
Andreas Fuhr, Wilhelm Hasselbring, Volker Riediger (Eds.) and
Magiel Bruntink, Kostas Kontogiannis (Eds.)

Joint Proceedings of the

First International Workshop on

Model-Driven Software Migration

(MDSM 2011)

and the

Fifth International Workshop on

Software Quality and Maintainability

(SQM 2011)

March 1, 2011 in Oldenburg, Germany

Satellite Events of the

15th European Conference on
Software Maintenance and Reengineering

(CSMR 2011)
March 1-4, 2011

Copyright c© 2011 for the individual papers by the papers’ authors. Copying permitted only for private and academic
purposes. This volume is published and copyrighted by its editors.

Editors’ addresses:

Andreas Fuhr, Volker Riediger
University of Koblenz-Landau
Institute for Software Technology
Universitätsstr. 1, 56070 Koblenz, Germany
{afuhr | riediger}@uni-koblenz.de

Wilhelm Hasselbring
University of Kiel
Workgroup Software Engineering
Christian-Albrechts-Platz 4, 24118 Kiel, Germany
wha@informatik.uni-kiel.de

Magiel Bruntink
Software Improvement Group
Amstelplein 1, 1070 NC Amsterdam, The Netherlands
m.bruntink@sig.eu

Kostas Kontogiannis
National Technical University of Athens
School of Electrical and Computer Engineering
Greece
kkontog@softlab.ece.ntua.gr

Published on CEUR Workshop Proceedings,
ISSN: 1613-0073,
Vol. 708 online at http://ceur-ws.org/Vol-708

Joint Proceedings of MDSM 2011 and SQM 2011

Contents

Proceedings of MDSM 2011
2 Preface

Paper Session 1
4 Model-Driven Migration of Scientific Legacy Systems to Service-Oriented Architectures

Jon Oldevik, Gøran K. Olsen, Ute Brönner, Nils Rune Bodsberg
8 Model-driven Modernisation of Java Programs with JaMoPP

Florian Heidenreich, Jendrik Johannes, Jan Reimann, Mirko Seifert, Christian Wende, Christian Werner, Claas
Wilke, Uwe Assmann

Project Presentations
12 DynaMod Project: Dynamic Analysis for Model-Driven Software Modernization

André van Hoorn, Sören Frey, Wolfgang Goerigk, Wilhelm Hasselbring, Holger Knoche, Sönke Köster, Harald
Krause, Marcus Porembski, Thomas Stahl, Marcus Steinkamp, Norman Wittmüss

14 REMICS Project: Reuse and Migration of Legacy Applications to Interoperable Cloud Services
Parastoo Mohagheghi, Arne J. Berre, Alexis Henry, Franck Barbier, Andrey Sadovykh

15 SOAMIG Project: Model-Driven Migration towards Service-Oriented Architectures
Uwe Erdmenger, Andreas Fuhr, Axel Herget, Tassilo Horn, Uwe Kaiser, Volker Riediger, Werner Teppe, Mari-
anne Theurer, Denis Uhlig, Andreas Winter, Christian Zillmann, Yvonne Zimmermann

Paper Session 2
17 Comprehensive Model Integration for Dependency Identification with EMFTrace

Stephan Bode, Steffen Lehnert, Matthias Riebisch
21 Combining Multiple Dimensions of Knowledge in API Migration

Thiago Bartolomei, Mahdi Derakhshanmanesh, Andreas Fuhr, Peter Koch, Mathias Konrath, Ralf Lämmel,
Heiko Winnebeck

Proceedings of SQM 2011
26 Preface

28 Invited Keynote: Software Quality Management – quo vadis?
Carl Worms

Paper Session 1: Quality in Design
29 Automated Quality Defect Detection in Software Development Documents

Andreas Dautovic, Reinhold Plösch, Matthias Saft
38 Design Pattern Detection using Software Metrics and Machine Learning

Satoru Uchiyama, Hironori Washizaki, Yoshiaki Fukazawa, Atsuto Kubo
48 Using the Tropos Approach to Inform the UML Design: An Experiment Report

Andrea Capiluppi, Cornelia Boldyreff

Paper Session 2: Process
56 Tool-Supported Estimation of Software Evolution Effort in Service-Oriented Systems

Johannes Stammel, Mircea Trifu
64 Preparing for a Literature Survey of Software Architecture using Formal Concept Analysis

Luís Couto, José Nuno Oliveira, Miguel Ferreira, Eric Bouwers
74 Evidence for the Pareto principle in Open Source Software Activity

Mathieu Goeminne, Tom Mens

83 Index of Authors

iii

Joint Proceedings of MDSM 2011 and SQM 2011

iv

Proceedings of the

First International Workshop on

Model-Driven Software Migration

(MDSM 2011)

M MDS

First International Workshop on
Model-Driven Software Migration (MDSM 2011)

March 1, 2011 in Oldenburg, Germany

Satellite Event of IEEE CSMR 2011
March 1-4, 2011

Wilhelm Hasselbring
University of Kiel

Software Engineering Group
Kiel, Germany

wha@informatik.uni-kiel.de

Andreas Fuhr, Volker Riediger
University of Koblenz-Landau

Institute for Software Technology
Koblenz, Germany

afuhr|riediger@uni-koblenz.de

Preface

Welcome to the First International Workshop on Model-
Driven Software Migration (MDSM 2011), March 1, 2011
in Oldenburg, Germany.

Model-driven software development (MDSD) and soft-
ware migration are two different approaches that had been
under research separately. In recent years, researches found
interesting analogies between both fields.

In software engineering, one of the key principles is ab-
straction, that is, focusing only on the important aspects
while fading-out details. Model-driven software develop-
ment (MDSD) aims at modeling these important aspects at
different levels of abstraction. This allows to design soft-
ware starting with the “big picture” (abstract level) and ap-
proach more concrete levels by adding details to the models
until the system is implemented (concrete level).

Software migration aims at converting an old system
(legacy system) into a new technology without changing
functionality. This implies understanding, how the legacy
system is working. For this purpose, legacy code must be
leveraged into a higher level of abstraction in order to focus
only on the important aspects.

At this point, model-driven software development and
software migration meet. Migration projects can benefit
from the vision of MDSD by abstracting legacy systems
(reverse engineering), transform them and implement the
migrated system (forward engineering).

However, both fields of research are not yet entirely un-
derstood. Neither is the combination of both fields exam-
ined very well.

MDSM 2011

The MDSM workshop brought together researchers and
practitioners in the area of model-driven approaches sup-
porting software migration to present and discuss state-of-
the-art techniques as well as real-world experiences to stim-
ulate further model-driven migration research activities.

The scope of the MDSM workshop included, but was not
restricted to, the following topics:

• Modeling languages, query languages and transforma-
tion languages

• Domain Specific Languages for software migration

• Model-integration in repositories

• Model-driven architecture reconstruction or migration

• Model-driven code migration

• Software migration by transforming legacy code

• Model-driven software renovation

• Tools and methods for model-driven migration

• Design patterns for model-driven software migration

• Experience reports

The MDSM workshop was held during the CSMR 2011
main conference on March 1, 2011. The full-day workshop
consisted of three thematically grouped sessions:

Joint Proceedings of MDSM 2011 and SQM 2011

2

• one 90 minutes project session, presenting latest re-
search projects in the field of model-driven software
migration

• two 90 minutes paper sessions containing paper pre-
sentations with plenty of time for discussions.

The proceedings contain the papers and project presen-
tations presented at MDSM 2011. For regular papers, we
received eight submissions, from which we accepted four
papers based on a rigorous reviewing process. Each paper
was reviewed by four program committee members. In ad-
dition, we invited three projects in the field of model-driven
software migration to present their work and to submit a 2
pages summary of their project.

Organizers

Workshop Chairs

• Wilhelm Hasselbring, Christian-Albrechts-Universität
zu Kiel, Germany

• Andreas Fuhr, Universität Koblenz-Landau, Germany

• Volker Riediger, Universität Koblenz-Landau, Ger-
many

Program Committee

• Andy Schürr, Technische Universität Darmstadt, Ger-
many

• Anthony Cleve, Institut National de Recherche en In-
formatique et en Automatique (INRIA) Lille, France

• Bernhard Rumpe, Rheinisch-Westfälische Technische
Hochschule (RWTH) Aachen, Germany

• Dragang Gasevic, Athabasca University, Canada

• Eleni Stroulia, University of Alberta, Canada

• Filippo Ricca, Università degli Studi di Genova, Italy

• Harry Sneed, Central European University Budapest,
Hungary & Universität Passau, Universität Regens-
burg, Germany

• Heinz Züllighoven, Universität Hamburg, Germany

• Jaques Klein, Université du Luxembourg

• Jorge Ressia, Universität Bern, Switzerland

• Jürgen Ebert, Universität Koblenz-Landau, Germany

• Klaus Krogmann, Karlsruhe Institute of Technology,
Germany

• Rainer Gimnich, IBM Frankfurt, Germany

• Rocco Oliveto, Università degli Studi di Salerno, Italy

• Romain Robbes, Universidad de Chile, Chile

• Steffen Becker, Universität Paderborn, Germany

• Tudor Girba, Universität Bern, Switzerland

Acknowledgments

The organizers would like to thank all who contributed
to the workshop. We thank the authors for their submis-
sions and we especially thank the Program Committee and
their sub-reviewers for their good work in carefully review-
ing and collaboratively discussing the submissions.

March, 2011 Andreas Fuhr
Wilhelm Hasselbring

Volker Riediger

Joint Proceedings of MDSM 2011 and SQM 2011

3

Model-Driven Migration of Scientific Legacy Systems to Service-Oriented
Architectures

Jon Oldevik, Gøran K. Olsen
SINTEF Information and Communication Technology

Forskningsvn 1, 0373 Oslo, Norway
jon.oldevik | goran.olsen at sintef.no

Ute Brönner, Nils Rune Bodsberg
SINTEF Materials and Chemistry

Brattørkaia 17c, 7465 Trondheim, Norway
ute.broenner | nilsrune.bodsberg at sintef.no

Abstract—We propose a model-driven and genera-
tive approach to specify and generate web services for
migrating scientific legacy systems to service-oriented
platforms. From a model specification of the system
migration, we use code generation to generate web
services and automate the legacy integration. We
use a case study from an existing oil spill analysis
application developed in Fortran and C++ to show
the feasibility of the approach.

