in the relative scale.

Practice of landslide zonation had been illustrated in versatile techniques in various 
case studies, yielding more or less reliable results depending on the complexity of the 
terrain and suitability of the approach [5]. Thereto, the principle assumption imply 
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that future landslide occurrences stand in relation with the present ones [3],  while 
central – multi-criteria modeling idea couples different input thematic data (geologic-
al, geomorphological, environmental maps), relate them to the referent map of present 
landslides, and processes a single output – hazard/susceptibility map. Techniques of 
relating referent landslide map with the inputs are numerous: heuristic (expert-based), 
deterministic  (physically-based),  statistical  and  probabilistic,  artificial  intelligence 
based (neural networks, decision trees,  machine learning algorithms, data mining), 
fuzzy logic based, and so forth. All those equally face the non-linearity of the prob-
lem, and strong dependence on the referent landslide data, the entire input data fea-
ture space, for that matter.

Weather using ordinary fuzzy sets, or fuzzy measures, or even combining fuzzy 
with other statistical or classification approaches (Dampster-Shafer, K-means, Neural 
Networks) the ultimate advantage is seen in logics, which provides a substantial pos-
sibility for standardization of the analysis under the consideration [12]. Thus, the pro-
cedure tends to be repeatable, adjustable and reliable. When it comes to the landslide 
assessment analysis  in particular,  a  number of researchers  have applied fuzzy ap-
proach to handle the non-linearity, which is common in multi-criteria framework. In-
terestingly enough, Himalayan terrains were addressed in many investigations with 
fuzzy theory background, starting from standard fuzzy set approach [15], [21], [6], 
through combinations  of  neural-fuzzy [13]  and risk-oriented fuzzy  approach [14]. 
Most of these studies agreed that plausible susceptibility models could be obtained by 
applying advanced operators, with preference toward Cosine Amplitude method for 
obtaining memberships. Very similar conclusions with analogue methodology were 
inferred over Iranian case studies [22], and in Turkey [7], China [24] and so forth. 
The latter is also interesting in respect of harmonizing expert-based and fuzzy-driven 
solutions, inferring that one does not exclude another, but supports it. Finally, Regmi 
et  al. [20] conducted one of the most consistent  researches,  where many different 
fuzzy configurations were put to test. Detailed elaboration of the choice of fuzzy op-
erator type, optimal fitting of gamma operator as a method of preference, and some 
suggestions on handling multi-type landslide cases, can be found in this research. In 
addition, most of the researchers encourage the usage of the fuzzy method in other, 
similar or entirely different ambients, worldwide.

Herein we will  concentrate  on fuzzy logic  approach,  and compare results  with 
some of earlier works that involved heuristic, statistical and machine learning tech-
niques over the same area, using similar datasets. Thus, the primary objective is to in-
vestigate whether the fuzzy logic approach enhances the susceptibility model and to 
which extent. Optimization of the procedure, in accordance with the characteristics of 
the dataset, was also one of the foci, in order to reach the best performance of the 
model.

Organization of the paper goes as follows: in Chapter 2, a brief overview of all im-
plemented techniques is presented; Chapter 3 follows with very basic description of 
study area; data acquisition and preparation is regarded in Chapter 4; results of sus-
ceptibility model and comparative analysis are presented and discussed in Chapter 5; 
Chapter 6. concludes the paper. Appendix 1 contains very detailed modeling paramet-
ers of attributes, which were used in the procedure.
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All parametric calculations, were performed in MS Excel sheets, and spatial attrib-
utes  were  prepared  and  visualized  with  ArcGIS  9+ packages  (ranged,  calculated, 
cross-tabulated etc.), as well as final models.

2   Methods

2.1   Feature Selection

It is recommendable to filter the set for features which are of no relevance to the ana-
lysis, if nothing, for the sake of hardware and time expenditure, thus the filtering pro-
cedure is not to be overlooked. In parlance of the latter, a statistical significance tests 
needs to be run prior to the dataset utilization.

