
Flexible Cache for Database Management
Systems

Radim Bača and David Bednář

Department of Computer Science, VŠB – Technical University of Ostrava
17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic

{radim.baca,david.bednar}@vsb.cz

Flexible Cache for a Database Management Systems

Radim Bača and David Bednář

Department of Computer Science, Technical University of Ostrava
Czech Republic

{radim.baca,david.bednar}@vsb.cz

Abstract. Cache of a persistent data structure represents an important part, which
significantly influence its efficiency. Cache consists from an array of main mem-
ory blocks (caled cache nodes) with a constant size. Cache nodes buffer the
data structure nodes hence they can be accessed quickly. However, data struc-
ture nodes do not usually fully utilize the whole main memory block. Therefore,
the constant cache node size the waste of the main memory. In this article, we
propose the solution where the cache consists from the cache nodes with a dif-
ferent size. Cache is split into several cache rows. The data structure nodes with
the similar size are stored in one cache row. Such a solution has two problems:
(1) that the some cache row has to replace the nodes too often during the query-
ing (cache row contention), and (2) that the data structure nodes has to be moved
between the cache rows during the insert and the delete operation. In our experi-
mental section we show that the effect of the cache row contention is minimized
if we set the cache row size according to the data structure node distribution. We
also discuss a solution of the node cache moves problem. Key words: Cache
utilization, flexible cache

1 Introduction

The cache of a persistent data structure represents an important part, which significantly
influence its efficiency. It consists from an array of main memory blocks called cache
nodes with a constant size. Cache nodes buffer the data structure nodes hence they can
be accessed quickly. Note the difference between the cache node and the data structure
node which is a logical node of a data structure and it does not have to be loaded in the
cache. Major research effort focus on a cache replacement algorithm [3, 1, 2], which
selects the node that should be removed from the cache array to create free space in the
cache for new data structure nodes.

The cache is usually shared by many data structures which can have a different
node size in a main memory. Another issue is that data structure node usually does not
utilize the whole node. Therefore, the constant cache node size is waste of the main
memory since the size of the cache node has to be equal to a largest data structure
node in the database system. Similar situation occurs when we use compressed data
structures [4] which compress the node when it is stored on a secondary storage, but
the node is decompressed in the main memory. Usage of compressed data structures
highlight the problem of variable size of a data structure nodes, since two nodes can
have a significantly different main memory size even though their compressed size is
similar.

V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2011, pp. 146–152, ISBN 978-80-248-2391-1.

Flexible Cache for Database Management Systems 147

In this article we propose the solution called flexible cache containing cache nodes
with a different size. Flexible cache is split into several cache rows. Nodes with the
similar size are stored in one cache row. It can happen that we have to replace nodes
from one cache row more often that in other cache rows. We call this problem cache
row contention. We size the cache rows according to the node distribution in order to
minimize the impact of this problem and to utilize the advantages of the flexible cache.
Another problem called the node cache moves occurs during the insert and the delete
operation. As we insert items into a data structure node its utilization grows. When it
becomes too large then we have to move it into another cache row with the bigger cache
nodes.

In Section 2, we describe different cache strategies. Section 3 introduces basic ideas
of our flexible cache strategy and solutions of its problems. In Section 4, we describe
our experimental results and in Section 5 we depict possible future improvements of the
flexible cache.

2 Cache of Persistent Data Structures

The databases systems retain the data structure pages in cache nodes for a period of
time after they have been read in from the disk and accessed by a particular application.
The main purpose is to keep popular nodes in memory and reduce the disk I/O.