Keywords-Model-driven engineering, legacy migra-
tion, web services

I. Introduction

A large number of existing systems, especially within
data and computationally intensive domains, are based
on implementations that are becoming increasingly diffi-
cult to maintain and evolve [1], typically in languages like
Cobol and Fortran. Competent personnel with know-
ledge of these technologies is also becoming a scarce
resource. Modernisation toward a service-oriented archi-
tecture may also open for new business opportunities.

In this paper, we investigate a model-driven approach
for migrating legacy systems to service-oriented archi-
tectures. Our migration strategy is wrapping of existing
legacy components. We use the Unified Modelling Lan-
guage (UML) to specify migration models, or wrappers,
that are fed to model-driven code generators to generate
a deployable service. This work has been done in the
SiSaS project1, which has an overall focus of methods
and tools for migrating scientific software to service-
oriented architectures.

We define a migration profile in UML that contains
concepts for integrating with existing legacy, such as
native libraries, executable programs, and databases, as
well as for integrating with existing web services. We
establish a modelling approach – a method – for how
to specify services using the migration concepts, as well
as concepts from SoaML [2]. Our modelling comprises
the interfaces and structure of a service, as well as the
behaviour of different service parts.

Our goal is to create effective and usable means for
migrating legacy systems to service-oriented platforms.

1SINTEF Software as a Service

Our conjecture is that model-driven and generative tech-
niques can provide these means.

II. Motivating Case Study: Oildrift Simulation

In SINTEF Materials and Chemistry, they have a
commercial legacy product for simulating oil drift, which
can help predicting the spreading of oil in case of an
accidental spill. The system is implemented by a Fortran
simulation back-end and a C++ front-end. Now, they
want a transition to a service-oriented paradigm to
more easily adapt to new customer needs and more
flexible business models. Figure 1 illustrates the existing
application.

Oil databaseOil database

Simulation
Engine

(Fortran)

Simulation
Engine

(Fortran)

Environmental
Data (wind, current, etc)

Front-end – set up scenario,
Visualise results (C++)

Figure 1. Oildrift Prediction – Legacy Application

The Fortran simulation core is responsible for simu-
lating oil drift based on numerical models. It is invoked
from a presentation layer written in C++. All input is
file based, and simulation runs in batch mode from some
minutes to several days. This approach has worked fine
for many years, but there are some apparent challenges
with respect to interoperability, integration, and scala-
bility. The goal is to migrate the application to meet new
market needs while coping with these challenges.

III. Our approach

We use model-driven engineering techniques to de-
velop the oil drift prediction as a service that wraps
the existing simulation engine. UML models are used
to specify the service interfaces and the details of the
wrapper architecture. From these models, we generate

Joint Proceedings of MDSM 2011 and SQM 2011

4

XML schemas for the web service, Java interface and
class implementations of the web service, the architec-
ture of the wrapper, and its behavioural implementation.
Wrapping of the C++ front-end is out of our scope, since
this will be re-designed to fit a web-based interaction
paradigm.

We define a UML migration profile to represent se-
mantics of different types of migration features, such
as executables, databases, and native libraries. The code
generators use this semantics to generate the necessary
integration code. Figure 2 illustrates the high-level ap-
proach.

Executable
components

Native
Share libsDatabases

External
libraries

Generated Web Service

UML Models

Model 2 Text Transformations

interfaces
Structured

classes behaviour

Migration profile

Data
transformations

Web
services

SoaML profile

Figure 2. Approach Overview

We use UML interfaces and classes to model the
structural parts of the system. Service interfaces define
the behaviour, and classes define the internal structure
of the services. UML composite structures are used for
specifying the service de-composition into parts. The
service is decomposed by legacy component parts, which
is orchestrated by the service to provide its operations.
The behaviour of the service and its contained legacy
wrapper components is defined by UML activity dia-
grams.

To relate the migration models to the service-oriented
modelling domain, we use some SoaML concepts to
describe services: the stereotype «serviceInterface» is
used to denote a service, i.e. the service that wraps the
legacy systems. The stereotype «MessageType» is used
to specify the data types passed as message input and
output of the service.

A. The migration profile

The migration profile contains a set of stereotypes
used for adding migration semantics to the UML models.
The main purpose of the migration model is to integrate
existing legacy functionalities and expose them through
well-defined interfaces. To this end, we use standard
UML models extended with migration semantics from
a profile.

The Component Types: The component types rep-
resent different sorts of legacy components that take

part in fulfilling the responsibilities of the legacy system.
This might be existing shared libraries, executables, Java
libraries, databases, or web services. Figure 3 specifies
the set of component types that are in the current profile.

Figure 3. Component types

The stereotype «WebService» denotes the wrapping
of an external web service, i.e. a web service client.
«RestfulWebService» denotes the wrapping of a restful
web service. Its endpoint is an URI that acts as a data
source, which is fetched by the wrapper and used locally.
«exe» denotes the wrapping of an executable program.
«JNI» denotes the wrapping of a native library, such
as a windows shared DLL, using Java Native Interface
(JNI). «external» denotes integration with external Java
libraries, e.g. provided by a jar file. «db jdbc» denotes
the wrapping of a JDBC database. Operations defined
in classes of this type represent database SQL queries.

The profile additionally provides stereotypes for spe-
cific types of operations, such as «asynch» for asyn-
chronous operations and «RSOp» for restful service
operations. Exceptions can be specified explicitly by
classes stereotyped «exception». Throwing and catching
of exceptions are specified by dependencies stereotyped
«throws» and «catches».

Behaviour – Activities and Actions: Behaviour is
declared by operations in components. The behaviour
of these operations are defined by associated activity
diagrams. An activity diagram defines behaviour by
sequences and branches of actions that are mapped to
statements in code generation. Standard (opaque) ac-
tions contain embedded Java code. CallOperationActions
are used for defining invocations to defined operations
of related components. In addition, we define a set of
stereotypes in the migration profile for simplifying the
action specification:

«return» is used to denote a return from the method
execution with a specific value; «assign» is used to
denote an assignment of a value to a variable; «setState»
is used to denote the setting of an internal state variable,
specifically used for asynchronous and long running op-
erations; «setReturn» is used to set the return value of
an asynchronous and long running operation; «param»
is used to define an input parameter to a CallOpera-
tionAction. It references a previously defined variable;

Joint Proceedings of MDSM 2011 and SQM 2011

5

finally, «valueparam» is used to define a literal value as
an input parameter to a CallOperationAction.

B. Modelling the Oildrift Prediction Case

In this section, we exemplify the use of the migration
profile on the oildrift prediction case in terms of struc-
ture and behaviour.

Service Structure and Interface: The service itself
is defined by a SoaML «serviceInterface» class, which
implements the service interface with a set of exposed
operations (Figure 4). The most interesting of these is
the «asynch» operation predictOilDriftAsynch, which
provides the main service in the oildrift prediction case.
Since the execution of a simulation may run for hours,
or even days, the operation is declared as asynchronous.
The operation will return immediately with only a ses-
sion id to identify the session.

Two additional helper operations are provided for
checking execution status (getStatus) and to retrieve the
result upon termination (getPredictOilDriftResult).

Figure 4. Predict Oildrift – Service and Wrapper Components

The PredictOilDriftService is a structured class that
contains a set of parts: the PredictOilDriftServiceCon-
troller is the internal orchestration component for the
service. All incoming calls are delegated to the con-
troller, which implements the operations of the service.
The DataTransformer provides operations for trans-
forming input required by the Fortran simulation en-
gine, and transforming result data after simulation. The
FatesWrapper is an «exe» component, which wraps
the execution of the Fortran simulation program. The
WeatherServiceIntegrator provides operations for inte-
grating with an external weather data provider. It is
further de-composed by two parts: a «restfulWebSer-
vice» called WeatherService and a «JNI»-component
called GribDataTransformer. The getWeatherInfo oper-
ation gets weather data from a restful web service that
provides binary data in the GRIB2 format. To transform
the GRIB-data to the input format used by the sim-
ulation engine, an external native library (in this case

2GRIdded Binary, http://www.wmo.int

DLL) is integrated by the GribDataTransformer. The
OilDatabase is a «db jdbc»-component, which provides
oil type information from an SQL database.

The data types passed in the service interface are
modelled as classes stereotyped using the SoaML stereo-
type «MessageType». Apart from the stereotype, the
data types are specified with standard UML classes with
attributes and associations.

Behaviour: Component behaviour is specified for
different operations in the migration model. Behaviour
is defined by Activity diagrams that are associated with
the operations they implement.

Figure 5 shows the behaviour of the predictOilDrif-
tAsynch operation, which is contained in the Predic-
tOilDriftServiceController. All invocations to the service
PredictOilDriftService is by convention delegated to its
controller part.

The example with the asynchronous operation is in-
teresting, since it also requires handling of the long-
running external executable. In this case, this is handled
by providing a second activity diagram, which specifies
the behaviour upon termination of the executable.

Figure 5. Predict Oildrift Service Behaviour

The first activity diagram specifies the initial be-
haviour of the operation, up until the call to the exe-
cutable component.

The second activity diagram from Figure 5 specifies
the behaviour occurring when the execution of the ex-
ternal program has terminated. When the final action is
executed, the service state (for this particular session id)
is set to a ready state, and the client can fetch the result
of the service.

Our approach for behavioural modelling is tied to the
target language, in this case Java, since we in some
cases embed small portions of code inside actions. We

Joint Proceedings of MDSM 2011 and SQM 2011

6

could get around this by incorporating a richer set of
UML actions that can cope with variable declarations,
property references, and object creation. This extension
will be investigated as part of future work.

C. Code generation

The purpose of the migration models is to automate
as much as possible the legacy system migration process.
We have developed a set of transformations, or code
generators, to support the transition from models to
deployable services. They were implemented with the
model to text transformation tool MOFScript[3].

IV. Related Work

Dorda et al.[4] give a survey of legacy system moderni-
sation approaches. They distinguish between two main
types of modernisation: white-box and black-box mod-
ernisation. White box modernisation requires an under-
standing of the internal parts of a system, and involves
re-structuring, re-architecting, and re-implementing the
system. Black-box modernisation is only concerned with
the input/output, i.e. the interfaces, of the legacy sys-
tem, and is often based on wrapping. Our approach
can be seen as a model-driven black-box modernisation
technique. However, the migration also has flavours of
white-box migration to it, in particular in understanding
and transforming the legacy data formats.

Within the Object Management Group (OMG), the
Architecture-Driven Modernization (ADM) task force
[5] is working on standards to support legacy moderni-
sation, such as meta-models for knowledge discovery,
software visualisation, and refactoring.

