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ABSTRACT

In this paper we give a comprehensive overview of temporal
features devised for Web spam detection providing measure-
ments for different feature sets.

e We make a temporal feature research data set publicly
available!. The features are based on eight UbiCrawler
crawl snapshots of the .uk domain between October 2006
and May 2007 and use the WEBSPAM-UK2007 labels.

e We explore the performance of previously published tem-
poral spam features and in particular the strength and
sensitivity of linkage change.

e We propose new temporal link similarity based features
and show how to compute them efficiently on large graphs.

Our experiments are conducted over the collection of eight
.uk crawl snapshots that include WEBSPAM-UK2007.

Categories and Subject Descriptors

H.3 [Information Systems]|: Information Storage and Re-
trieval; 1.2 [Computing Methodologies|: Artificial In-
telligence; 1.7.5 [Computing Methodologies]: Document
Capture—Document analysis

General Terms

Hyperlink Analysis, Feature Selection, Document Classifica-
tion, Information Retrieval
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1. INTRODUCTION

Web spam filtering, the area of devising methods to iden-
tify useless Web content with the sole purpose of manipulat-
ing search engine results, has drawn much attention in the
past years [37, 28, 27]. Although recently there seems to be
a slowdown in the achievements, temporal analysis appears
as a new area with several recent papers [36, 31, 17, 30, 20].

In this paper we present, to our best knowledge, the most
comprehensive experimentation based on content, link as
well as temporal features, both new and recently published.
We compare our result with the very strong baseline of the
Web Spam Challenge 2008 data set.

We extend link-based similarity algorithms by proposing
metrics to capture the linkage change of Web pages over
time. We describe a method to calculate these metrics ef-
ficiently on the Web graph and then measure their perfor-
mance when used as features in Web spam classification. We
propose an extension of two link-based similarity measures:
XJaccard and PSimRank [23].

We investigate the combination of temporal and non-tem-
poral, both link- and content-based features using ensemble
selection. We evaluate the performance of ensembles built
on the latter feature sets and compare our results to that
of state-of-the-art techniques reported on our dataset. Our
conclusion is that temporal and link-based features in gen-
eral do not significantly increase Web spam filtering accu-
racy. However, information about linkage change might im-
prove the performance of a language independent classifier:
the best results for the French and German classification
tasks of the ECML/PKDD Discovery Challenge [26] were
achieved by using host level link features only, outperform-
ing those who used all features [1].

The rest of this paper is organized as follows. After list-
ing related results, in Section 2 we describe the features we
add to the baseline set of [13] including new temporal fea-
tures introduced first in this paper. In Section 3 we describe
our classification framework. The results of the experiments
to classify WEBSPAM-UK?2007 by also relying on 7 addi-
tional crawl snapshots of the same domain can be found in
Section 4.

1.1 Related Results

An excellent overview of Web spam filtering methods,
both temporal and non-temporal approaches is found in
[12]. When building our baseline classifier, we considered
the known features as well as the classification methods used
by the winners of the Web Spam Challenge 2008 [25] and
the ECML/PKDD Discovery Challenge [26]. The baseline
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ensemble classifier tested on two data sets is taken from our
work [21].

Recently the evolution of the Web has attracted interest
in defining features, signals for ranking [18] and spam fil-
tering [36, 31, 17, 30, 20]. The earliest results investigate
the changes of Web content with the primary interest of
keeping a search engine index up-to-date [15, 16]. The de-
cay of Web pages and links and its consequences on ranking
are discussed in [3, 19]. One main goal of Boldi et al. [7]
who collected the .uk crawl snapshots also used in our ex-
periments was the efficient handling of time-aware graphs.
Closest to our temporal features is the investigation of host
overlap, deletion and content dynamics in the same data set
by Bordino et al. [8].

Perhaps the first result on the applicability of temporal
features for Web spam filtering is due to Shen et al. [36] who
compare pairs of crawl snapshots and define features based
on the link growth and death rate. However by extending
their ideas to consider multi-step neighborhood, we are able
to define a very strong feature set that can be computed by
the Monte Carlo estimation of Fogaras and Récz [23].

Another related result defines features based on the change
of the content [17] who obtain page history from the Way-
back Machine. They only present classification results for a
selected subset of hosts and they do not compare their per-
formance with the Web Spam Challenge 2008 results [11] as
they only measure precision, recall and F-measure but not
AUC (area under the ROC curve [24]). In order to be com-
parable with a larger set of spam detection techniques, we
use the full 2,053 host Web Spam Challenge 2008 test set. In
addition, we believe that AUC is more stable as it does not
depend on the split point; indeed, while Web Spam Chal-
lenge 2007 used F-measure and AUC, Web Spam Challenge
2008 used AUC only as evaluation measure.

