
Précis Index Implementation for Efficient
Fulltext Data Mining

Michal Kopecký1 and Martin Čermák

Department of Software Engineering,
1Faculty of Mathematics and Physics, Charles University Prague

Malostranské nám. 25, 118 00 Prague, Czech Republic
michal.kopecky@mff.cuni.cz, cermak23@gmail.com

Précis Index Implementation
for Efficient Fulltext Data Mining

Michal Kopecký1, Martin Čermák

1Department of Software Engineering,
MFF UK Praha, Malostranské nám. 25, 118 00

Michal.Kopecky@mff.cuni.cz, cermak23@gmail.com

This work was partially supported by grant GA201/09/0983

Abstract. Précis system has been designed for text based searching over
relational database. Unlike the common approach, this system allows user to
search requested data over a whole database, not only within one table. System
takes queries formulated in free-form and produces rows containing
information corresponding to the query and also information associated to them
within the database. This paper presents implementation of the index, suitable
for efficient searching in the Oracle relational database management system.
Implementation provides SQL query language extension for searching desired
data.

Keywords: Information Retrieval, Précis index, Relational Databases, Data
Mining.

1 Introduction

In the relational databases application designers have to define appropriate set of
indexes to speed-up the searching process and data manipulation. These indexes are
usually implemented using redundant B+ trees. It is possible to find also different
index type implementations recently. Some of them try to overcome B+ tree
limitations as requirement for high selectivity while other try to support searching
completely different types of data (XML, images, texts, geographical data etc.).

Standard searching within the database requires that application developers
understand the database structure. The Précis system invented in [1] allows users to
query the database without exact knowledge about the database and provides them
with exhaustive answer. Users formulate queries using keywords and the system
looks for all relevant data within the database independently on the fact in which table
and/or column the information are stored. Moreover the system is able to trace foreign
key – primary key links within the database and find out also related data. The result
can be then presented as a hierarchy of resulting rows, or can be formatted to
sentences in natural language.

However, the existing built-in indexes doesn’t support search over all columns of all
tables and naïve implementation of the system using LIKE operator will be extremely

V. Snášel, J. Pokorný, K. Richta (Eds.): Dateso 2011, pp. 173–180, ISBN 978-80-248-2391-1.

174 Michal Kopecký, Martin Čermák

slow and ineffective. This paper presents the implementation of the Précis index in
the Oracle database system using its extensibility features.

Following chapter describes the Précis indexing in more details. The paper concerns
on brief implementation description and obtained performance results. More details
about the implementation can be found in [2]

2 Précis system

The primary data are stored in classical database and can be processed by standard
database application. The Précis querying uses data stored in all tables and columns
and takes into account associations between tables derived from foreign key
references present in the database. References, tables and columns in the database can
be additionally rated by weights, represented by numbers w∈<0;1>. These weights
can be either global or associated to individual users. The Précis query q consists of a
set of keywords q={k1, k2, …, kn}. According to the given query the system finds out
corresponding records and related information. Let suppose following database
structure:

Movie
Movie_ID
Title
Year
Director_ID

Director
Director_ID

Role
Movie_ID
Actor_ID

Actor
Actor_ID

Person
Person_ID
Name
BirthDate
BirthPlace

(1.0)(0.7)

(0.9)

(0.9)

(0.8)(0.8)

(0.6)(1.0)
(0.7) (1.0)

Picture 1. Sample database structure

The broader arrows represent foreign keys in the database, narrower dotted arrows
represent opposite associations. Numbers in square brackets represent ratings for
associations. Having such a database, the query q={“Woody”, “Allen”} could provide
the result (without text formatting) in form:

Director: Woody Allen | December 1st 1935 | Brooklyn | New York | USA
Movie: Match Point | 2005
Movie: Melinda and Melinda | 2004
Movie: Anything Else | 2003
Role: Hollywood Ending | 2002
Role: The Curse of the Jade Scorpion | 2001

Authors of the Précis system have proposed the query evaluation is in a sequence of
four successive steps: First – create list of all occurrences of all query terms in the
database D. This step provides subschema D’ of all tables containing those terms.
Second – determine the subset of the database schema accessible from D’ using

Précis Index Implementation for Efficient Fulltext Data Mining 175

associations. This step provides subschema D”. Third – fill database D” with the
schema D” with retrieved data. Last – optionally transform data in D” to the natural
language using text templates.