Razavian and Lago [6] present a SOA migration frame-
work – (SOA-MF) – wherein they establish an overall
process framework for legacy migration, focusing on
recovery and re-engineering, and put it in the context
of migration methods such as SMART [7]. Although our
work has not focused on re-factoring or re-engineering,
the processes targeting legacy discovery and transforma-
tion to new architecture has also been addressed in our
work.

Canfora et al.[8] present an approach for migrating
interactive legacy systems to web services based on
wrapping. They define a model (a state machine) of the
user interactions, which is the basis for integration with
legacy systems through terminal emulation. This process
is then exposed as a web service.

V. Conclusion and Outlook

We have presented a model-driven approach for legacy
migration to service-oriented architectures, where the
focus is black-box migration by wrapping legacy com-
ponents using model-driven and generative techniques.
We have defined a UML profile for migration and a set

of code generators for generating services and wrapper
components. We have tested the migration approach on
an oildrift prediction system, by modelling and gener-
ating the services and wrappers required for integration
with the various legacy components.

At this time, we have not addressed automation of
legacy data mappings, which is a major concern in legacy
modernisation. In the current case study, data mappings
between binary data formats where written manually. In
future work we will investigate appropriate techniques
and tools for specifying data transformations at the
model level, and for mapping these to the implemen-
tation level.

Acknowledgements

The results reported in this paper are from the SiSaS
project (SINTEF Software as a Service). SiSaS is an in-
ternal project within SINTEF that focuses on migration
of scientific legacy scientific software to services.

References

[1] F. Zoufaly, “Issues and challenges facing legacy systems,”
Project Management, developer.com, 2002.

[2] Object Management Group (OMG), “Service Oriented
Architecture Modeling Language (SoaML), FTF Beta 2,”
OMG, Standard ptc/2009-12-09, 2009.

[3] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and
A. Berre, “Toward Standardised Model to Text Trans-
formations,” in European Conference on Model Driven
Architecture - Foundations and Applications (ECMDA).
Nuremberg: Springer, 2005, pp. 239–253.

[4] S. Comella-Dorda, K. Wallnau, R. C. Seacord,
and J. Robert, “A survey of legacy system
modernization approaches,” 2000. [Online]. Available:
http://handle.dtic.mil/100.2/ADA377453

[5] Object Management Group (OMG), “ADM White Pa-
per: Transforming the Enterprise,” OMG, White paper
http://www.omg.org/docs/admtf/07-12-01.pdf, 2008.

[6] M. Razavian and P. Lago,“Understanding SOA migration
using a conceptual framework,” Czech Society of Systems
Integration, 2010.

[7] S. Balasubramaniam, G. A. Lewis, E. J. Morris,
S. Simanta, and D. B. Smith, “SMART: Application of a
method for migration of legacy systems to SOA environ-
ments,”in Service-Oriented Computing - ICSOC 2008, 6th
International Conference, Sydney, Australia, December
1-5, 2008. Proceedings, ser. Lecture Notes in Computer
Science, A. Bouguettaya, I. Krüger, and T. Margaria,
Eds., vol. 5364, 2008, pp. 678–690.

[8] G. Canfora, A. R. Fasolino, G. Frattolillo, and P. Tra-
montana, “Migrating interactive legacy systems to web
services,” in CSMR. IEEE Computer Society, 2006, pp.
24–36.

Joint Proceedings of MDSM 2011 and SQM 2011

7

Model-driven Modernisation of Java Programs with JaMoPP

Florian Heidenreich, Jendrik Johannes, Jan Reimann, Mirko Seifert,
Christian Wende, Christian Werner, Claas Wilke, Uwe Assmann

Technische Universität Dresden
D-01062, Dresden, Germany

Email: firstname.lastname@tu-dresden.de

Abstract—The history of all programming languages exposes
the introduction of new language features. In the case of Java—
a widespread general purpose language—multiple language
extensions were applied over the last years and new ones are
planned for the future. Often, such language extensions provide
means to replace complex constructs with more compact ones.
To benefit from new language extensions for large bodies of
existing source code, a technique is required that performs the
modernisation of existing source code automatically.

In this paper we demonstrate, how Java programs can be
automatically migrated to new versions of the Java language.
Using JaMoPP, a tool that can create models from Java source
code, we enable the application of model transformations to
perform model-driven modernisation of Java programs. Our
approach is evaluated by applying two concrete transforma-
tions to large open source projects. First, we migrate classical
for loops to the new for-each style (introduced in Java 5).
Second, we convert anonymous classes to closures (planned for
Java 8). Furthermore, we discuss how tracing transformations
allows to quantify the impact of planned extensions.

I. INTRODUCTION

Programming languages evolve over time: new features
are added and occasionally old ones are removed. A promi-
nent example of a language that undergoes such an evolution
is Java. For example, generics were introduced in Java 5.

All changes—with a few exceptions—that were intro-
duced to Java, preserved backward compatibility. Programs
written in older versions do still compile and run with new
versions. Still, old programs could be updated using new
language features, assuming this improves code readability
and therewith maintainability. For small programs, old code
fragments can be replaced manually, but for large code bases
automatic code modernisation transformations are required.

Source code transformations are known for quite a while
and specialised tools exist to perform this task (cf. Sect. V).
However, with the advent of Model-Driven Software Devel-
opment (MDSD) [1], standardised transformation languages
(e.g., Query View Transformation (QVT)1) became avail-
able. If one could use these languages for code transforma-
tion, the need for specialised languages would vanish.

To apply a model transformation language to source
code, a model of the respective code is required. Also, a
metamodel of the language that is subject to transformation

1http://www.omg.org/spec/QVT/

is needed. In earlier work, we presented JaMoPP [2], [3]—
the Java Model Printer and Parser—a tool that entails a
complete metamodel for Java and tooling to convert Java
source code to Eclipse Modeling Framework (EMF) [4]
models and vice versa. Therefore, JaMoPP enables arbitrary
EMF-based tools to work on Java programs.

In this paper, we show how JaMoPP and a standardised
model transformation language can be combined to migrate
Java code to a new version of the Java language. We present
two concrete migration examples. First, existing for loops
are transformed to the for-each style that was introduced in
Java 5. Second, the conversion of anonymous inner classes
to closures, which are planned for the Java 8 release, is
performed. We apply the two transformations to a set of large
open source Java projects. The results of this transformation
can be used to quantify the impact of new language features.

The paper is structured as follows. After giving a brief
overview on JaMoPP in Sect. II, we discuss the transforma-
tions for the two migration examples in Sect. III. The result
of performing the transformations of larger bodies of source
code can be found in Sect. IV. We compare our work with
related approaches in Sect. V, and conclude in Sect. VI.

II. JAMOPP—BRIEF OVERVIEW

In MDSD, many generic modelling tools exist that can
be used in combination with arbitrary languages. This is
possible because the tools can be configured with metamo-
dels. A metamodel describes the concepts of a language; also
referred to as the abstract syntax of a language. To exchange
metamodels between tools, the OMG has standardised the
metamodelling languages Meta-Object Facility (MOF) and
Essential Meta-Object Facility (EMOF)2. A widely used
implementation of EMOF is Ecore as part of EMF. To use
a generic modelling tool that supports Ecore with a certain
language, a metamodel of that language needs to be provided
together with tooling to parse (and print) sentences written
in the language’s concrete syntax (e.g., a Java program) into
typed graphs that conform to the metamodel.

With JaMoPP, we provide such an Ecore metamodel
and the tooling to parse and print source code for the
Java language (currently supporting Java 5). This allows

2http://www.omg.org/spec/MOF/2.0

Joint Proceedings of MDSM 2011 and SQM 2011

8

developers to apply generic modelling tools on Java source
code and hence to use the same tools to work with models
(e.g., UML models) and source code. An example of such
a tool, which we show in the next section, is the QVT
transformation language.

Important properties of JaMoPP are: (1) JaMoPP supports
both parsing and printing Java code which allows modelling
tools (e.g., model transformation engines) to both read and
modify Java source code. This conversion preserves the
layout of Java source code. (2) In addition to parsing,
JaMoPP performs name and type analysis of the source code
and establishes links (e.g., between the usage and definition
of a Java class). These links can be exploited by modelling
tools to ensure correctness of static semantics properties of
the Java source files they generate or modify. (3) JaMoPP
itself was developed using our modelling tool EMFText [5].
There, the concrete syntax of Java is defined in an EBNF-
like syntax definition. Based on the metamodel and this
definition, the parser and printer tooling is generated. This
allows us to extend JaMoPP by extending the metamodel
and the syntax definition without the need to modify code.
With this, JaMoPP can co-evolve with future Java versions
and can, in particular, be used to prototype and experiment
with new features. An example of this is closure support,
which is used in Sect. IV.

JaMoPP has been tested with a large body of source code
from open-source Java projects through which stability and
support for all Java 5 language features is assured (see [2]
for details). Initially [2], we focused on using JaMoPP for
forward engineering to generate and compose Java code.
In [3] we presented how JaMoPP is used for reverse engi-
neering. In the next section, we demonstrate how JaMoPP
is used in combination with QVT for modernisation, which
is a combination of reverse and forward engineering.

III. MODEL-DRIVEN SOURCE CODE TRANSFORMATION

In this section we first exemplify Model-Driven Moderni-
sation using our first migration example—the transformation
of for loops to the for-each loops. Afterwards we discuss
the benefits and challenges we experienced in applying
model transformations for source code modernisation in
both migration examples (for-each loops and closures). The
complete transformation scripts can be found online3.

To implement our modernisation transformations we used
QVT-Operational provided by the Eclipse M2M project4.
We consider the declarative language QVT-Operational a
pragmatic choice for the unidirectional transformations typ-
ically required for source-code modernisation. In contrast,
its declarative counterparts (QVT-Relations, QVT-Core) are
more suitable for bi-directional transformation.