In a preliminary result [20] we suggested the applicabil-
ity of Jaccard and cosine similarity metrics for capturing
content change of groups of Web pages. Compared to that
result, in this paper we show full-scale results of applying
term-weight based temporal content features. In addition,
we derive features based on the multi-step linkage similarity
of Web hosts. This set of features extends the growth and
death rate of [36] that we use as baseline features.

For a broader outlook, temporal analysis is also applied
for splog detection, i.e. manipulative blogs with the sole pur-
pose to attract search engine traffic and promote affiliate
sites. Lin et al. [31] consider the dynamics of self-similarity
matrices of time, content and link attributes of posts. They
use the Jaccard similarity, a technique that we are also ap-
plying in our experiments.

2. TEMPORAL FEATURES FOR SPAM DE-
TECTION

Spammers often create bursts in linkage and content: they
may add thousands or even millions of machine generated
links to pages that they want to promote [36] that they
again very quickly regenerate for another target or remove
if blacklisted by search engines. Therefore changes in both
content and linkage may characterize spam pages.

2.1 Linkage Change

In this section we describe link-based temporal features
that capture the extent and nature of linkage change. These
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features can be extracted from either the page or the host
level graph where the latter has a directed link from host a
to host b if there is a link from a page of a to a page of b.

The starting point of our new features is the observation

of [36] that the in-link growth and death rate and change
of clustering coefficient characterize the evolution patterns
of spam pages. We extend these features for the multi-step
neighborhood in the same way as PageRank extends the in-
degree. The ¢-step neighborhood of page v is the set of pages
reachable from v over a path of length at most ¢. The ¢-step
neighborhood of a host can be defined similarly over the host
graph.

We argue that the changes in the multi-step neighborhood

of a page should be more indicative of the spam or honest
nature of the page than its single-step neighborhood because
spam pages are mostly referred to by spam pages [14], and
spam pages can be characterized by larger change of linkage
when compared to honest pages [36].

In the following we review the features related to link-

age growth and death from [36] in Section 2.1.1, then we
introduce new features based on the similarity of the multi-
step neighborhood of a page or host.
XJaccard and PSimRank similarity measure can be used for
capturing linkage change in Section 2.1.3 and Section 2.1.4,
respectively.

We show how the

2.1.1 Change Rate of In-links and Out-links
We compute the following features introduced by Shen et

al. [36] on the host level for a node a for graph instances
from time ¢y and t;. We let G(¢) denote the graph instance
at time ¢t and IV (a), T®(a) denote the set of in and out-
links of node a at time ¢, respectively.

e In-link death (IDR) and growth rate (IGR):

199 (@) ~ 1) (a)
160 (@)

IDR(a) =

|1t (a) — 1) ()|
|1¢t0) (a)]

IGR(a) =

e Out-link death and growth rates (ODR, OGR): the above
features calculated for out-links;

e Mean and variance of IDR, IGR, ODR and OGR across
in-neighbors of a host (IDRMean, IDRVar, etc.);

e Change rate of the clustering coefficient (CRCC), i.e. the
fraction of linked hosts within those pointed by pairs of
edges from the same host:

{(b,c) € G(t)|b,c € T (a)]|

cotn = IO @)

C(a, tl) — CO(G,, to)
CC((L, to)

CRCC(a) = &

e Derivative features such as the ratio and product of the
in and out-link rates, means and variances. We list the
in-link derivatives; out-link ones are defined similarly:

IGR-IDR, IGR/IDR, IGRMean/IGR, IGRVar/IGR,
IDRMean/IDR, IDRVar/IDR, IGRMean-IDRMean,
IGRMean/IDRMean, IGRVar-IDRVar, IGRVar/IDRVar.



2.1.2  Self-Similarity Along Time

In the next sections we introduce new linkage change fea-
tures based on multi-step graph similarity measures that in
some sense generalize the single-step neighborhood change
features of the previous section. We characterize the change
of the multi-step neighborhood of a node by defining the
similarity of a single node across snapshots instead of two
nodes within a single graph instance. The basic idea is that,
for each node, we measure its similarity to itself in two iden-
tically labeled graphs representing two consecutive points of
time. This enables us to measure the linkage change oc-
curring in the observed time interval using ordinary graph
similarity metrics.