Chi-Squared statistic, parameter X2,  is a significance criterion, which relates the 
frequencies of observed independent variable instances φo within the dependent vari-
able classes, and their expected frequencies φe, in the following fashion:

Χ2=∑
i=1

q

∑
j=1

n ϕo i , j−ϕei , j

2

ϕe
i , j

,
(0)

where q is the number of classes within a dependent variable, and n within the inde-
pendent variable. In our case, the former represents landslide inventory classes, while 
the latter disclose the classes of a particular terrain attribute,  since  X2 needs to be 
paired with every single attribute separately. The given terrain attribute disapproves 
the hypothesis of being statistically independent from the landslide inventory classes 
only if it exceeds the critical X2 threshold, defined by the level of confidence (in re-
spect  with  the  normal  distribution)  and  degrees  of  freedom  (defined  by  reduced 
product of q and n, (q-1)(n-1)). In effect, this method reveals the relation of an attrib-
ute and the referent landslide inventory, but the ranking among multiple attributes is 
rather relative, primarily due to the measurement scale dependence of X2 [2].

2.2   Fuzzy Set Theory

Concepts  of  fuzzy logic have a very long tradition in spatial  analysis  framework. 
Main purpose of fuzzy logic is to deal with vague information and with data that con-
tain some kind of uncertainty [25]. When using fuzzy set theory or fuzzy logic, each 
object or statement is given value from interval <0,1> indicating its membership to 
the given set. Each object can be member of several sets with different membership 
values. This concept is very helpful for categorization of data and for decision mak-
ing, because unlike Boolean logic it  produces results valid with specific degree of 
truth.  That helps  with finding not only the perfect  match for a  given criteria,  but 
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rather shows how much each of possibilities meet given criteria. At some specific 
situations,  when modeling  physical  geographical  crisp  sets,  Boolean  logic  fail  to 
provide correct and quality results because of natural substance of the phenomena at 
hand. In such cases, fuzzy set theory and fuzzy logic provides solutions for dealing 
with imprecise and vague data, which would be hard or even impossible to process by 
any other means.

2.3   Fuzzy Memberships

Membership value is determined by membership function. Membership function is a 
function that maps all given elements to interval of values <0,1>.

µA :U   <0,1> , (0)

where µA is a membership function, U is a set of elements. Then for each x∈U, µA(x) 
is membership value of the element x to the set A [25]. For purpose of this paper, we 
use two functions for computing the fuzzy membership values: Frequency Ratio and 
Cosine Amplitude.
Frequency Ratio gives proportion of landslide cells in the specific category for each 
of input layers. It can be described as ratio of relative frequency of landslide cells in a 
category (an attribute class) to the relative frequency of all landslide cells in the area:

FR=  
N cellLi  /NcellCi 

Ncell L /NcellC 
,

(0)

Where Ncell(Li) is the number of landslide cells in the category i, Ncell(Ci) is the total 
number of cells in the category i, Ncell(L) is total number of landslide cells and Ncell(C) 
is the total number of cells. If the result is higher than 1 it shows higher density of 
landslide cells in the category then overall in the dataset. Results lower than 1, points 
to categories that have density of landslide cells lower then density in the dataset. To 
transform FR to membership values those outputs have to be normalized by dividing 
each FR by maximal FR in the given group of classes. Then the membership values 
are from the interval <0,1> and the higher the number is, the higher is the influence of 
this category on landslide occurrence.

Another method for determining the membership values of categories to the set of 
categories important for landslide occurrence is Cosine Amplitude method:

CA=  
N cell Li 

Ncell C i ⋅N cellL 
.

(0)

In this case, the membership value is calculated as ratio between number of landslide 
cells in the category and the square root of its product with the total number of land-
slide pixels in the dataset. Unlike FR the output values do not have to be normalized 
because they already fall in interval <0,1>.
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2.4   Fuzzy Operators

Several fuzzy operators exist for combining membership functions. Best-known oper-
ators are AND and OR, but both of them suffer with problem that one of combined 
sets have significant impact on result of such combination while the other sets do not 
have such influence. In case of operator AND minimum of all values is the one that 
defines output and in case of OR operator it is the maximum value. Because of this 
reasons we use other operators such as Fuzzy Algebraic Product, Fuzzy Algebraic 
Sum, Gamma Operation and Weighted Average. All of them are described in detail 
[2] so only short review is given here. 