3http://jamopp.org/index.php/JaMoPP Applications Modernisation/
4http://www.eclipse.org/m2m/

1 mapping t r ans fo rmForLoopToForeachLoop
2 (forLoop : JAVA : : s t a t e m e n t s : : ForLoop)
3 : JAVA : : s t a t e m e n t s : : ForEachLoop
4 when {
5 forLoop . c h e c k L o o p I n i t () and
6 forLoop . checkLoopCond i t i on () and
7 forLoop . c h e c k L o o p C o u n t i n g E x p r e s s i o n () and
8 forLoop . c h e c k L o o p S t a t e m e n t s ()
9 }{

10 var l i s t T y p e : JAVA : : t y p e s : : TypeRefe rence
11 := g e t I t e r a t e d C o l l e c t i o n T y p e (c o u n t e r I d e n t i f i e r) ;
12 var l o o p P a r a m e t e r
13 := o b j e c t JAVA : : p a r a m e t e r s : : O r d i n a r y P a r a m e t e r {
14 name := ” e l e m e n t ” ;
15 t y p e R e f e r e n c e := l i s t T y p e } ;
16 r e s u l t . n e x t := l o o p P a r a m e t e r ;
17 r e s u l t . s t a t e m e n t :=
18 map r e p l a c e C o l l e c t i o n A c c e s s o r S t a t e m e n t s (
19 forLoop , l o o p P a r a m e t e r) ;
20 }

Listing 1. QVT Transformation to replace for loops with for-each loops.

A. Example of Model-Driven Modernisation of For Loops

Listing 1 shows a mapping taken from the transfor-
mation of for loops to for-each loops. An example of
the expected replacement and a description of the loop
elements used in the transformation is given in Fig. 1.
The mapping consists of a when-clause (lines 4-9) and
a mapping body (lines 10-20). The when-clause defines
a number of preconditions that need to be satisfied by a
given for loop to be replaced. For instance, that the init-
statement initialises the loop counter variable with
0, that the loop condition ensures iteration among all
collection elements, or that the counting expression
always increases the loop counter variable by 1.
Furthermore, the loop statements are not allowed to
refer to the counter variable aside from accessing
the collection for the next element. If all preconditions are
satisfied we calculate the generic type of the collection
that is iterated (lines 10-11) and create an iteration
parameter for the for-each loop that is initialised with
this type (line 12-15). Finally, the new for-each loop is
initialised with this parameter and its body is filled with the
statements of the original for loop, where all statements for
collection access are replaced with references
to the iteration parameter of the for-each loop.

B. Applicability of QVT for Model-Driven Modernisation

For the specification of both transformation scripts we
used a set of tools provided by the M2M project for
QVT-Operational. The included editor provided advanced
editing features like syntax highlighting, code navigation,
and code completion. Especially code completion helped a
lot in writing expressions that traverse and analyse Java
models. A second tool that helped a lot in developing
transformations was the QVT debugger. It allows the step-
wise evaluation of transformation execution and was indis-
pensable to understand and fix problems in our complex
transformation scripts. Third, the QVT interpreter generates

Joint Proceedings of MDSM 2011 and SQM 2011

9

collection

init

condition

counting
expression

counter variable

loop statements

iteration parameter

reference to
iteration parameter collection access

Figure 1. Example of for loop replacement explaining the elements of for- and for-each loops.

tracing information for each execution of the transformation.
The trace records all mappings applied and enabled the
quantitative analysis of our examples. We think that the
reusability and maturity of these generic tools provide some
good arguments for applying a standardised transformation
language.

A benefit of model-driven modernisation was the graph-
structure of models, which, compared to tree-structures often
provided by code parsing tools, allow for more convenient
navigation and analysis of references between declarations
and uses of code elements (e.g., variables). For example, this
eased the specification of the preconditions for the for loop
migration that searches the method body for statements that
use the counter variable declared in the loop header.

In both examples it is not trivial to come up with an
exhaustive set of patterns that identify source code that can
be modernised. We consider this a challenge for source code
modernisation in general. However, we also learned that
some idioms (like the for loop presented in Fig. 1) are quite
common and occurred in all Java projects we investigated,
as can be seen in the next section.

Some drawback of using model transformations for code
modernisation was the focus on abstract syntax, i.e., the
language metamodel. It required a good knowledge of the
JaMoPP metamodel and some training to represent patterns
of source code in abstract syntax. On the other hand, the
strict structure of an explicit metamodel was beneficial to
ensure the well-formedness of the produced source code.

IV. EVALUATION

To evaluate the performance of our source code mod-
ernisation approach, we applied the transformations from
Sect. III to a set of Java frameworks available to the public.
Our goal was to answer the following questions: First,
we wanted to know whether a general purpose modelling
environment like EMF is scalable enough to handle such a
large set of models. Second, we were curious how many
resources are required to perform a transformation of this
scale with QVT—a generic model transformation language.
To answer these questions, we transformed 16.402 Java files
from 10 open source projects.

A. Performance

To evaluate the transformation performance, we measured
the time needed to perform the transformations on individual

compilation units. This includes all types referenced by this
unit, but excludes other, unrelated parts of the source code.
We used a machine with a Dual Core AMD Opteron running
at 2.4 GHz with 4 GB RAM. We used only one core of the
machine to avoid problems with Eclipse plug-ins that are
not thread-safe.

Framework Files For loops Closures
min repl./occur. min repl./occur.

AndroMDA 3.3 698 3 4/959 8 8/201
Apache Ant 1.8.1 829 5 24/1028 21 12/99
Comns. Math 1.2 395 1 25/845 5 0/25
Tomcat 6.0.18 1127 4 65/1437 15 52/125
GWT 1.5.3 1850 5 29/1044 23 26/670
JBoss 5.0.0.GA 6414 16 472/2744 70 197/591
Mantissa 7.2 242 1 7/652 3 18/29
Spring 3.0.0.M1 3096 8 82/680 43 31/1403
Struts 2.1.6 1035 3 7/130 13 8/158
XercesJ 2.9.1 716 3 21/1111 12 62/94

16402 49 736/10630 213 414/3395

Figure 2. Transformation time and ratio of found and replaced elements.
The results of our measurements are shown in Fig. 2.

From these numbers one can derive that the pure average
transformation time per source file is 0.2 seconds (for-each
loops) and 0.8 seconds (closures). These values can be
obtained by dividing the total time (given in minutes in
columns 3 and 5) by the number of total source files. In
addition to the transformation time one must also take into
account the time needed to load the input models. This can
take up to a few minutes for very complex source files, but is
usually done within few seconds. For a migration task, which
is performed once for every new release of a programming
language, this renders the approach still feasible.

B. Quantification of Language Extensions
To quantify the impact of a planned language extension,

one can count the number of replaceable language con-
structs. This is usually only a subset of all cases where a new
language construct is applicable. Some potential applications
of a language construct may simply not be detected, because
developers used structures not covered in the transformation
script.

Nonetheless, the number of places in existing source code
where a new language construct can be applied, does at least
give some indication about its impact. The ratio for loops
that can be replaced by for-each loops to all for loops found,
and the ratio of anonymous inner classes that are replaceable
by closures to all inner classes found is shown in Fig. 2.

Joint Proceedings of MDSM 2011 and SQM 2011

10

On average, 6.9% of all for loops were transformed to
the for-each style. The percentage of anonymous classes
that were replaced by closures was 12.2%. Certainly, these
numbers can be increased if more patterns are covered by the
transformation scripts. However, given the very restrictive
scripts which we used, the numbers are quite high. Thus,
one can reason that actual benefit can be gained by using
automatic transformations here and that both language ex-
tensions are useful additions to the Java language.

V. RELATED WORK

There exists a large amount of work and tools for source
code transformation.5 One prominent approach is Strate-
go/XT [6], a tool set for strategic rewriting of source code.
While Stratego/XT and other approaches are proved to be
useful and applicable in academic and industrial projects,
they do not provide a standardised transformation language.
With JaMoPP one can transform source code to a standard-
ised intermediate representation (i.e., EMF-based models)
where we apply a standardised transformation language
(i.e., QVT). This can be generalised to other programming
languages and other transformation languages.

MoDisco [7] aims at discovering models from legacy
applications. It handles Java code as well as other arte-
facts (e.g., configuration files). Based on the Eclipse JDT
parser, MoDisco creates models from source code files. The
metamodel for these models is defined in Ecore similar
to JaMoPP. Thus, transformations can be specified using
existing languages (e.g., QVT). However, MoDisco does not
preserve the layout of the source code when printing back
transformed models back to their original representation
(i.e., Java source code). Approaches for metamodel evolution
(e.g., [8]) are inherently limited to the model level and do
not allow to print models after performing evolution steps.

Architecture-driven Modernisation (ADM)6 of the OMG
goes beyond what is presented in this paper by applying
modernisation efforts on all artefacts involved in the software
development process (e.g., source code, database definitions,
configuration files, ...). However, strategies that are built
on top of existing OMG standards (e.g., similar to the
combination of EMOF and QVT in our approach) can fit
nicely in the overall goal of ADM.

VI. CONCLUSION & FUTURE WORK

In this paper, we implemented and evaluated two exam-
ples of Java modernisation to show that JaMoPP in combi-
nation with the standardised model transformation language
QVT can be used for Model-Driven Modernisation of Java
programs. In applying the transformations on a set of open-
source projects we experienced that the transformations
can be performed in acceptable time and transformed a
reasonable part of the code (on average, 6.9% of all for loops

5http://www.program-transformation.org/ provides an overview.
6http://adm.omg.org/

and 12.2% of all anonymous classes were considered as
candidates for transformation). So far we only used our own
judgement based on our experience with Java to determine
the semantic correctness of the transformation rules. In fu-
ture we plan to automatically validate correctness by running
the test suites of the open-source projects on the modernised
code. Further, we did not yet compare the effort of writing
QVT transformations for Java with alternatives such as
using Java-specific source code transformation tools or other
model transformation languages. Doing this comparison by
implementing the two modernisation transformations with
different languages and tools is subject to future work.

ACKNOWLEDGMENT

This research is co-funded by the European Commission
within the projects MODELPLEX #034081 and MOST
#216691, by the German Ministry of Education and Re-
search (BMBF) within the projects feasiPLe and SuReal; by
the German Research Foundation (DFG) within the project
HyperAdapt and by the European Social Fund and Federal
State of Saxony within the project ZESSY #080951806.

REFERENCES

[1] M. Völter, T. Stahl, J. Bettin, A. Haase, and S. Helsen, Model-
Driven Software Development. John Wiley & Sons, 2006.

[2] F. Heidenreich, J. Johannes, M. Seifert, and C. Wende, “Clos-
ing the Gap between Modelling and Java,” in Proc. of 2nd Int’l
Conf. on Software Language Engineering (SLE’09), ser. LNCS,
vol. 5969. Springer, Mar. 2010, pp. 374–383.

[3] ——, “Construct to Reconstruct—Reverse Engineering Java
Code with JaMoPP,” in Proc. of Int’l Workshop on Reverse
Engineering Models from Software Artifacts (R.E.M. 2009),
Oct. 2009.