There is a number of different cache strategies which are usually used in the persis-
tent data structures. Data is stored in blocks on a secondary storage. Block has a constant
size varying typically from 2kB to 16kB. Cache contains a set of cache nodes which
can be used in order to accommodate data from the block. When a data structure needs
a data from some block then it is first loaded into some selected cache node. Selected
cache node usually corresponds to a different data structure node, therefore, we have to
write the node into a secondary storage first (if the node contains any changes) before
we load the new node there. Selection of an appropriate cache node is usually called
the replacement algorithm. Basically, the major issue is to find a cache node which will
not be needed for a longest period of time. Since this kind of prediction is usually not
available, there is number of different algorithms commonly used:

– RR (Random replacement) - this algorithm select the node randomly when nec-
essary. This algorithm does not require keeping any information about the access
history of nodes.

– LRU (Least Recently Used) - there is a time-stamp assigned to every node. We
actualize the time-stamp each time we access the node. This selection algorithm
simply select the node with lower time-stamp. This is a basic algorithm with many
different variants.

– LFU (Least Frequency Used) - algorithm counts number of node usages. Nodes
used least often are discarded first. If the frequency of usage of each node is the
same, then nodes are expired by the LRU algorithm.

There is a number of replacement algorithms which usually combines the LRU and
LFU [3, 1, 2]. LRU-K algorithm [3] remembers k recent accesses to the node and selects
the node considering all these accesses. It is a generalization of the LRU algorithm
which is considered as a LRU-1. In the next, we discuss some standard methods.

148 Radim Bača, David Bednář

Secondary

storage

10 11 7

2 14

4 1

25 8

Main memory cache

10

4 8

1 1425 7 112

Logical structure of data structure

2K

2K

2K

2K

Cache size = X

Size of

cache

block

Fig. 1. Cache between physical storage and logical structure - cache size is setup on some constant
value of blocks (X). Each block has the same own size, in this case 2K

2.1 LRU-K Page Replacement Algorithm

The basic idea of LRU-K (k ≥ 2) method is to keep track of the times of the last k ref-
erences to popular nodes, using the information to statistically estimate the interarrival
times of references on a node by node basis. The LRU-K algorithm has many salient
properties. It differentiates between the nodes with different levels of reference fre-
quency, it detects locality of reference within query executions across multiple queries
in the same transaction or in a multiuser environment. It is self-reliant (not need any
external hints) and fairly simple. LRU-K keeps in the memory only those nodes that
seem to have an interarrival time to justify their residence. That residence can be nodes
with the shortest access interarrival time or equivalently greatest probability of refer-
ence, e.g. LRU-1 (k = 1) algorithm keeps in the memory only those nodes that seem to
have the shortest interarrival time. The algorithm is based on the two data structures:

– K most recent references to nodes n from the history point of view - HIST (n, x),
where x represents the time of the last (the second to the last and so on) reference
(x ∈ 1, ...k).

– Denotes the time of the most recent reference to node n - LAST (n).

The LRU-2 algorithm provides essentially optimal buffering behavior based on the
information given. It has significant performance advantages over conventional algo-
rithm like LRU-1, because discriminate better between frequently referenced and infre-
quently referenced nodes.

3 Flexible Cache

Here we discuss the ideas behind the flexible cache which allows us to utilize the cache
more efficiently.

The nodes of data structures can have a different node utilization, however, database
management systems use cache nodes with constant size which is equal to the block
size. This leads to a situation that main memory is wasted. In the flexible cache we
solve this problem by creating the cache nodes with a different size. This reorganization

Flexible Cache for Database Management Systems 149

allows to us store more cache nodes in the main memory which consequently reduces
the number of disk accesses which are very time consuming.

Cache is split into several cache rows r, where the cache nodes belonging to the
same cache row has the equal size nodesize(r). Each cache row r has its own size
count(r) which represents the number of cache nodes belonging to r. There is a set
of cache rows r1, ..., rm, where nodesize(ri) > nodesize(ri+1). Every data structure
node n has its realsize(n) which specifies what is the minimal size of main memory
where the node in the current state can be stored. The realsize(n) is mainly driven by
the node utilization.

Data structure node n belongs to the the row ri:

– If realsize(n) < nodesize(ri) and realsize(n) > nodesize(ri−1), or,
– if i = 1 and realsize(n) < nodesize(ri).