In Fuzzy Algebraic Product and Fuzzy Algebraic Sum the outputs are defined as:

μproduct=∏
i=1

n

μi  ,
(0)

μsum=1−∏
i=1

n

1−μi   ,
(0)

respectively, where n is number of membership function to be combined and µA is the 
i-th membership function. Fuzzy Algebraic Product tends to produce output function 
lower or equal to the lowest function given, while Fuzzy Algebraic Sum is comple-
mentary to the former, so it provides output function higher than all the inputs but 
never higher than 1.

Gamma Operation is defined by:

μγ= μsum 
γ⋅μproduct 

1−γ  . (0)

The exponent  γ, which is a number from <0,1> interval, allows optimization of the 
membership combination. Setting it to the extremes of the interval give either Fuzzy 
Algebraic Sum (γ=1) or Fuzzy Algebraic Product (γ=0).

Weighted Average is defined as:

μw=
∑i=1

n
w i⋅μi

∑i=1

n
wi

 ,

(0)

where wi is a weight of membership function, indicating importance of the member-
ship function on result and n is a number of membership functions to be combined. 
Weight system in this equation allows more interaction from user to the calculation, 
because it allows emphasis of certain values.
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2.5   Performance Evaluation

Performance metrics involved Receiver Operating Characteristics (ROC), which is a 
cut-off independent performance estimator [9]. It involves contingency table inspec-
tion (derived by area cross-tabulations of attribute vs. landslide inventory). ROC val-
ues  are  created  by  plotting  the  cumulative  True  Positive  Rates  (TPR=sensitivity) 
versus False Positive Rate (FPR=1–specificity) for every model, resulting in a set of 
ROC curves. The performance is evaluated by the Area Under the Curve (AUC) relat-
ive to the entire plot area, so that an AUC equal to 1 has the best performance, while 
an AUC as low as 0.5 results in a very poor performance [10]. In addition, TPR is a 
good measurement of performance in the landslide assessment framework, since it 
takes into account instances that are not classified as landslides in the model but actu-
ally are landslides, which is more dangerous underestimation than false alarms.

3   Case Study

The study area encompasses the NW slopes of the Fruška Gora Mountain, in the vi-
cinity of Novi Sad, Serbia. The site (N 45°09’20”, E 19°32’34” – N 45°12’25”, E 
19°37’46”) spreads over approximately 100 km2 of hilly landscape, but with interest-
ing dynamics and an abundance of landslide occurrences. As judged in some previous 
investigations over this area [16], [17,], [18], the landslide process is chiefly governed 
by geological and morphological attributes, while the triggering mechanism could be 
assigned to excessive rainfall, but moderate seismic activity typical for this mountain, 
could also be an option.

4   Dataset

Dataset included geological, geo-morphometric, hydrological and environmental at-
tributes, obtained from different resources, converted to raster grid format with 30 m 
cell resolution. It also included landslide inventory map.

• Geological data were assembled by using geological map 1 : 50 000, photo-
geological  map (Remote  Sensing  based interpretation  of  geological  struc-
tures and geodynamic processes and forms) 1 : 50 000, and field survey data. 
For the purpose of this research, a segment of geological map was digitized 
and simplified to  geo-unit attribute. Geological structures, which were used 
to make a buffer geo-structures were extracted from photogeological map. In 
addition, the buffer geo-boundaries was created by choosing only the bound-
aries between the units with significant difference in hydrogeological func-
tion.

• Model of the terrain surface was created from digitized contour maps at 1 : 
25 000, first by calculating Triangulated Irregular Network (TIN) and then 
substituting it with the Digital Elevation Model (DEM) of 30 m resolution, 
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by means of TIN-to-raster data conversion. Given the terrain morphology, 
various geo-morphometric attributes were created as first order derivates of 
DEM:  aspect,  elevation,  slope  angle,  slope  length,  profile and  planar  
curvature.

• Hydrological attributes are represented by topographic wetness index (TWI) 
as the second order derivate of DEM, and buffer stream calculated after auto-
matic generation of drainage pattern using DEM.

• Land cover, as an environmental attribute, was desirable in order to delineate 
deforested and cultivated areas as more convenient for the development of 
landslides than vegetated areas.  The attribute was created by Landsat TM 
band ratioing (particularly red and near infrared bands, due to the authentic 
spectral behavior of vegetation). Several vegetation indices were considered, 
and Normalized Difference Vegetation Index (NDVI) seemed like the optim-
al solution, due to its simplicity and accuracy. Since the area of the interest is 
not very populated, urban influences were not considered. Classification of 
NDVI into land cover categories was semi-supervised, i.e. visual, but aided 
by K-means classification to four different entities (Appendix 1).