Each record in the result database obtains a rating according to its relation to data
found in the first step. The rating of the row accessible through a chain of association
is computed as a product of ratings assigned to corresponding tables, columns and
association. The result then contains all data with rating exceeding given threshold.

3 Implementation

Our concern was on efficient inverted index building in one of most used RDBMS in
the enterprise segment – the Oracle database – and on query evaluation using this
index. The Oracle database was chosen because it provides developers with necessary
background for creating user-defined index types.

The basic requirements on the Précis index were as follows:

• Each index should contain a set of columns stored in arbitrary number of
tables within the database.

• Each user should be able to create any number of indexes.
• One column can be assigned to any number of defined indexes.
• The user interface for index manipulation should be as user-friendly as

possible Querying the database should be available through the Oracle SQL
query language.

According to above stated requirements, it is necessary to consider each value stored
in any of indexed columns as a separate textual document.
The Précis index creation process is shown on picture 2.

Datastore
Policy_
Filter

Policy_
Tokens

Stoplist

Précis
Indexing
Engine

Précis Index

Oracle Text

Documents Texts Tokens

Picture 2. Précis index creation process

Each document obtains its unique identifier based on the table owner, table name,
column name and row within the database. Document stored in binary format are
filtered and converted to plaintext. Text is tokenized and converted to a set of terms
together with number of their occurrences within the document. Filtering and
tokenization uses functionality available in Oracle Media Text extension [3]. For each
term its term frequency (TF) within a given document document and inverted

176 Michal Kopecký, Martin Čermák

document frequency (IDF) is computed and the standard TF*IDF formulae [4] is then
used for term weight computation.

Logical structure of the Précis inverted index is shown on picture 3.

term 1 term 2 term 3 . . .

Invertovaný soubor

Seznam termů

Seznamy dokumentů pro
jednotlivé termy

schéma 1 tabulka 1 sloupec 1

Seznam dokumentů Seznam sloupců

schéma 1 tabulka 1 sloupec 2

schéma ks tabulka k t sloupec ksl

číslo řádky 1

číslo řádky 2

číslo řádky 3

číslo řádky kr

ohodnocení 11 ohodnocení 12 ohodnocení 13

ohodnocení 21

ohodnocení 31

Převodní tabulky

. . .

.

Inverted File

List of Terms

List of Documents
for Individual Terms

Conversion Tables

List of Documents List of Columns

Row ID

Row ID

Row ID

Row ID

Schema

Schema

Schema

Table

Table

Table

Column

Column

Column

Rating

Rating

Rating Rating Rating

term 1 term 2 term 3 . . .

Invertovaný soubor

Seznam termů

Seznamy dokumentů pro
jednotlivé termy

schéma 1 tabulka 1 sloupec 1

Seznam dokumentů Seznam sloupců

schéma 1 tabulka 1 sloupec 2

schéma ks tabulka k t sloupec ksl

číslo řádky 1

číslo řádky 2

číslo řádky 3

číslo řádky kr

ohodnocení 11 ohodnocení 12 ohodnocení 13

ohodnocení 21

ohodnocení 31

Převodní tabulky

. . .

.

Inverted File

List of Terms

List of Documents
for Individual Terms

Conversion Tables

List of Documents List of Columns

Row ID

Row ID

Row ID

Row ID

Schema

Schema

Schema

Table

Table

Table

Column

Column

Column

Rating

Rating

Rating Rating Rating

Picture 3. Logical structure of Précis index

Data are stored within BLOB records, divided to blocks of fixed size. Document lists
short enough to not exceed one block, are stored directly in the block ordered by
document ID. Longer lists are stored in form of non-redundant B-trees. Each BLOB
record can contain blocks of the same type. It is possible to use more BLOB records
containing ordered lists, providing that their block sizes differ each to other. Having
more available blocksizes ranging from ones to hundreds items speeds up both
searching and index synchronization.

First block in each BLOB – the header – contains metadata about the BLOB contents.
The most of its content represents a beginning of free blocks list. The list continues
after the last used block. During synchronization the free block list is stored in the
core memory and is written back afterwards.

Position Size Description
0 2B Number of used blocks in the record
2B 4B Number of block with the rest of free records.
6B 4B Number of blocks used for free blocks list.
10+ 4B Numbers of first 1000 free blocks within the BLOB.