We consider two graph similarity measures, XJaccard and
PSimRank [23]; we also argue why SimRank [29] is inappro-
priate for constructing temporal features.

SimRank of a pair of nodes u and v is defined recursively
as the average similarity of the neighbors of u and v:

Simey1(u,v) = 1, if u=v;

Simggi(u,v) = Y Simg(u,0"). (1)
v’ €I (v)
u' €I (u)

In order to apply SimRank for similarity of a node v between
two snapshots to and t1, we apply (1) so that v" and v’ are
taken from different snapshots.

Next we describe a known deficiency of SimRank in its
original definition that rules out its applicability for tempo-
ral analysis. First we give the example for the single graph
SimRank. Consider a bipartite graph with k£ nodes point-
ing all to another two u and v. In this graph there are
no directed paths of length more than one and hence the
Sim values can be computed in a single iteration. Counter-
intuitively, we get Sim(u,v) = ¢/k, i.e. the larger the cocita-
tion of u and v, the smaller their SimRank value. The reason
is that the more the number of in-neighbors, the more likely
is that a pair of random neighbors will be different.

While the example of the misbehavior for SimRank is
somewhat artificial in the single-snapshot case, next we show
that this phenomenon almost always happens if we consider
the similarity of a single node v across two snapshots. If
there is no change at all in the neighborhood of node v be-
tween the two snapshots, we expect the Sim value to be
maximal. However the situation is identical to the bipar-
tite graph case and Sim will be inversely proportional to the
number of out-links.

2.1.3 Extended Jaccard Similarity Along Time
Our first definition of similarity is based on the extension
of the Jaccard coefficient in a similar way XJaccard is de-
fined in [23]. The Jaccard similarity of a page or host v
across two snapshots tgp and ¢; is defined by the overlap of
its neighborhood in the two snapshots, T*®) (v) and T (v)
as
Jactot) () = D) () N T (1)
|T(t0) (v) U T'(1) ()]

The extended Jaccard coefficient, XJaccard for length ¢ of a
page or host is defined via the notion of the neighborhood

F,(:) (v) at distance exactly k as

4
D3 () T (o)
= T @) uT )]

XJac;tO’tl)(v) = F1-¢)
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The XJac values can be approximated by the min-hash
fingerprinting technique for Jaccard coefficients [10], as de-
scribed in Algorithm 3 of [23]. The fingerprint generation
algorithm has to be repeated for each graph snapshot, with
the same set of independent random permutations.

We generate temporal features based on the XJac values
for four length values £ = 1...4. We also repeat the com-
putation on the transposed graph, i.e. replacing out-links
' (v) by in-links I (v). As suggested in [23], we set the
decay factor ¢ = 0.1 as this is the value where, in their exper-
iments, XJaccard yields best average quality for similarity
prediction.

Similar to [36], we also calculate the mean and variance
XJact0:'1) (w) of the neighbors w for each node v. The
following derived features are also calculated:

e similarity at path length £ = 2, 3,4 divided by similarity
at path length ¢ — 1, and the logarithm of these;

e logarithm of the minimum, maximum, and average of the
similarity at path length ¢ = 2, 3,4 divided by the simi-
larity at path length ¢ — 1.

2.1.4 PSimRank Along Time

Next we define similarity over time based on PSimRank, a
SimRank variant defined in [23] that can be applied similar
to XJaccard in the previous section. As we saw in Sec-
tion 2.1.2, SimRank is inappropriate for measuring linkage
change in time. In the terminology of the previous subsec-
tion, the reason is that path fingerprints will be unlikely to
meet in a large neighborhood and SimRank values will be
low even if there is completely no change in time.

We solve the deficiency of SimRank by allowing the ran-
dom walks to meet with higher probability when they are
close to each other: a pair of random walks at vertices u’, v’

will advance to the same vertex (i.e., meet in one step) with
|1 (u)NI(v")]|

T OIN] of their in-

probability of the Jaccard coefficient
neighborhood I(u') and I(v").

The random walk procedure corresponding to PSimRank
along with a fingerprint generation algorithm is defined in
[23].

For the temporal version, we choose independent random
permutations o, on the hosts for each step £. In step ¢ if
the random walk from vertex u is at u’, it will step to the
in-neighbor with smallest index given by the permutation o,
in each graph snapshot.