• Landslide inventory map was essential requirement to make a susceptibility 
assessment evaluated for performance. The map was created by extracting 
landslide forms from photogeological map. Subsequently, it was simplified 
to binary attribute (TRUE and FALSE landslide categories). It is important 
to mention constrains of such map, since it considered only earth slides [23] 
of rotational, translational and complex type, with two stages of the activity 
(dormant and active). This is understandable regarding the scale of the study 
(1 : 50 000) and the nature of the dominating landslide phenomena within the 
area of interest. According to this binary map, total of 10% of the area fall 
into landslide category (about 10 km2).

Apparently,  dataset  involved  continual  numeric  data,  but  categorical  attributes  as 
well.  The methodological  approach required ranging of continual attributes to cat-
egorical data, prior to their processing, and several solutions were regarded. Finally, 
ranging by means of Natural break cut-offs was the method of choice, which was ap-
plied to all continual attributes. Different continual attributes were ranged by appro-
priate  number  of  intervals  (Appendix  1),  due  to  differences  in  pixel  frequencies 
among attributes. In favor of selected approach of preparing the data, feature selection 
parameter proved that all attributes had statistical dependence to referent landslide in-
ventory, having the values significantly higher than critical (Appendix 1).

5   Results and Discussion

Given the categorized (ranged) raster attributes and the referent landslide inventory 
map, we first calculated the memberships of each category in each attribute. Two par-
allel  variants of the experiment were driven: EXPERIMENT 1 used Cosine Amp-
litude,  while  EXPERIMENT 2 used  Frequency  Ratio  to  obtain  the  memberships. 
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Both experiments had exactly the same course, thus the following manipulations took 
place in each.

5.1   Susceptibility Model

In order to combine memberships by different operators we undertook a small inter-
vention to exclude too many extreme membership values (0 and 1) by replacing them 
with close approximations (0.0001 and 0.9999). We proposed 2-level fuzzy combina-
tions based on a priory knowledge of the phenomena (Fig. 1), i.e. the pairs of attrib-
utes of similar origin were grouped together. Continual Susceptibility Model was ob-
tained after the second level combination. The final susceptibility model was gener-
ated by ranging the continual values into five standard categories of relative suscept-
ibility: Very Low – VL, Low – L, Moderate – M, High – H, Very High - VH [8]. Re-
garding the distribution of the pixels in Continual Susceptibility Model, it was justifi-
able to adopt the quantile interval cut-offs for afore mentioned categorization. Only 
the highest susceptibility class VH was regarded for performance evaluation (AUC) 
against the referent landslide inventory (Table 1). This was instructed by the fact that 
determined landslides should be marked as a priority zone (preferably as VH class).

Fig. 1. Flowchart of the experiment configuration.

To remain consistent, we kept the same type of the operator at both combination 
levels. Initial results in both experiments gave preference to Fuzzy Gamma Operator, 
so we directed further fitting toward optimization of parameter γ. Cases of γ=0 (Fuzzy 
Product) and  γ=1 (Fuzzy Sum) were already regarded, so we tested several choices 
within that interval (0.25, 0.5, 0.75). It turned that the best performance (AUC) was 
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achieved by γ=0.5, making it a parameter of choice for our final susceptibility model. 
Finally, EXPERIMENT 2 gave slightly better performance over EXPERIMENT 1, 
meaning that Frequency Ratio could be preferred over Cosine Amplitude for assign-
ing memberships.

Table 1. Performance evaluation of different fuzzy experiments configurations (1-Cosine Amp-
litude, 2-Frequency Ratio memberships), and other landslide susceptibility models (shaded)

Model AUC TPR
EXPERIMENT 1 (Weighted Average) 0.65 0.37
EXPERIMENT 1 (Gamma Operator, γ=0.5) 0.70 0.53
EXPERIMENT 2 (Weighted Average) 0.71 0.56
EXPERIMENT 2 (Gamma Operator, γ=0.5) 0.72 0.58

AHP 0.67 0.48
CP 0.72 0.60
SVM 0.85 0.77

Distribution of relative susceptibility classes goes as follows: VL – 53%, L – 14%, 
M – 12%, H – 11%, and VH – 10%. Dominance of the VL class characterizes the ter-
rain as mostly stable, while similarly as in the referent inventory map, the most ad-
verse zones occupy about 10% of the area. Furthermore, a majority of the actual land-
slide instances fall into the VH and H classes (37% and 23% of all landslides, respect-
ively), while M, L and VL classes occupy mostly non-landslide instances (75% of 
non-landslide instances in total for all three classes).