We have to slightly adapt the replacement algorithm for our flexible cache. The
node n which should be loaded into the cache belongs to a cache row rn, therefore, the
replacement algorithm search for a appropriate cache node only in row rn.

Figure 2 shows us the idea on the example. We have the cache with four cache
rows. The first row r has cache nodes with nodesize(r) equal to the size of a biggest
data structure node. It is for the data structure nodes which are almost fully utilized.
Other cache rows store smaller data structure nodes, where the smaller node size can be
caused by many different parameters (node utilization, bad compression ratio in a case
of compressed data structures, data structure with smaller nodes).

Flexible cache has two problems: (1) we could read more often from one cache row
then from the other one (cache row contention), and (2) we may be forced to move the
data structure node from one cache row to another during the inserts. Both problems has
a solution which minimize their influence. We introduces solutions for both problems
is Section 3.1 and in Section 5.

Secondary

storage

10 7

14 11 2

4 1 8

25

Main memory cache

10

4 8

1 1425 7 112

Logical structure of data structure

2K

3K

4K

1K

Size of

cache

block

Cache row size = X

Cache row size = 1.2X

Cache row size = 1.2X

Cache row size = 3/4X

.

. . .

Fig. 2. Cache blocks with different size - cache is split into row with different size of blocks in
every row - e.g. 4K to 1K. In the first cache row are stored nodes with the size 4K. Moreover,
the rows have no constant and same size itself. The size of each row depends on percentage
representation nodes with that size in the persistent structure.

150 Radim Bača, David Bednář

3.1 Cache Row Contention and Node Cache Moves

If the count(r) some row r is too small and we replace nodes in this row too often
(when compared to other cache rows) then we talk about the cache row contention.
The problem can be minimized if we collect the statistics about the node distribution
and cache rows are sized according to this distribution. As we will see in experiments,
row contention was minimized and the flexible cache performed usually better then the
regular cache.

The second problem could be minimized if we have a low priority thread in our
database system which moves the data structure nodes from one cache row into the an-
other one when the cache node becomes almost full. Each cache row ri has a threshold(ri)
which is a value slightly lower than nodesize(ri). We keep the move list of nodes and the
data structure node n is added to the list when its size exceed the specified threshold(ri).
Thread then move the nodes from the list from one cache row into the another.

4 Experimental results

In our experiments3, we use two-dimensional real data collection called TIGER (Topo-
logically Integrated Geographic Encoding and Referencing system) containing about
5.5 millions records.

During tests we measure query time (range query randomly created), insert time
(time of the creation the data structure) and Disk Access Cost (DAC). The flexible
cache solution is compared with the common cache. The code is implemented in C++.
Persistent data structure is in our experiments represented by R*-tree and compressed
R*-tree data structure. The compressed R*-tree data structure is used because of the fact
that realsize(n) < nodesize(n) occurs more often than for R*-tree data structure. We use
queries with 1%, 5% and 10% selectivity - meaning random queries which return x%
of records from the data structure. We do our experiments with the two different cache
sizes - 100 and 500 nodes. All R*-tree data structures used in our experiments are shown
in Table 1.

From table 1 we can see creation time of a data structure with common and flexible
cache. The creation time of a data structure with the flexible cache takes approximately
3% longer, than the creation of a data structure using the common cache. We can also
see that an R*-tree data structure are created generally faster than a compressed R*-tree
data structure (using the same data).

Tables 2, 3, and 4 show query processing results for the data structures with 5 mil-
lions records. The usage of flexible cache implementation decreases amount of disk ac-
cesses and time of query processing in most cases. In some cases the mentioned cache
row contention negatively influence the query processing, but generally we can say, that
total amount of DAC is reduced.