[4] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks,
Eclipse Modeling Framework (2nd Edition). Pearson Edu-
cation, 2009.

[5] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende, “Derivation and Refinement of Textual Syntax for
Models,” in Proc. of ECMDA-FA’09, ser. LNCS, vol. 5562.
Springer, Jun. 2009, pp. 114–129.

[6] E. Visser, “Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9,” in Domain-
Specific Program Generation, ser. LNCS, C. Lengauer, D. Ba-
tory, C. Consel, and M. Odersky, Eds. Spinger, Jun. 2004,
vol. 3016, pp. 216–238.

[7] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A
Generic and Extensible Framework for Model Driven Reverse
Engineering,” in Proc. of ASE’10. ACM, 2010, pp. 173–174.

[8] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE -
Automating Coupled Evolution of Metamodels and Models,”
in Proc. of ECOOP’09, ser. LNCS, S. Drossopoulou, Ed., vol.
5653. Springer, 2009, pp. 52–76.

Joint Proceedings of MDSM 2011 and SQM 2011

11

DynaMod Project: Dynamic Analysis for
Model-Driven Software Modernization

André van Hoorn∗, Sören Frey∗, Wolfgang Goerigk†, Wilhelm Hasselbring∗, Holger Knoche†, Sönke Köster§,
Harald Krause‡, Marcus Porembski§, Thomas Stahl†, Marcus Steinkamp§, and Norman Wittmüss‡

∗Software Engineering Group, University of Kiel, Christian-Albrechts-Platz 4, 24098 Kiel
†b+m Informatik AG, Rotenhofer Weg 20, 24109 Melsdorf
‡Dataport, Altenholzer Straße 10-14, 24161 Altenholz
§HSH Nordbank AG, Schloßgarten 14, 24103 Kiel

Abstract—Our project DynaMod addresses model-driven mod-
ernization of software systems. Key characteristics of the envi-
sioned approach are: (1) combining static and dynamic analysis
for extracting models of a legacy system’s architecture and
usage profile; (2) augmenting these models with information that
is relevant to the subsequent architecture-based modernization
steps; and (3) automatically generating implementation artifacts
and test cases based on the information captured in the models.
This paper provides an overview of the DynaMod project.

I. INTRODUCTION

Outdated programming technologies or platforms are typical
reasons for long-lived software systems to age. Continuous
and sustainable modernization is required for retaining their
maintainability.

In our project DynaMod, we will investigate techniques
for model-driven modernization (MDM) of software systems.
Innovative aspects are the combination of static and dynamic
analysis for reverse engineering architectural and usage mod-
els, as well as its semantic augmentation by information
supporting subsequent generative forward engineering steps,
including tests. DynaMod started with the beginning of 2011
and has a two-year funding from the German Federal Ministry
of Education and Research (BMBF).

The remainder of this paper provides a brief summary of
the envisioned approach (Section II), the consortial partners
(Section III), and the working plan (Section IV).

II. ENVISIONED DYNAMOD APPROACH

The envisioned approach can be structured into three phases:
1) Extracting architecture-level models from the outdated

system and its usage.
2) Defining architecture-based transformations to models of

the desired system.
3) Generating implementation artifacts and tests for the

modernized system.
Model extraction will be achieved by combining static and
dynamic analysis, as well as additional augmentation. Static
analysis of the source code yields a mainly structural view,
e.g., including architectural entities and relations. Dynamic
analysis, comprising continuous monitoring, adds quantitative
runtime behavior information, such as workload characteristics
and execution frequencies of code fragments. The models are

The DynaMod project is funded by the German Federal Ministry of Edu-
cation and Research under the grant numbers 01IS10051A and 01IS10051B.

further refined by manually augmenting them with information
that can only be provided by system experts, e.g., mapping
code fragments to architectural layers. The conceptual mod-
ernization is performed on the architectural level by defining
transformations among the extracted models of the outdated
system and models of the target architecture. Established gen-
erative techniques from model-driven software development
(MDSD) [1] are utilized to develop the modernized system.
Test cases are generated by including the usage profile in-
formation from the dynamic analysis. Further evolution of the
modernized systems is based on the MDSD paradigm, keeping
the models synchronized with the system implementation.

III. PROJECT CONSORTIUM

The DynaMod project consortium consists of the b+m Infor-
matik AG (development partner and consortium leader), the
University of Kiel (scientific partner), as well as two associated
companies, Dataport and HSH Nordbank AG.

• b+m Informatik AG: The b+m group offers IT solu-
tions, including consultancy, software engineering, and main-
tenance services. Being the initiator of the openArchitecture-
Ware (oAW) framework, b+m is known for its pioneering role
in developing and applying MDSD techniques and tools.

• University of Kiel, Software Engineering Group: The
Software Engineering Group conducts research in the area
of software engineering for parallel and distributed systems.
One focus is the investigation of model-driven techniques
and methods for engineering, operating, as well as evolving
software systems, having an emphasis on the consideration of
software quality.

• Dataport: Dataport provides information and communi-
cation technology services for the public administration in
the German federal states of Schleswig-Holstein, Hamburg,
Bremen, and for the tax administration of the federal states of
Mecklenburg-Vorpommern and Niedersachsen.

• HSH Nordbank AG: HSH Nordbank is a leading bank for
corporate and private clients in northern Germany. As one of
the major providers of real estate finance in Germany it focuses
on serving commercial clients. In the regionally rooted key
industries of shipping, aviation and energy & infrastructure the
bank also operates internationally as a top provider of finance
solutions.

Joint Proceedings of MDSM 2011 and SQM 2011

12

WP 1
Static

Analysis

WP 2
Dynamic
Analysis

WP 5
Model-Based

Testing

WP 4
Code

Generation

WP 3 Definition of Transformations

WP 6 Evaluation

Fig. 1. DynaMod work packages—aligned with the horseshoe model

IV. WORKING PLAN

Based on the envisioned approach outlined in Section II,
some more details about our working plan, including involved
technologies and desired results, are described in this section.
The working plan is structured into six technical work pack-
ages (WPs) which are aligned with the horseshoe model for
re-engineering, as depicted in Figure 1.

WP1—Static Analysis: This work package investigates
methods for the extraction of architectural models utilizing
static analysis techniques. Therefore, we will define appro-
priate meta-models on the basis of the OMG’s Architecture-
Driven Modernization (ADM) standards, e.g., KDM and
SMM. A specific challenge can be seen in providing an ade-
quate representation, abstraction level, and semantic meta-data
describing the outdated system to enable smooth integration
with information obtained from dynamic analysis (see WP 2).
Parsers are required to extract the models from the source
code. We will limit ourselves to the programming platforms
emerging from our case study scenarios (WP 6).

WP 2—Dynamic Analysis: This work package is con-
cerned with the dynamic analysis of a legacy system’s internal
behavior and external usage profile while being deployed in
its production environment. The instrumentation of systems
relying on legacy technology constitutes a technical challenge
to be tackled. We plan to extend our monitoring analysis
framework Kieker [2], currently restricted to Java-based sys-
tems, to support additional programming platforms introduced
by the case studies (WP 6). An interesting research question to
be addressed here is to identify which information is relevant
to the MDM process.

WP 3—Definition of Transformations: The enriched
architecture-level models describing the existing system are
being translated towards a target architecture employing
model-based transformation techniques. Therefore, the corre-
sponding transformation rules are created in this work pack-
age. Regarding a first transformation type, KDM may serve
as a meta-model for both the source and the target models.
A second type transforms these architecture models in code-
centric instances. Here, classifying the transformations and
exploring transformation patterns can improve the efficiency
of the modernization process.

WP 4—Code Generation: Based on MDSD model-to-
code transformation techniques, we will use templates to
generate implementation artifacts, e.g., SOA wrappers and
connectors, from the models of the target architecture (WP 3).
The tooling infrastructure will be based on the Eclipse Model-
ing Project (EMP) which includes the former oAW framework.
In this work package, we will focus on the code generation
for the case study scenarios (WP 6).

WP 5—Model-Based Testing: Usage models extracted
from the legacy system under production workload (WP 2)
will be used to generate representative test cases which can
be executed automatically by appropriate testing tools. We will
focus on tests based on workload generation, allowing to com-
pare quality properties, such as performance and reliability,
among the modernized and the outdated system. It is intended
to develop transformations from models to test plans to be
executed by the load test tool Apache JMeter as well as the
extension Markov4JMeter, supporting probabilistic models.

WP 6—Evaluation: In addition to lab studies, the devel-
oped methodology and tooling infrastructure will be evaluated
based on the three below-described case study systems from
the associated partners. Most likely, these systems will not
be completely modernized during the DynaMod project. We
consider them to be benchmark examples and representatives
of modernization projects pending in practice.

• AIDA-SH (Dataport) is an information management and
retrieval system for inventory data of historical archives. The
system conforms to a client/server architectural style, largely
based on Microsoft technology: database management systems
(DBMSs) based on MS SQL Server (7.0, 2000, and 2003) as
well as MS SQL Desktop Engine (MSDE), and a user interface
implemented with Visual Basic 6 (VB 6). The major impulse
for modernization is the outdated technology.

• Nordic Analytics (HSH Nordbank) is a function library for
the assessment and risk control of finance products. The library
is used in desktop installations (from an Excel front-end), and,
deployed to a grid infrastructure, by online trading and batch
processing systems. Nordic Analytics is implemented using
C#. A modernization will focus on architectural restructuring.

• Permis-B (Dataport) is a mainframe system for managing
health care allowance. The technical platform consists of
z/OS (mainframe operating system), ADABAS-C (DBMS),
COMPLETE (transaction processing monitor), as well as the
programming environments NATURAL and COBOL. User
interfaces are provided by an EskerTun/HobLink terminal
emulation and a Web interface (supporting only MS IE 7)
based on VB 6 and MS SQL Server 2003. Desire for modern-
ization is pushed by the outdated technology and an eroded
architecture, making it difficult to fulfill additional or changed
functional requirements in the future.

REFERENCES

[1] T. Stahl and M. Völter, Model-Driven Software Development – Technol-
ogy, Engineering, Management. Wiley & Sons, 2006.

[2] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and
D. Kieselhorst, “Continuous Monitoring of Software Services: Design
and Application of the Kieker Framework,” Dept. Comp. Sc., Univ. Kiel,
Germany, Tech. Rep. TR-0921, 2009.