Highest overall performance in EXPERIMENT 2 (AUC=0.72) could be acknow-
ledged as plausible, which is also supported visually (Fig. 2a-b), since VH class cor-
responds very well with the spatial trends of landslide scarps. Apparent influence of 
intermediate layer Geo Buffer caused several outliers by underestimating some land-
slide scarps.  A considerable  drawback is  relatively  low TPR in both experiments 
(Table 1) which is inconvenient for any hazard-related analysis, since the model tends 
to underestimate actual landslide instances (claiming class other than VH for an actu-
al landslide instance). However, the actual performance is somewhat better, since we 
regarded only VH class for cross-tabulation. Thus, H or even M class could be fair re-
placements for VH class, as they buffer-out around it, which if included in cross-tabu-
lation might reduce the number of False Negatives, thus increasing TPR.

5.2   Comparison

In order to determine the true practicality of our results, we related proposed model to 
other  available  results  including:  Analytical  Hierarchy Process  (AHP) model  [16], 
Conditional Probability (CP) model [18], and machine learning with Support Vector 
Machine (SVM) model [17]. When comparing the best fuzzy-based result with the 
other models the same policy of comparing only VH class holds, due to compatibility 
issue. Namely, some of the comparison models, such as SVM, are discrete in their 
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nature and cannot follow (standardized) relative susceptibility  categorization (VL–
VH).

Fig. 2. Landslide susceptibility models based on EXPERIMENT 1 (CA,  γ=0.5)  a), and EX-
PERIMENT 2 (FR, γ=0.5) b). Bold contours outline the landslide scarps from the landslide in-
ventory. Legend depicts relative susceptibility classes.

Expectedly,  SVM approach outperformed fuzzy-based models by far (Table 1). 
Ease of handling continual and categorical data most likely enables such dominance 
of SVM model over other results. On the other hand, fuzzy approach turned practic-
ally as successful as statistical one (CP model), but with more subjectivity involved in 
the modeling procedure (in ranging the input intervals, but also in selecting the oper-
ators and numbers of combination levels). It outperformed AHP model, not as much 
in the overall performance (AUC) as in considerably higher TPR, giving itself a slight 
preference for safer assessment (Table 1).

6   Conclusion

In present paper, we regarded fuzzy set approach in the landslide susceptibility frame-
work, having different input attributes and referent landslide inventory at disposal. 
Subjectivity in ranging input attributes was inevitable, due to incapability of the ap-
proach to handle continual numerical variables (in the stage of assigning member-
ships). Another subjective intervention regarded proposing the number of levels for 
fuzzy combination, and grouping the attributes with similar origin at level 1. We pro-
posed two configurations  of  generating memberships  of  input  attribute categories, 
EXPERIMENT 1 (CA) and EXPERIMENT 2 (FR), and led further optimization to-
ward the choice of fuzzy operators for combination task. The best performance was 
reached with Fuzzy Gamma Operator with γ=0.5. The resulting Landslide Susceptib-
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ility Model turns plausible, and seems improved when compared to some previous 
models designed for the same study area, particularly heuristic one.

Further refinement, left for the future work, should involve combining of fuzzy ap-
proach with some other techniques. The latter primarily address merging with heurist-
ic expert decisions, while fuzzyfication in machine learning approach is also to be 
challenged. Another improvement could be recognized in reducing the subjectivity in 
experiment design, and configure the experiment structure on statistical basis or in-
formation theory basis.