Table 1: BLOB header structure

Précis Index Implementation for Efficient Fulltext Data Mining 177

B-tree nodes in the BLOB records have similar format. Two bytes at the beginning of
the node contain number of items stored within the node. Then follow pointers
interlieved with item records. Item records contain the key and needed metadata.
Metadata can either contain list of documents ordered by its numbers or its weights or
it can contain lists of terms with lengths ranging from 1-6, 7-12, 13-24, respectively
25-64 characters. Details are shown in following tables.

B-tree
purpose

Field Overal
Size

Size Decription

Terms Key 6, 12, 24,
64

6, 12, 24,
64

Term padded with trailing zero-bytes

Metadata 12 2 Number of docs containing term
2 Number of BLOB record with document

list
4 Number of block within the BLOB record

containing list ordered by document
number.

4 Number of block within the BLOB record
containing list ordered by term weigth.
Zero, if the previous list is not stored as B-
tree

Documents
ordered by
number

Key 4 4 Document number
Metadata 2 2 Document weight

Documents
ordered by
weigth

Key 6 2 Document weight
4 Document number

Metadata - - -
Table 2: B-tree item record structure

3.1 Programming Language

The application is split to two layers. Upper layer is written in PL/SQL language and
contains procedures, monitoring database changes and the user interface. Lower layer
is written in C++ and maintains internal index structures. Communication between
layers is implemented thouigh OCI interface. The C++ performace is much higher
than the alternative PL/SQL implementation. On the other hand, the invocation of
procedures written in C++ from the PL/SQL code requires substantial overhead. The
code was therefore written to minimize switches from PL/SQL to C++ as much as
possible.

3.2 User Interface

The user wanting use Précis index has to have assigned role PRECISAPP containing
the role CTXAPP that allows usage of Oracle Media Text features. To maintain
indexes including foreign columns, the user has to posses additional privileges
CREATE ANY TRIGGER, ADMINISTER DATABASE TRIGGER and SELECT

178 Michal Kopecký, Martin Čermák

on given TABLE. Due to security risks maintaining foreign columns is initially
disallowed.

Index maintainance is done through package PRECIS with following interface.

Function/Procedure Description
CREATE_INDEX Creates index, auxiliary tables and needed triggers.
DROP_INDEX Drops the index including all data.
DROP_INDEX_FORCE The same as above, without existency checks.
ADD_COLUMN Adds new table column to the index.
DROP_COLUMN Removes the table column from the index.
SYNCHRONIZE Indexes data added and/or changed from previous

synchronization.
SET_AS_SINGLE_SCHEMA
SET_AS_ MULTI_SCHEMA

Sets, if it is possible to add columns belonging to tables from
other schemas.

Table 3: PRECIS package interface

3.3 Index Search

The search is accelerated through the domain index built upon column DOC_ID of
table PRECIS$index_name$D. This table formally holds all documents, physically
stored in their repective tables. The query searches data from this table or any view
created over this table using operator PRECISSYS.CONTAINS. The system provides
the view PRECIS$index_name$S that provides additional columns stored in internal
index tables. The query would look like

SELECT S.*, PRECISSYS.SCORE(n)
 FROM PRECIS$index_name$S S
 WHERE PRECISSYS.CONTAINS(DOC_ID,Q,L,n) > Treshold

where Q holds Boolean expression with keywords, L means limit – maximal required
number of hits and a Treshold keeps minimal required document rating. Last
parameter n holds numerical identifier of operator within the SELECT statement and
allows obtaining of assigned document rating using auxiliary operator SCORE with
the corresponding identifier. Using Boolean expressions instead of simple keyword
extends the original proposition. To formulate queries, users can use brackets, and
logical operators AND “&”, OR “|” and NOT “-“. The structure of view
PRECIS$index_name$S is described in following table. The column TEXT returns
the beginning of the document and is present for testing purposes.

During evaluation, terms used in the query are identified in the index. If the length of
the term exceeds given limit suffix_search_min_token_len, the index searches for all
its rightwise extensions. Shorter terms are searched in their exact form.