Joint Proceedings of MDSM 2011 and SQM 2011

13

REMICS Project: Reuse and Migration of Legacy Applications to Interoperable
Cloud Services

Parastoo Mohagheghi, Arne J. Berre
SINTEF, Norway

{Parastoo.Mohagheghi, Arne.J.Berre}@sintef.no

Alexis Henry
BLU AGE Software - Netfective Technology, France

Franck Barbier
University of Pau - Netfective Technology, France

Andrey Sadovykh
SOFTEAM, France

Abstract—The main objective of the REMICS project is
to specify, develop and evaluate a tool-supported model-
driven methodology for migrating legacy applications to
interoperable service cloud platforms. The migration process
consists of understanding the legacy system in terms of its
architecture and functions, designing a new SOA application
that provides the same or better functionality, and verifying
and implementing the new application in the cloud. The
demonstrations will show the support for two tasks in this
migration: recovery process with the BLU AGE tool and the
use of SoaML and forward engineering with Modelio tool.

I. REMICS APPROACH AND DEMONSTRATIONS

The REMICS1 project will provide tools for model-
driven migration of legacy systems to loosely coupled
systems following a bottom up approach; from recov-
ery of legacy system architecture (using OMG’s ADM-
Architecture Driven Modernization) to deployment in a
cloud infrastructure which allows further evolution of the
system in a forward engineering process. The migration
process consists of understanding the legacy system in
terms of its architecture, business processes and functions,
designing a new Service-Oriented Architecture (SOA) ap-
plication, and verifying and implementing the new appli-
cation in the cloud. These methods will be complimented
with generic “Design by Service Composition” methods
providing developers with tools simplifying development
by reusing the services and components available in the
cloud.

In order to instrument the migration process, the
REMICS project will integrate a large set of metamod-
els and will propose several dedicated extensions. For
the architecture recovery the REMICS will extend the
KDM metamodel. On Platform Independent Model (PIM)
level, the components and services are defined using
SoaML (SOA Modeling Language2) which is developed
in the SHAPE project3. The REMICS project will ex-
tend this language to address the specific architectural
patterns and model driven methods for architecture mi-
gration, and to cover specificities of service clouds de-
velopment paradigm. In particular, the PIM4Cloud Com-
puting, model-driven Service Interoperability and Mod-
els@Runtime extensions are intended to support the

1http://remics.eu/; funded by the European Commission (contract
number 257793) within the 7th Framework Program

2http://www.omg.org/spec/SoaML/
3http://www.shape-project.eu/

REMICS methodology for service cloud architecture mod-
eling.

Furthermore, REMICS will investigate existing test
notations such as the UML2 test profile (UTP) for their
application to the SOA and Cloud Computing domain and
refine and extend them.

The project will focus on open source metamodels and
models with an emphasis on Open Models for standards
and will be actively involved in the standardization process
of the related standards for cloud computing, business
models, SOA, service interoperability, knowledge discov-
ery, validation and managing services.

REMICS targets the following main impact objectives:
• REMICS will preserve and capitalize on the business

value engraved in legacy systems to gain flexibility
brought by Service Clouds, lower the cost of service
provision and shorten the time-to-market.

• REMICS research will provide innovations in ad-
vanced model driven methodologies, methods and
tools in Software as a Service engineering.

• REMICS will provide standards-based foundation
service engineering and will provide a suite of open
ready-to-use metamodels that lowers barriers for ser-
vice providers.

REMICS started in September 2010 and will run for
three years while it builds on the results of several on-
going or finished EU projects such as SHAPE and MOD-
ELPLEX4 (both finished recently) with focus on model-
driven development of applications, MOMOCS with fo-
cus on model-driven modernization, and SOA4ALL and
RESERVOIR with focus on service-oriented development.
The relevant results of previous projects will therefore
be discussed and extensions planned in REMICS will be
presented. The presentation will also discuss collaboration
areas which should be of interest to other projects and
conference participants.

The demonstrations will show the support for two tasks
in this migration: recovery process using BLU AGE5 tool
and the use of SoaML and forward engineering with
Modelio6 tool. Both tool providers are participating in the
REMICS project.

4https://www.modelplex-ist.org/
5http://www.bluage.com/; a solution for both reverse and forward

engineering fully based on MDA and ADM principles
6http://www.modeliosoft.com/

Joint Proceedings of MDSM 2011 and SQM 2011

14

SOAMIG Project: Model-Driven Software Migration towards Service-Oriented
Architectures

A. Winter, C. Zillmann
OFFIS Oldenburg

Institute for Information Technology
{zillmann, winter}@offis.de

A. Fuhr, T. Horn, V. Riediger
Institute for Software Technology (IST)

University of Koblenz-Landau
{afuhr, horn, riediger}@uni-koblenz.de

A. Herget, W. Teppe, M. Theurer
Amadeus Germany

{aherget, wteppe, mtheurer}@de.amadeus.com

U. Erdmenger, U. Kaiser, D. Uhlig,
Y. Zimmermann
pro et con GmbH

{uwe.erdmenger, uwe.kaiser, denis.uhlig,
yvonne.zimmermann}@proetcon.de

Abstract—The SOAMIG project aims at developing a gen-
eral migration process for model-driven migrations towards
Service-Oriented Architectures. This paper highlights the
model-driven tools developed during the SOAMIG project
for two case studies: A language migration from a COBOL
transactional server to Java web services, and a second study
on an architecture migration from a monolithic Java fat
client to a SOA-based JavaEE web application.

I. MOTIVATION

Today, companies are facing a growing competition in
their markets. Competitors are forced to achieve higher
flexibility and faster time-to-market in order to survive.
Often, so-called legacy software developed in the compa-
nies can not keep up with this highly dynamic environment
and therefore slows down innovation.

For this reason, companies are looking for flexible
software concepts supporting fast adaptability to business
changes. A promising approach to achieve the required
flexibility are Service-Oriented Architectures (SOAs).
SOAs encapsulate functionality in coarse-grained, loosely-
coupled and reusable units, called services.

Adopting SOAs, companies do not want to throw away
their existing systems because much money and knowl-
edge has been put into them. Instead of reimplementing
the service functionality from scratch, companies are striv-
ing to reuse their legacy software as much as possible.
Transferring existing code into a new technology without
changing functionality is called software migration.

The SOAMIG project, partially funded by the German
Ministry of Education and Research (BMBF)1, brings
together both: transition into SOA by migrating the legacy
code. The overall goals are i) to define a reference process
[1], ii) to achieve a high degree of automatic code migra-
tion, and iii) to support the migration process by analysis
and transformation tools.

In this project, two universities and two companies have
been involved: the Universities of Oldenburg (OFFIS) and
Koblenz-Landau (IST) supplying reengineering knowl-
edge and model-driven tools, pro et con, supplying long-
time expertise in industrial migration projects, language
analysis, and migration tools development, and Amadeus
Germany, providing one of the industrial legacy systems
and know-how in migration of large-scaled systems.

1Grant no. 01IS09017A-D. See http://www.soamig.de for further in-
formation.

During the SOAMIG project, two industrial case studies
were selected: the LCOBOL case study deals with a
language migration from a transaction driven COBOL
system to Java Web Services, while the ASPL case study is
about an architecture migration from a Java fat client into
a Java SOA. This short-paper presents the tools developed
during the SOAMIG project.

II. LCOBOL: LANGUAGE MIGRATION

The LCOBOL case study is conducted by pro et con,
one of the industrial partners. The main challenge in this
case study is to yield a very high degree of automation
for a language migration from COBOL to Java. Also,
the resulting Java code has to be understandable and
maintainable. Figure 1 shows the set-up of the tool chain.

Every COBOL source file is parsed into a fine-grained
abstract syntax graph by the COBOL front-end CobolFE.
CobolFE can handle various COBOL dialects. The main
translation to Java is done by the model-to-model trans-
formation Cobol2Java. This tool takes the COBOL
model as input. The actual transformation is defined by
many sophisticated rules defining a semantics-preserving
transformation into a Java model. Project specific rules,
e.g., on how to transform specific transaction monitor
calls, amend the language translation. The transformations
are implemented in C++. Finally, Java source code is
generated by JGen and JFormat. JGen takes a model
of a Java translation unit as input and creates syntactically
correct, but only roughly formatted output. JFormat
is a stand-alone, scriptable Java source code formatter
based on the Eclipse JDT formatter and is individually
configurable to various formatting conventions.

III. RAILCLIENT: ARCHITECTURE MIGRATION

In the RailClient case study, an architecture migration
from a monolithic Java system into a SOA-based web
application is investigated by all four project partners.
Figure 2 outlines the tools developed in this part of the
SOAMIG project. Amadeus Germany provided the busi-
ness case and the subject system, an order management
and booking system for train tickets. OFFIS contributed
to the definition and realization of the target architecture.

The SOAMIG repository forms a common core of the
tool-chain. In this repository, artifacts used during migra-
tion are stored as models. The main part of the repository

Joint Proceedings of MDSM 2011 and SQM 2011

15

Translator chain

Cobol2Java

Cobol
Code
Cobol
Code

Java
Code
Java
Code

CobolFE JGen JFormat

Java modelJava model

Transformation rulesTransformation rules

Cobol modelCobol model

Figure 1. Tool set-up for the LCOBOL case study

Java, Cobol, UML
and DSL Metamodels
Java, Cobol, UML
and DSL Metamodels

SOAMIG
Repository

Monolithic legacy system

Message
repository
Message
repository

Business
processes
Business
processes

State
machines

Java
code
Java
code

Extractor tools

JavaFE DSL
parsers
DSL
parsers

Analysis tools

GReQL

FGM

Dynamic
Analysis
Toolset

Code generation tools

Transformation
tools

JGenJFormat

DataModel
Generator

Isolated
service code

Isolated
service code

SOAMIG
Extractor

GReTL

Java modelJava model

Figure 2. Tool set-up for the RailClient case study

is based on the TGraph technology developed by IST.
TGraphs are a versatile data structure formally defined by
grUML (graph UML). The TGraph technology is generic
and can represent arbitrary artifacts. In SOAMIG, the
tools are integrated by an XML-based exchange format
for metamodels and models.

To ease initial program understanding and redocumen-
tation, the explorative tool FGM (Flow Graph Manipulator)
by pro et con was used. This partner also provided
JavaFE, an extractor from Java source to fine-grained
abstract syntax graphs stored in the repository. Not only
source code, but also various other parts of the legacy
system, such as automatons controlling GUI behavior,
message descriptions, and redocumented business pro-
cesses are combined into one comprehensive model. Links
between these parts are established by static and dy-
namic analysis. Static analysis is covered by JavaFE and
GReQL (Graph Repository Query Language). Dynamic
analysis of certain test cases covering the selected business
processes is used to detect relevant portions of the source
code, and to mark service candidates [2].