To conclude, our research came up with suitable model, while the procedure re-
mained simple, semi-automated and re-operable in GIS environment.  The resulting 
map could serve preliminary levels of risk or disaster management,  landscape (re-
gional) planning, route selection, insurance management and so forth.
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Apendix 1– Table of Attributes

Input attributes, their class memberships in EXPERIMENT 1 configuration (µFR) and EXPERI-
MENT 2 configuration (µCA), and their statistical dependence (X2) on landslide inventory (de-
pendent variable)

attribute name (type, group)
categories

µFR µCA X2

(X2
critical)

buffer geo-structure (continual, geo-buffer)
0 - 134
134 - 276
276 - 426
426 - 582
582 - 755
755 - 942
942 - 1159
1159 - 1418
1418 - 1758
1758 – 2305 m

0.051
0.092
0.141
0.260
0.261
0.178
0.024
0
0.262
1

0.781
0.770
0.805
1
0.812
0.445
0.077
0
0.197
0.568

1949.6
(27.9)

buffer geo-boundary (continual, geo-buffer)
0 - 94
94 - 218
218 - 342
342 - 458
458 - 589
589 - 726
726 - 878
878 - 1050
1050 - 1244
1244 – 1749 m

0.275
0.038
0.107
0
0.040
0.484
0.579
1
0.458
0.682

1
0.630
0.499
0.372
0.295
0.429
0.313
0.332
0.105
0

306.3
(27.9)

buffer stream (continual, hydro)
0 - 94
94 - 212
212 - 324
324 - 432
432 - 543
543 - 660
660 - 797
797 - 966
966 - 1173
1173 – 1542 m

0.550
0.900
0.780
0.453
0.346
0.218
0
0.024
0.362
1

0.643
1
0.809
0.431
0.305
0.165
0
0.002
0.100
0.214

2381.6
(27.9)

TWI (continual, hydro)
7.5 - 9.3
9.3 - 10.3
10.3 - 11.4
11.4 - 12.8
12.8 - 14.3
14.3 - 16.2
16.2 - 18.3
18.3 - 20.8
20.8 - 22.5

0
0.172
0.696
1
0.811
0.821
0.781
0.506
0.131

0
0.261
1
0.955
0.575
0.442
0.320
0.176
0.079

4947,6
(26.1)
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aspect (categorical, topo)
flat
N
NE
E
SE
S
SW
W
NW

0
0.594
0.552
1
0.889
0.278
0.645
0.494
0.414

0
0.701
0.688
1
0.490
0.140
0.638
0.571
0.433

1091.0
(26.1)

elevation (continual, topo)
78 - 102
102 - 138
138 - 173
173 - 209
209 - 248
248 - 287
287 - 329
329 - 376
376 - 426
426 – 540 m

0.660
1
0.828
0.530
0.158
0.141
0.018
0
0
0

0.619
1
0.838
0.499
0.147
0.118
0.013
0
0
0

7515.7
(27.9)

slope angle (continual, topo)
0 - 4.2
4.2 - 9.5
9.5 - 14.8
14.8 - 21.1
21.1 - 40.1º

0.300
1
0.473
0.119
0

0.243
1
0.403
0.086
0

4453.1
(18.5)

slope length (continual, topo)
0 - 60
60 - 181
181 - 353
353 - 602
602 - 981
981 - 1506
1506 - 2196
2196 - 3094
3094 - 4392
4392 – 6499 m

0.435
0.591
0.937
1
0.650
0.301
0.178
0.427
0.187
0

1
0.964
0.960
0.667
0.261
0.080
0.033
0.061
0.019
0

1346.8
(27.9)

plan curvature (continual, topo)
concave
-
flat
-
convex

0
0.657
1
0.626
0.149

0
0.333
1
0.419
0.059

989.4
(18.5)

profile curvature (continual, topo)
concave
-
flat
-
convex

0
0.414
1
0.741
0.081

0.009
0.287
1
0.366
0

1214.0
(18.5)

geo-units (categorical, geo-units)
al' - Danube's inundation plane
al - aluvium
dl - deluvium cover
t - terrace sediments

0.100
0.211
0.807
1

0.099

1
0.785

8319.3
(29.6)
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l - loess
Pl - clay
M2 - marlstone
M1 - limestone, sandstone
Se - ultra-mafic rocks
J - limestone
Pz - schists

0.338
0.858
0.133
0.469
0
0
0.002

0.334
0.847
0.083
0.880
0
0
0.003

land cover (categorical, land cover)
water
arable land
grass land
forest

0
1
0.992
0.132

0
1
0.852
0.168

6316.2
(16.2)