Temporal features are derived from the PSimRank simi-
larity measure very much the same way as for XJaccard, for
four length values ¢ = 1...4. We also repeat the computa-
tion on the transposed graph, i.e. replacing out-links F(t)(v)
by in-links 1V (v). As suggested in [23], we set the decay
factor ¢ = 0.15 as this is the value where, in their experi-
ments, PSimRank yields best average quality for similarity
prediction. Additionally, we calculate the mean and vari-
ance PSimRank(w) of the neighbors w for each node v and
derived features as for XJaccard.

2.2 Content and its Change

The content of Web pages can be deployed in content clas-
sification either via statistical features such as entropy [34]
or via term weight vectors [39, 17]. Some of the more com-
plex features that we do not consider in this work include
language modeling [2].

In this section we focus on capturing term-level changes
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over time. For each target site and crawl snapshot, we collect
all the available HTML pages and represent the site as the
bag-of-words union of all of their content. We tokenize con-
tent using the ICU library?, remove stop words® and stem
using Porter’s method.

We treat the resulting term list as the virtual document
for a given site at a point of time. As our vocabulary we use
the most frequent 10,000 terms found in at least 10% and
at most 50% of the virtual documents.

To measure the importance of each term ¢ in a virtual
document d at time snapshot T, we use the BM25 weighting
[35]:

_ D™ (k1 + 1))

K+ )

where tfg? is the number of occurrences of term ¢ in docu-
ment d and IDF§T> is the inverse document frequency (Ro-

bertson-Spérck Jones weight) for the term at time 7. The
length normalized constant K is specified as

k1 ((1=b) + b x dI'D) Javdl™)

such that dI™ and avdl'™ denote the virtual document
length and its average at time 7', respectively. Finally

N—-n™ 105
n(T) +0.5

where N denotes the total number of virtual documents and
nT is the number of virtual documents containing term
i. Note that we keep N independent of T and hence if
document d does not exist at T', we consider all tf(T) =0.

By using the term vectors as above, we calculate the tem-
poral content features described in [17] in the following five
groups.

IDFT) = [og

e Ave: Average BM25 score of term i over the Tax snap-
shots:

Tmax

Z #7)

e AveDiff: Mean difference between temporally successive
term weight scores:

Avei,d =

ax

Trmax—1

. 1 N (T+1 (T)
AveDiff; y = ———— - E t —t

VeIl 4 Tonne — 1 — | i,d |

e Dev: Variance of term weight vectors at all time points:

T
1 max
Deviq = 77— - E (tz(,?;) — Ave; 4)°
Tinax — 1 T=1

o DevDiff: Variance of term weight vector differences of
temporally successive virtual documents:

Tmax—1
DevDiff; = —— Z (I —¢{T)| — AveDiff;)?

max

e Decay: Weighted sum of temporally successive term weight

vectors with exponentially decaying weight. The base of

http:/ /icu-project.org/
3http://www.lextek.com /manuals/onix /stopwords1.html
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the exponential function, the decay rate is denoted by A.
Decay is defined as follows:

Tmax
Decay; , = Z )\ek(Tmax—T)tg)
T=1

3. CLASSIFICATION FRAMEWORK

For the purposes of our experiments we computed all the
public Web Spam Challenge content and link features of [13].
We applied the classification techniques found most effective
in our work [21]. We built a classifier ensemble by splitting
features into related sets and for each we use a collection of
classifiers that fit the data type and scale. These classifiers
were then combined by ensemble selection. We used the
classifier implementations of the machine learning toolkit
Weka [38].

The motivation for using ensemble selection is that re-
cently this particular ensemble method gained more atten-
tion thanks to the winners of KDD Cup 2009 [33]. According
to our experiments [21] ensemble selection performed signifi-
cantly better than other classifier combination methods used
for Web spam detection in the literature, such as log-odds
based averaging [32] and bagging.

We used the ensemble selection implementation of Weka
[38] for performing the experiments. The Weka implemen-
tation supports the proven strategies for avoiding overfitting
such as model bagging, sort initialization and selection with
replacement. We allow Weka to use all available models in
the library for greedy sort initialization and use 5-fold em-
bedded cross-validation during ensemble training and build-
ing. We set AUC as the target metric to optimize for and
run 100 iterations of the hillclimbing algorithm.

We mention that we have to be careful with treating miss-
ing feature values. Since the temporal features are based on
at least two snapshots, for a site that appears only in the
last one, all temporal features have missing value. For classi-
fiers that are unable to treat missing values we define default
values depending on the type of the feature.