Among the transformation tools in this case study is
GReTL (Graph Repository Transformation Language), a
general-purpose transformation language that allows to
define and execute arbitrary graph transformations. A sys-
tem specific DataModelGenerator combines message
descriptions and dynamic traces to compile service specific
data structures for the target architecture.

The SoamigExtractor tool provides a graphical
interactive user interface to enable model transformations.
Examples are incorporating dynamic traces, pruning gen-
eralization hierarchies, selection and completion (slicing)
of multi-class Java models based on execution traces, es-
tablishment of traceability links between source and target
models, and export of translation unit models to the above

mentioned JGen and JFormat tools. The generated Java
code requires manual rework. It contains human readable
as well as machine processable annotations to link to the
relevant legacy sources.

IV. CONCLUSION

Summarizing, a set of powerful model-driven tools
and technologies has been developed to support various
tasks during the migration process. Most of the tools are
independent of the concrete legacy system and are reusable
as-is, others have to be configured or have even been
built from scratch. The SOAMIG repository technology
is largely generic, enabling integration of additional meta-
models and traceability to the already existing parts.

Every migration project requires adaption and special-
ization of process, repository, and tools to the specific
needs of the legacy and target systems, the organizational
requirements, and other factors. While the complete mi-
gration of the case study systems is out of scope of the
project, the model-driven tools have proven to be appli-
cable in real-world scenarios. Transfer to other business
cases and different migration tasks is an opportunity to
further evolution of the SOAMIG process and technology.

REFERENCES

[1] U. Erdmenger, A. Fuhr, A. Herget, T. Horn, U. Kaiser,
V. Riediger, W. Teppe, M. Theurer, D. Uhlig, A. Winter,
C. Zillmann, and Y. Zimmermann, “The SOAMIG Process
Model in Industrial Applications,” in Proceedings of the
15th European Conference on Software Maintenance and
Reengineering, T. Mens, Y. Kanellopoulos, and A. Winter,
Eds. Los Alamitos: IEEE Computer, 2011, pp. 339–342.

[2] A. Fuhr, T. Horn, and V. Riediger, “Dynamic Analysis for
Model Integration (Extended Abstract),” Softwaretechnik-
Trends, vol. 30, no. 2, pp. 70–71, 2010.

Joint Proceedings of MDSM 2011 and SQM 2011

16

Comprehensive Model Integration for Dependency Identification with EMFTrace*

Stephan Bode, Steffen Lehnert, Matthias Riebisch
Department of Software Systems / Process Informatics

Ilmenau University of Technology
Ilmenau, Germany

{stephan.bode, steffen.lehnert, matthias.riebisch}@tu-ilmenau.de

Abstract—As model-based software development becomes
increasingly important, the number of models to express
various aspects of software at different levels of abstraction
raises. Meanwhile evolutionary development and continuous
changes demand for explicit dependencies between involved
models to facilitate change impact analysis, software com-
prehension, or coverage and consistency checks. However,
there are no comprehensive approaches supporting models,
dependencies, changes, and related information throughout
the entire software development process. The approach
presented in this paper provides a unified and model-
spanning concept with a repository for model integration,
model versioning, and dependency identification among mod-
els utilizing traceability techniques, enhanced with analytic
capabilities. The identification is based on a rule set to
provide high values for precision and recall. The approach
is implemented in a tool called EMFTrace, which is based
on Eclipse technology and supports different CASE tools for
modeling.

Keywords-model dependencies; model integration; model
repository; meta model; traceability

I. INTRODUCTION

The growing complexity of software is often accompa-
nied by difficulties in implementing changes and by archi-
tectural erosion. One possibility to tackle these problems
is the use of different models and modeling languages
throughout the entire development process to express
requirements, design decisions, and dependencies between
models, which is commonly referred to as model-based
development. The wide use of several modeling languages
and CASE tools has led to a variety of models with
different scope and levels of abstraction. Integrating the
various models and detecting and analyzing dependencies
between them has become important.

It is therefore necessary to provide support for software
evolution and continuous changes through models at dif-
ferent levels of abstraction and by explicitly expressing
dependencies between them. Traceability links are well-
suited to model such dependencies, since they enable
further analyses, as change impact analysis, software com-
prehension, and consistency checks. Moreover, solid tool
support is required to cope with the number of modeled
entities and dependencies to supply practical applicability
and usability.

Existing approaches provide solutions for the integra-
tion of models into centralized repositories, e.g., [6].

*The research presented in this paper was partly funded by the federal
state Thuringia and the European Regional Development Fund ERDF
through the Thüringer Aufbaubank under grant 2007 FE 9041.

Besides, several different concepts have been proposed for
dependency analyses on models through traceability rules,
e.g., in [1]–[4], whereas [5] relies on information retrieval.
However, these approaches only support a limited number
of modeling languages without presenting a solution for
spanning the whole software development process. They
lack a unified concept for managing models, dependen-
cies between models, types of dependency relations and
auxiliary information in a centralized manner. This unified
concept should be enforced to span the entire development
process, ranging from early requirement definitions up to
regression testing with the help of appropriate models.
Heterogenous development environments and the wide use
of several different CASE tools amplify the benefits gained
from a unified and process-spanning approach.

The concept presented in this paper is aimed at creating
an extensible platform for various analyses techniques
required for model-driven engineering, reengineering, and
impact analysis to support software evolution and contin-
uous changes. It is based on a unified approach for com-
prehensive model integration and dependency analysis. In
our approach inter and intra model dependencies are iden-
tified and recorded through traceability links, which are
established by explicitly defined rules. These traceability
rules are combined with information retrieval algorithms to
achieve high precision and recall as well as flexibility. Spe-
cial emphasis has also been put on the explicit modeling of
dependency types, since they provide important semantic
information for further analyses. Moreover, our concept
provides a unified treatment of all related models and data
through automated versioning and management of models,
rules, model dependencies, and dependency types within
a centralized repository. We utilize the extensible model
repository EMFStore [6], which supports the integration of
arbitrary models of standardized modeling languages such
as UML, URN [7], BPMN and OWL. Several analysis
components were integrated into EMFTrace to validate
dependencies and to facilitate further analysis capabilities.

The remainder of this paper is organized as follows.
We discuss current development and research regarding
model repositories and model dependencies in Section II,
whereas Section III introduces our concept and describes
our approaches for model integration and dependency
analysis. Section IV outlines our main conclusions and
future work.

Joint Proceedings of MDSM 2011 and SQM 2011

17

II. STATE OF THE ART

A. Model Repositories

Automated model management and versioning can be
achieved by model repositories that therefore assist model-
based development of software. We considered several
different repository projects as a base for EMFTrace,
including the Eclipse Model Repository1, CDO Model
Repository2, EMFStore3 and AndroMDA4. Maturity, sup-
ported features, usability, and documentation were the
main decisive factors we based our evaluation on. After
a careful consideration of all projects, we decided to use
the EMF5-based EMFStore as our underlying repository.

B. Detection of Model Dependencies

Since we focus on model-based development and de-
pendencies between models, we do not consider ap-
proaches for dependency detection on the level of source
code. Data gained through dependency analyses can either
be stored and maintained in a dependency matrix, as a
graph of traceability links, or as a set of cross-references
[8]. Traceability links allow to attach auxiliary information
to them, such as design decisions and alternatives, or link
types. This information is of an equivalent value as the
actual dependency itself, since it increases the semanti-
cal meaning of a dependency relationship. Therefore, it
is most suitable to represent model dependencies with
traceability links for further analyses.

Most traceability approaches focus either on predefined
rules or on information retrieval. Information retrieval
approaches as proposed in [5] or [9] operate on identifiers
and are therefore easy to adopt to new models and data.
They provide good recall, but their lack of precision and
the complete absence of additional dependency informa-
tion limit their usability for dependency detection among
models and further analyses.

In contrast, rule-based approaches require more work to
adopt to new models, but they result in more reliable links.
Rule-based approaches as proposed in [1]–[4] are able to
provide auxiliary information on dependencies, such as the
type of the dependency specified by the rule. Well-defined
dependency types are inevitable to identify semantically
rich dependencies and to classify them properly.

III. EMFTRACE

A. Concept and Features

EMFTrace implements our approach of comprehensive
model integration and dependency identification as an
extensible platform, which is our basis for further analyses
and research. Our main focus is to provide a set of analyses
and validation features, which is independent of a certain
CASE tool and modeling language, to support engineers,
software architects and other stakeholders throughout the

1http://modelrepository.sourceforge.net/project-summary.html
2http://wiki.eclipse.org/CDO
3http://www.eclipse.org/proposals/emf-store/
4http://www.andromda.org/index.php
5http://www.eclipse.org/modeling/emf/

entire software lifecycle. Based on models and dependen-
cies between them, we want to establish solid tool support
for the following activities:

• Architecture comprehension,
• Dependency analysis,
• Change impact analysis,
• Goal-oriented decision support for:

– Forward engineering and
– Reengineering; as well as

• Validation and consistency checks.

We utilize the EMFStore model repository for storing
and versioning EMF-based models. Figure 1 provides
an overview of the entire approach and illustrates the
interaction of EMFTrace with external CASE tools.

To enable the integration and dependency analysis
of different models we extended EMFStore by several
metamodels as shown in the bottom of Figure 1. We
integrated different modeling languages into the repository
to span the entire software development process. Our
approach supports requirements engineering through URN
goal models, URN use case maps, and UML use cases.
Furthermore, design models such as class diagrams are
provided by UML, which has been fully integrated as
well. Additional dependencies between UML and URN
models are provided by the integration of OWL ontologies,
which supply semantic networks of related terms. To
ensure practical applicability, we support several different
CASE tools which can be used to create and edit the
corresponding models. More details on the integration of
the models are given in Section III-B2.

As mentioned in Section II our approach utilizes rule-
based traceability for dependency identification among
models. To enable a unified treatment of all models and
related data, we integrated additional metamodels into
EMFStore to maintain and store traceability links and
rules directly in the repository. Our traceability metamodel
provides explicit support for modeling a hierarchy of
dependency types to ensure the proper categorization of
detected dependencies. Dependency types can be created
and maintained by users in the repository and aggregated
in special catalogs, and are therefore subject of model
versioning as well. The metamodel for traceability rules
offers a similar concept, which enables users to create
rules directly in the repository and group them together in
catalogs, to support fast exchange and easy maintenance.
The design of our rules is based on similar approaches as
proposed in [3] and [4]. However, we enhanced our rules
with information retrieval techniques which supply addi-
tional query-operators to improve dependency detection.
More details on the concepts for dependencies and rules
follow in the next subsections.