3 The experiments were executed on an AMD Opteron(tm) Processor 865 1.80 GHz, 32 GB
RAM, 64-bit Operating System Windows Serverr Daracenter 2007 with Service Pack 2

Flexible Cache for Database Management Systems 151

TIGER data - Compressed R*-tree
creation time [s]

tree (mil) height leaf nodes inner nodes size[MB] flexible cache common cache
1 3 4442 435 9.52 659.28 625.49
2 3 8891 759 18.8 1321.40 1319.83
5 4 22029 2125 47.1 3507.48 3486.38

TIGER data - R*-tree
creation time [s]

tree (mil) height leaf nodes inner nodes size[MB] flexible cache common cache
1 5 8935 1294 19.9 231.63 225.42
2 5 17914 2015 38.9 482.40 466.15
5 5 44448 5386 97.3 1256.27 1193.23

Table 1. test collections - cache size used - 100 nodes

tree (mil) R*-tree
flexible cache common cache

1% 5% 10% 1% 5% 10%
5 DAC[kB] 58022 216470 370042 58176 211888 370764

time[s] 3.08 14.08 24.42 3.19 12.50 28.06
Table 2. DAC and time for R*-trees - cache 100

tree (mil) Compressed R*-tree
flexible cache common cache

1% 5% 10% 1% 5% 10%
5 DAC[kB] 30890 112862 195690 33192 113608 198218

time[s] 23.78 83.39 132.99 33.98 110.05 172.83
Table 3. DAC and time for compressed R*-trees - cache 100

As expected the insert (update or delete) operation is worse than the original so-
lution because of the cache move. Inefficiency during cache move is from 2% to 5%
mainly depending on a number of indexed labels in a data structure. The advantage of
the flexible cache is particularly evident in a case of the compressed R*-tree. The flex-
ible cache has aproximately by 30% better the query processing time in our tests in a
case of the compressed R∗-tree.

5 Future Work

In this article we presented a concept of the flexible cache which reduces number of
cache node replacements. It also brings new chalenges such as cache row contention
which can occur if some cache row is used more often then the others. We minimize

152 Radim Bača, David Bednář

tree (mil) Compressed R*-tree (compressed ratio 2)
flexible cache common cache

1% 5% 10% 1% 5% 10%
5 DAC[kB] 28982 106486 183726 30054 107016 188298

time[s] 18.56 85.17 150.22 29.90 119.62 192.92
Table 4. DAC and time for compressed R*-trees - cache 500

the cache row contention using the statistics about the node distribution, however, this
approach does not have to work when we have many data structured where one is used
more then the others. In the future work we would like to focus on this problem and
extend our approach that cache row size is set automatically according to the workload.
Therefore, the cache row size will be set according to the cache row usage and not
according to the node distribution.

6 Conclusion

In this article we evaluate enhanced cache of the persistent data structure. The proper
and right manipulation with the cache is very important for well results from our ap-
plications. There is a big performance lost when the cache is inefficient. In the section
3 we descibed our new investigation and solution to have good cache conscious data
structure. Then in the serction 4 we confirmed our theroretical thoughts compared to
practical tests. We could see that performance was increased and DAC were reduced.
Because of some case was no better for new solution, we have open area for new and
additional investigation to propose our solution more general.

References

1. T. Johnson and D. Shasha. 2Q: A Low Overhead High Performance Buffer Management
Replacement Algorithm. In Proceedings of the 20th International Conference on Very Large
Data Bases, pages 439–450. Morgan Kaufmann Publishers Inc., 1994.

2. N. Megiddo and D. Modha. ARC: A self-tuning, low overhead replacement cache. In Pro-
ceedings of the 2nd USENIX Conference on File and Storage Technologies, pages 115–130.
USENIX Association, 2003.

3. E. O’neil, P. O’neil, and G. Weikum. The LRU-K page replacement algorithm for database
disk buffering. ACM SIGMOD Record, 22(2):297–306, 1993.

4. J. Walder, M. Krátký, and R. Bača. Benchmarking Coding Algorithms for the R-tree Com-
pression. In Proceedings of the 9th Annual International Workshop on Databases, Texts,
Specifications and Objects, DATESO, pages 32–43, 2009.