3.1 Learning Methods

We use the following models in our ensemble: bagged and
boosted decision trees, logistic regression, naive Bayes and
variants of random forests. For most classes of features we
use all classifiers and let selection choose the best ones. The
exception is static and temporal term vector based features
where, due to the very large number of features, we may
only use Random Forest and SVM. We train our models as
follows.

Bagged LogitBoost: we do 10 iterations of bagging and
vary the number of iterations from 2 to 64 in multiples of
two for LogitBoost.

Decision Trees: we generate J48 decision trees by vary-
ing the splitting criterion, pruning options and use either
Laplacian smoothing or no smoothing at all.

Bagged Cost-sensitive Decision Trees: we generate
J48 decision trees with default parameters but vary the cost
sensitivity for false positives in steps of 10 from 10 to 300.
We do the same number of iterations of bagging as for Log-
itBoost models.

Logistic Regression: we use a regularized model vary-
ing the ridge parameter between 10~ to 10* by factors of
10. We normalize features to have mean 0 and standard
deviation 1.
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Figure 1: The number of total hosts as well as la-
beled hosts distinguished by the label set and the
label value.

Random Forests: we use FastRandomForest [22] in-
stead of the native Weka implementation for faster com-
putation. The forests have 250 trees and, as suggested in
[9], the number of features considered at each split is s/2, s,
2s, 4s and 8s, where s is the square root of the total number
of features available.

Naive Bayes: we allow Weka to model continuous fea-
tures either as a single normal or with kernel estimation, or
we let it discretize them with supervised discretization.

4. RESULTS AND DISCUSSION

Our data set is derived from the 13 .uk snapshots provided
by the Laboratory for Web Algorithmics of the Universita
degli studi di Milano together with the Web Spam Chal-
lenge labels WEBSPAM-UK2007. We extracted maximum
400 pages per site from the original crawls. The last 12 of
the above .uk snapshots were analyzed by Bordino et al.
[8] who among others observe a relative low URL but high
host overlap. The first snapshot (2006-05) that is identical
to WEBSPAM-UK2006 was chosen to be left out from their
experiment since it was provided by a different crawl strat-
egy. We observed that the last 8 snapshots contain a stable
fraction of hosts (both labeled and unlabeled) for our exper-
iments as seen in Fig. 1. From now on we restrict attention
to the latter snapshots and the WEBSPAM-UK2007 labels
only.
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For calculating the temporal link-based features described
in Section 2 we use the host level graph. Similar to the
observation of [8], pages are much more unstable over time
compared to hosts. Note that page-level fluctuations may
simply result from the sequence the crawler visited the pages
and not necessarily reflect real changes. The crawl induced
noise and problems with URL canonization [4] rule out the
applicability of features based on the change of page-level
linkage.

To make it easy to compare our results to previous re-
sults, we cite the Web Spam Challenge 2008 winner’s per-
formance in each table in the following, as published in their
original paper [25]. They trained a bagged classifier on the
standard content-based and link-based features published by
the organizers of the Web Spam Challenge 2008 and on cus-
tom host-graph based features, using the ERUS strategy for
class-inbalance learning [25].

4.1 Classifier Models

In this subsection we describe the performance of various
classifier ensemble combinations*. We do not aim to pro-
vide an exhaustive evaluation of all combinations. Instead,
we concentrate our efforts on determining whether temporal
information is valuable for Web spam detection.

For training and testing we use the official Web Spam
Challenge 2008 training and test sets [13]. As it can be seen
in Table 1 these show considerable class imbalance which
makes the classification problem harder.

[ Label Set | Instances | %Positive |

4000 5.95%
2053 4.68%

Training
Testing

Table 1: Summary of label sets for Web Spam Chal-
lenge 2008.

4.1.1 Temporal Link-only

First, we compare the temporal link features proposed in
Section 2.1 with those published earlier [36]. Then, we build
ensembles that combine the temporal with the public link-
based features described by [5]. The results are summarized
in Table 2.

Section Feature Set No. of AUC
Features
2.1.1 Growth/death rates 29 0.617
2.1.2 XJaccard + PSimRank 63 0.625
Public link-based [5] 176 0.765
Public +
2.1.1 growth/death rates 20 0.758
Public +
212 XJaccard + PSimRank 239 0.769
All link-based 268 0.765
| [  WSC 2008 Winner | - | 0.852 |

Table 2: Performance of ensembles built on link-
based features.

4The exact classifier model specification files used for Weka
and the data files used for the experiments are available upon
request from the authors.
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As these measurements show, our proposed graph sim-
ilarity based features successfully extend the growth and
death rate based ones by achieving higher accuracy, improv-
ing AUC by 1.3%. However, by adding temporal to static
link-based features we get only marginally better ensemble
performance.