Query evaluation is based on Paice model [5]. Index search then identifies all
documents that have high weight assigned to at least one term used in the query. To
identify them lists ordered by weight in descendant order by weight are used. The

Précis Index Implementation for Efficient Fulltext Data Mining 179

exact rating for these documents is then evaluated using lists ordered by document
numbers.

3.4 Index Data modification

Indexes are synchronized in batches. Changes are logged in the table
PRECISSYS.PRECIS_PENDING. To keep track of changes Précis index uses two
types of triggers. One of them tracks DML changes in tables and the second one
watches for DROP TABLE and TRUNCATE TABLE statements. The INSERT OR
UPDATE OR DELETE FOR EACH ROW trigger has to be created for each indexed
table. Its name is PRECIS_IndexID_TableID_TRG. The trigger
PRECIS_TBLDDL_TRG of the second type is created once in each schema
containing at least one indexed column. Each document has assigned its unique
identifier within the index, that can be translated to the quadruple (owner, table_name,
column_name, rowid) through tables PRECIS$index_name$D and
PRECIS$index_name$U. All BLOB records are stored in the table
PRECIS$index_name$I. Parametrs of all precise indexes are stored in the table
PRECISSYS.PRECIS_PARAMETER.

4 Performance tests

The graph on picture 4 shows result for index creation in comparison with Oracle
Multimedia Text.

The time for 32000 documents increases significantly due to insufficient memory for
buffers, so the data have to be transferred to a from the disk and the overall number of
I/O operation was increased. In average, the index creation process is 2-3 times
slower than native Oracle Text indexing on one table.

Vytvoření indexu - porovnání s Oracle Text

0

50

100

150

200

250

300

1000 2000 4000 8000 16000 32000

Počet dokumentů

Č
as

 (
s)

Index se všemi termy

Index obsahující termy s frekvencí větší než 0,001

Oracle Text

600

Index containing all terms
Index containing terms with freq. > 0,001
Oracle Text

Number of Documents

T
im

e
 (

s
)

Vytvoření indexu - porovnání s Oracle Text

0

50

100

150

200

250

300

1000 2000 4000 8000 16000 32000

Počet dokumentů

Č
as

 (
s)

Index se všemi termy

Index obsahující termy s frekvencí větší než 0,001

Oracle Text

600

Index containing all terms
Index containing terms with freq. > 0,001
Oracle Text

Number of Documents

T
im

e
 (

s
)

180 Michal Kopecký, Martin Čermák

Picture 4. Précis index creation

The query evaluation was tested on collection containing 32000 documents from
Wikipedia. Results represent execution times for queries Q1 = “Astronomy”,
Q2 = “Information System”, Q3 = “Pulp Fiction”, Q4 = “Database Search Oracle
MySQL”, Q5 = “(Information Retrieval | Text Retrieval Systems)”, Q6 = “Relational
Database Index”.

Q1 Q2 Q3 Q4 Q5 Q6

Rating computation 0.029 0.032 0.058 0.053 0.056 0.173
Data retrieval 0.052 0.163 0.205 0.259 0.241 0.430
Total 0.081 0.195 0.263 0.312 0.297 0.603

Table 4: Index search results

5 Conclusion

We proposed data structures suitable for Précis indexing and implemented it in the
widespread Oracle database. The proposed implementation extends original idea by
possibility to formulate queries using Boolean operators. The formulation of queries
is familiar to Oracle application developers because of its similarity to Oracle
Multimedia Text queries. Embeding most of document processing path provided by
Oracle Media Text allows maintaining not only data in plain text columns, but also
documents in different format stored in the database. The proposed data structures
still provide quick searching of documents together with tolerable speed of indexing
process.

References

1. Simitsis A. and col.: Précis: from unstructured keywords as queries to structured
databases as answers. International Journal on Very Large Data Bases (VLDB
Journal), Volume 17, Number 1, 2008, 117-149.

2. Čermák M.: Master Thesis: Index pro textové vyhledávání nad relačními daty,
Charles University Prague, 2008. (in Czech language)

3. Oracle Text: Application Developer's Guide, 10g Release 2, 2005.
4. Salton, G. and M. J. McGill (1983). Introduction to modern information retrieval.

McGraw-Hill. ISBN 0070544840.
5. Paice, C. P. (1984), Soft Evaluation of Boolean Search Queries in Information

Retrieval Systems, Information Technology, Res. Dev. Applications, 3(1), 33-42