To rank the link-based feature sets by their contribution
in the ensemble, we build classifier models on the three sep-
arate feature subsets (public link-based, growth/death rate
based and graph similarity based features, respectively) and
let ensemble selection combine them. This restricted com-
bination results in a slightly worse AUC of 0.762. By cal-
culating the total weight contribution, we get the follow-
ing ranked list (weight contribution showed in parenthesis:
public link-based (60.8%), graph similarity based (21.5%),
growth/death rate based (17.7%). This ranking also sup-
ports the findings presented in Table 2 that graph similarity
based temporal link-based features should be combined with
public link-based features if temporal link-based features are
used.

To separate the effect of ensemble selection on the per-
formance of temporal link-based feature sets we repeat the
experiments with bagged cost-sensitive decision trees only,
a model reported to be effective for web spam classification
[34]. The results for these experiments are shown in Table
3.

Section Feature Set No. of AUC
Features
2.1.1 Growth/death rates 29 0.605
2.1.2 XJaccard 42 0.626
2.1.3 PSimRank 21 0.593
2.1.2-3 | XJaccard + PSimRank 63 0.610
Public link-based [5] 176 0.731
Public +
211 growth/death rates 205 0.696
Public +
2.1.2-3 XJaccard + PSimRank 239 0710
All link-based 268 0.707
WSC 2008 Winner - 0.852

Table 3: Performance of bagged cost-sensitive deci-
sion trees trained on link-based features.

As it can be seen in Table 3, when using bagged cost-
sensitive decision trees, our proposed temporal link-based
similarity features achieve 3.5% better performance than the
growth/death rate based features published earlier.

When comparing results in Table 3 and in Table 2 we can
see that ensemble selection i) significantly improves accuracy
(as expected) and ii) diminishes the performance advantage
achievable by the proposed temporal link-based features over
the previously published ones.

As prevalent from Table 3, the proposed PSimRank based
temporal features perform roughly the same as the growth
and death rate based ones while the XJaccard based tem-
poral features perform slightly better.

Next we perform sensitivity analysis of the temporal link-
based features by using bagged cost-sensitive decision trees.
We build 10 different random training samples for each of
the possible fractions 10%, 20%, ..., 100% of all available
labels. In Fig. 2 we can see that the growth/death rate
based features as well as the PSimRank based features are
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Figure 2: Sensitivity of temporal link-based fea-
tures. Top: AUC values averaged across 10 mea-
surements. Bottom: standard deviations of AUC

for different training set sizes.

not sensitive to training set size while the XJaccard based
ones are. That is, even though XJaccard is better in terms
of performance than the other two feature sets considered
it is more sensitive to the amount of training data used as
well.

4.1.2 Content-only Ensemble

We build two ensembles, the first based on the Public
content [34] features and the second on static term weight
vector derived from the BM25 term weighting scheme (see
Section 2.2). As seen in Table 4, the combination is by 5%
stronger than the Web Spam Challenge 2008 winner [25].

| Feature Set | No. of Features | AUC |

Public content [34] 96 0.879
Public content + BM25 10096 0.893
[ WSC 2008 Winner [25] | - | 0.852 |

Table 4: Performance of ensembles built on static
content-based features.

4.1.3 Content-only Ensembles

We build ensembles based on the temporal content fea-
tures described in Section 2.2 and their combination them-



selves, with the static BM25 features, and with the content-
based features of [34]. The performance comparison of tem-
poral content-based ensembles is presented in Table 5.

| Feature Set | AUC |
Static BM25 0.736
Ave 0.749
AveDiff 0.737
Dev 0.767
DevDiff 0.752
Decay 0.709
Temporal combined 0.782
Temporal combined + BM25 0.789
Public content-based [34] + temporal | 0.901
All combined 0.902

Table 5: Performance of ensembles built on tempo-
ral content-based features.

4.1.4 Full Ensemble

By combining all the content and link-based features, both
temporal and static ones, we train an ensemble which in-
corporates all the previous classifiers. This combination
resulted in an AUC of 0.908 meaning no significant im-
provement can be achieved with link-based features over the
content-based ensemble.

S.  CONCLUSIONS

With the illustration over the 100,000 page WEBSPAM-
UK2007 data along with 7 previous monthly snapshots of
the .uk domain, we have presented a survey of temporal
features for Web spam classification. We investigated the
performance of both link- and content-based Web spam fea-
tures with ensemble selection, focusing on temporal link-
based features®.

We proposed graph similarity based temporal features which

aim to capture the nature of linkage change of the neighbor-
hoods of hosts. We have shown how to compute these fea-
tures efficiently on large graphs using a Monte Carlo method.
Our features achieve better performance than previously
published methods, however, when combining them with the
public link-based feature set we get only marginal perfor-
mance gain.

By our experiments it has turned out that the appropriate
choice of the machine learning techniques is probably more
important than devising new complex features. However, by
using temporal information, we reach improvement in link-
age based classification, a promising direction for filtering
mixed language domains where content cannot be reliably
used for classification [26].

Acknowledgment

To Sebastiano Vigna, Paolo Boldi and Massimo Santini for
providing us with the UbiCrawler crawls [6, 7]. In addition
to them, also to Ilaria Bordino, Carlos Castillo and Debora
Donato for discussions on the WEBSPAM-UK data sets [8].

5The temporal feature data used in our research is
available at: http://datamining.ilab.sztaki.hu/?q=en/
downloads

23

TWAW 2011, Hyderabad, India

6. REFERENCES

[1] L. D. Artem Sokolov, Tanguy Urvoy and O. Ricard.
Madspam consortium at the ecml/pkdd discovery
challenge 2010. In Proceedings of the ECML/PKDD
2010 Discovery Challenge, 2010.
J. Attenberg and T. Suel. Cleaning search results
using term distance features. In Proceedings of the 4th
international workshop on Adversarial information
retrieval on the web, pages 21-24. ACM New York,
NY, USA, 2008.
Z. Bar-Yossef, A. Z. Broder, R. Kumar, and
A. Tomkins. Sic transit gloria telae: Towards an
understanding of the web’s decay. In Proceedings of
the 13th World Wide Web Conference (WWW), pages
328-337. ACM Press, 2004.
7. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not
crawl in the dust: different urls with similar text.
ACM Transactions on the Web (TWEB), 3(1):1-31,
2009.
L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Link-based characterization and
detection of web spam. In Proceedings of the 2nd
International Workshop on Adversarial Information
Retrieval on the Web (AIRWeb), 2006.
P. Boldi, B. Codenotti, M. Santini, and S. Vigna.
Ubicrawler: A scalable fully distributed web crawler.
Software: Practice & Experience, 34(8):721-726, 2004.
P. Boldi, M. Santini, and S. Vigna. A Large Time
Aware Web Graph. SIGIR Forum, 42, 2008.
1. Bordino, P. Boldi, D. Donato, M. Santini, and
S. Vigna. Temporal evolution of the uk web. In
Workshop on Analysis of Dynamic Networks
(ICDM-ADN’08), 2008.
L. Breiman. Random forests. Machine learning,
45(1):5-32, 2001.
A. Z. Broder. On the Resemblance and Containment
of Documents. In Proceedings of the Compression and
Complezity of Sequences (SEQUENCES’97), pages
21-29, 1997.

[10]

[11] C. Castillo, K. Chellapilla, and L. Denoyer. Web spam
challenge 2008. In Proceedings of the jth International
Workshop on Adversarial Information Retrieval on the
Web (AIRWeb), 2008.

[12] C. Castillo and B. D. Davison. Adversarial web search.
Foundations and Trends in Information Retrieval,
4(5):377-486, 2010.

[13] C. Castillo, D. Donato, L. Becchetti, P. Boldi,

S. Leonardi, M. Santini, and S. Vigna. A reference
collection for web spam. SIGIR Forum, 40(2):11-24,
December 2006.

[14] C. Castillo, D. Donato, A. Gionis, V. Murdock, and
F. Silvestri. Know your neighbors: Web spam
detection using the web topology. Technical report,
DELIS — Dynamically Evolving, Large-Scale
Information Systems, 2006.

[15] J. Cho and H. Garcia-Molina. The evolution of the
web and implications for an incremental crawler. In
The VLDB Journal, pages 200-209, 2000.

[16] J. Cho and H. Garcia-Molina. Synchronizing a

database to improve freshness. In Proceedings of the
International Conference on Management of Data,
pages 117-128, 2000.



TWAW 2011, Hyderabad, India

[17]

(30]

N. Dai, B. D. Davison, and X. Qi. Looking into the
past to better classify web spam. In AIRWeb ’09:
Proceedings of the 5th international workshop on
Adversarial information retrieval on the web. ACM
Press, 2009.

A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai,

K. Buchner, R. Zhang, C. Liao, and F. Diaz. Towards
recency ranking in web search. In Proc. WSDM, 2010.
N. Eiron, K. S. McCurley, and J. A. Tomlin. Ranking
the web frontier. In Proceedings of the 13th
International World Wide Web Conference (WWW),
pages 309-318, New York, NY, USA, 2004. ACM
Press.

M. Erdélyi, A. A. Benczur, J. Masanés, and D. Siklési.
Web spam filtering in internet archives. In AIRWeb
’09: Proceedings of the 5th international workshop on
Adversarial information retrieval on the web. ACM
Press, 2009.

M. Erdélyi, A. Garzd, and A. A. Bencziur. Web spam
classification: a few features worth more. In Joint
WICOW/AIRWeb Workshop on Web Quality
(WebQuality 2011) In conjunction with the 20th
International World Wide Web Conference in
Hyderabad, India. ACM Press, 2011.
FastRandomForest. Re-implementation of the random
forest classifier for the weka environment.
http://code.google.com/p/fast-random-forest/.
D. Fogaras and B. Récz. Scaling link-based similarity
search. In Proceedings of the 14th World Wide Web
Conference (WWW), pages 641-650, Chiba, Japan,
2005.

J. Fogarty, R. S. Baker, and S. E. Hudson. Case
studies in the use of roc curve analysis for sensor-based
estimates in human computer interaction. In
Proceedings of Graphics Interface 2005, GI ’05, pages
129-136, School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada, 2005. Canadian
Human-Computer Communications Society.

G. Geng, X. Jin, and C. Wang. CASTA at WSC2008.
In Proceedings of the 4th International Workshop on
Adversarial Information Retrieval on the Web
(AIRWeb), 2008.

X.-C. Z. Guang-Gang Geng, Xiao-Bo Jin and

D. Zhang. Evaluating web content quality via
multi-scale features. In Proceedings of the
ECML/PKDD 2010 Discovery Challenge, 2010.

Z. Gyongyi and H. Garcia-Molina. Spam: It’s not just
for inboxes anymore. IEEE Computer Magazine,
38(10):28-34, October 2005.

M. R. Henzinger, R. Motwani, and C. Silverstein.
Challenges in web search engines. SIGIR Forum,
36(2):11-22, 2002.

G. Jeh and J. Widom. SimRank: A measure of
structural-context similarity. In Proceedings of the 8th
ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pages
538-543, 2002.

Y. joo Chung, M. Toyoda, and M. Kitsuregawa. A
study of web spam evolution using a time series of web
snapshots. In AIRWeb ’09: Proceedings of the 5th
international workshop on Adversarial information
retrieval on the web. ACM Press, 2009.

24

(31]

32]

Y. Lin, H. Sundaram, Y. Chi, J. Tatemura, and

B. Tseng. Splog detection using content, time and link
structures. In 2007 IEEE International Conference on
Multimedia and Expo, pages 2030-2033, 2007.

T. Lynam, G. Cormack, and D. Cheriton. On-line
spam filter fusion. Proc. of the 29th international
ACM SIGIR conference on Research and development
in information retrieval, pages 123-130, 2006.

A. Niculescu-Mizil, C. Perlich, G. Swirszcz,

V. Sindhwani, Y. Liu, P. Melville, D. Wang, J. Xiao,
J. Hu, M. Singh, et al. Winning the KDD Cup Orange
Challenge with Ensemble Selection. In KDD Cup and
Workshop in conjunction with KDD 2009, 2009.

A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly.
Detecting spam web pages through content analysis.
In Proceedings of the 15th International World Wide
Web Conference (WWW), pages 83-92, Edinburgh,
Scotland, 2006.

S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. In In Proceedings of
SIGIR’94, pages 232-241. Springer-Verlag, 1994.

G. Shen, B. Gao, T. Liu, G. Feng, S. Song, and H. Li.
Detecting link spam using temporal information. In
ICDM’06., pages 1049-1053, 2006.

A. Singhal. Challenges in running a commercial search
engine. In IBM Search and Collaboration Seminar
2004. IBM Haifa Labs, 2004.

I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann Series in Data Management Systems.
Morgan Kaufmann, second edition, June 2005.

B. Zhou, J. Pei, and Z. Tang. A spamicity approach to
web spam detection. In Proceedings of the 2008 SIAM
International Conference on Data Mining (SDM’08),
pages 277-288. Citeseer, 2008.