1) Dependency Concept: We store dependency infor-
mation as traceability links to benefit from their rich
semantics. Our traceability metamodel supports binary
and n-ary traceability links. Each traceability link can be
enhanced with additional information such as the type of
a dependency, design decisions, design alternatives, and

Joint Proceedings of MDSM 2011 and SQM 2011

18

!

!

! !

!
"#$%&'()!

#*+),-".(/'01)-203)&4'()! "#$53*&)-6)7*893*&:! ;0',:39(!<*=7*0)038!

!

6>,)!203)&7&)3)&!

!

#)3'=*+),8!

!

!

#*+),8!

!

6)?>9&)=)038!
-!@6A!-!
B@<#A'C!

!

D,*E',!;0',:898!
-!$%2<!-!
"#$493!

!

F)8910!
-!@#G!-!

H98>',!I'&'+91=J!@#GK!%**,8!
!

5)='039(!L)E!
-!MLG!-!
I&*3N1N!

!

OP!Q5G%!
KP!2=7*&3!

KP!Q5G%!
OP!".7*&3!

G90R
8!

!

6>,)8!

!

!

F)7)0+)0(:-%:7)8!

!

L*&R4,*S!
-!TI#A!-!

H98>',!I'&'+91=!
!

6)1&)889*0!
%)83901!!
-!@K%I!-!

!
!

;&(/93)(3U8!
%**,E*.!

VF)8910!I'33)&08W!

!
$)'3>&)!#*+),8!

Figure 1. Conceptual overview of EMFTrace and its central role as a platform for various coupled research activities. The integration of dashed
items is subject of current research and development.

assessments of the confidence of the link performed by
users.

Moreover, we are able to combine transitively related
traceability links, i.e., links that share common model
elements as their source or target elements, into traces.
These traces store chains of links to span design decisions
and multi-level dependency relations. The example shown
in Figure 2 illustrates the transition from a URN goal to
its architectural realization through UML models. Further-
more, EMFTrace provides automated validation features
for traceability links and traces, to ensure the integrity of
stored dependency information. Corrupt or outdated links
will be erased while broken traces are either split into
smaller sub-traces or removed as well, if they contain less
than two links.

!

"#$%!
&'(!)$'(!

)#*+#,(,-!
.$/0$1(!

Figure 2. A trace containing a transitive chain of links

2) Rule Concept: Following the general design pro-
posed in [3] and [4], our rules comprise three parts as
shown in Figure 3, whereas each part is responsible for a
certain task.

Element	 Defini+on
	 	 	 	 	 	 What	 models	 are	 affected	 by	 the	 rule?

Query
	 	 	 	 	 	 How	 are	 they	 related?

Result	 Defini+on
	 	 	 	 	 	 What	 should	 be	 done	 with	 them?

Figure 3. Main components of our rules

In contrast to existing approaches as [2], we do not
operate on files, but on the conceptual level of models
inside the EMFStore repository. Each rule can be equipped
with several actions carried out once the conditions are

met. This enables us to create a link for a relationship
and its inverse relationship at once, without requiring
additional rules. Rules can be created and edited by users
in the repository using EMF-based editors or external
in their XML representation, and can be imported af-
terwards. Rules can be grouped in catalogs to enable
the use of specialized rule catalogs for different tasks
such as dependency detection or consistency validation, to
improve the useability of our tool. Currently there is one
catalog available which contains 68 rules for traceability
detection. Our rules operate directly on model attributes
and the structure of models. They compare attributes to
identify dependencies between models, for example the
name attribute of an OWL class with the name attribute
of an UML component. But since the comparison for
exact matching is not always sufficient to detect all de-
pendencies, information retrieval techniques, such as n-
gram based string comparison, are used to compute the
similarity of attributes.

B. Architecture and Realization

1) Architecture: Since EMFTrace is our evolving basis
for many different research activities related to model-
driven engineering, its architecure must support the ad-
dition of new concepts and features. Our entire tool is
based on Eclipse technology and consists of several plug-
ins that provide the core functionality, a user interface,
and our adapted metamodels. EMFStore provides a server
(the repository) and a client to operate with the repository,
which is why we integrated our additional features into
the client to provide a unified view and usability. We
designed several additional components that integrate new
features into the EMFStore client, such as an interpreter
for traceability rules as shown in the bottom right corner
of Figure 1. Our architecture is extensible and allows
for easy integration of new components into EMFTrace
to introduce new features, i.e., new analysis components.
All plug-ins and components were implemented and tested
with Java to ensure the platform independent applicability
of our tool [10].

2) Model Integration: Using a modeling language with
EMFTrace requires the integration of its metamodel into
EMFStore. The metamodel must be converted into an

Joint Proceedings of MDSM 2011 and SQM 2011

19

EMF-based Ecore model, which can either be modeled
with EMF or generated from an XSD file. Once an
Ecore model has been generated, it must be adapted
to EMFStore’s metamodel, which provides additional at-
tributes to facilitate the management through EMFStore.
We performed these steps for the metamodels of UML,
URN, and OWL.

Since the adaptation to EMFStore’s metamodel intro-
duces new attributes to the metamodels, an adaptation
of models (metamodel instances) is required as well, to
add these attributes while importing models from CASE
tools. We perform the integration and adaptation as il-
lustrated by the arrows in the middle of Figure 1 by
applying XSLT templates on models and encapsulated the
entire import and export procedures in new components
(Model-Exchange-Interface), which have been integrated
into EMFTrace. Therefore, XML-based models exported
by CASE tools and XSLT provide the core technology for
our integration approach.

As CASE tools (see top of Figure 1) we currently
support the Eclipse UML2Tools (UML), Visual Paradigm
(UML, BPMN), the Eclipse-based jUCMnav (URN), and
Protégé (OWL) with our XSLT templates. Additional
modeling languages and their respective CASE tools such
as BPEL can be added to EMFTrace at any time through
adding an EMF-based metamodel to the underlying EMF-
Store repository and providing further XSLT templates.

3) Extensions: One addition which has already been
integrated into EMFTrace is the tool EMFfit [12] (see Fig-
ure 1, top left), which supports the management of factor
tables and issue cards for Global Analysis as proposed
by Hofmeister et al. [11] and therefore contributes a new
metamodel to EMFTrace. The tool itself is implemented
and tested as a set of Eclipse plug-ins with Java and
offers support for the transition from requirements to
architectural design.

IV. CONCLUSION AND FURTHER WORK

We presented an approach and a prototype tool EMF-
Trace for model integration and dependency identification
between models of the entire software development pro-
cess. We support different artifacts ranging from require-
ments models to design models which are managed by
a unifying repository. Our tool provides comprehensive
and automated dependency identification through rule-
based traceability to ensure decent precision of results,
enhanced with information retrieval techniques. EMFTrace
facilitates the use of semantically important link types
and is capable of storing, versioning, and maintaining
traceability links. Standard modeling languages, such as
UML, URN, and OWL, are integrated into the repository
and several CASE tools are supported.

Further work will focus on several issues: additional
modeling languages such as U2TP and feature models
shall be integrated into EMFTrace along with the ap-
propriate metamodels and XSLT templates, allowing for
additional CASE tools to be used in conjunction with our
tool. New models enable new analysis capabilities and

require new rules or existing rules to be refined. Our rule
concept should be enhanced to support consistency checks
of models stored in the repository. The combination of de-
pendency identification with consistency analysis provides
the basic features to perform change impact analysis on
models through new components and rules. To improve the
usability of our tool, model synchronization with CASE
tools and methods of change recognition for maintenance
are considered as further enhancements. Drawing more
benefits from discovered dependency relations requires
sophisticated visualization of thereby created traceability
links to enable the user to navigate on hierarchical chains
of dependencies and to trace models efficiently. Finding
appropriate means of dependency visualization is therefore
one important research question related to EMFTrace.

REFERENCES

[1] G. A. A. C. Filho, A. Zisman, and G. Spanoudakis, “Trace-
ability approach for i* and UML models,” in Proceedings
of 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems (SELMAS’03), 2003.

[2] W. Jirapanthong and A. Zisman, “Xtraque: traceability for
product line systems,” Software and Systems Modeling,
vol. 8, no. 1, pp. 117–144, 2009.

[3] G. Spanoudakis, A. d’Avila Garces, and A. Zisman, “Revis-
ing rules to capture requirements traceability relations: A
machine learning approach,” in Proc. Int. Conf. in Software
Engineering and Knowledge Engineering (SEKE 2003).
Knowledge Systems Institute, Skokie, 2003, pp. 570–577.

[4] G. Spanoudakis, A. Zisman, E. Perez-Minana, and
P. Krause, “Rule-based generation of requirements trace-
ability relations,” JSS, vol. 72, no. 2, pp. 105–127, 2004.

[5] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora, “Re-
covering traceability links in software artifact management
systems using information retrieval methods,” ACM Trans.
Softw. Eng. Methodol., vol. 16, no. 4, Article 13, Sept. 2007.

[6] M. Koegel and J. Helming, “EMFStore: a model repository
for EMF models,” in Proc. Int. Conf. on Software Engineer-
ing (ICSE’10). ACM, 2010, pp. 307–308.

[7] ITU-T, “Recommendation ITU-T Z.151 User requirements
notation (URN) – Language definition,” ITU-T, Nov 2008.

[8] S. Winkler and J. von Pilgrim, “A survey of traceability in
requirements engineering and model-driven development,”
Softw. and Syst. Model., vol. 9, no. 4, pp. 529–565, 2010.

[9] A. Marcus and J. I. Maletic, “Recovering documentation-
to-source-code traceability links using latent semantic in-
dexing,” in Proc. Int. Conf. on Software Engineering
(ICSE’03). IEEE, 2003, pp. 125–135.

[10] S. Lehnert, “Softwarearchitectural Design and Realization
of a Repository for Comprehensive Model Traceability,”
Diploma thesis, Ilmenau University of Technology, Ilme-
nau, Germany, November 2010.

[11] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Boston, MA, USA: Addison-Wesley, 2000.

[12] P. Wagner, “Tool Support for the Analysis during Software
Architectural Design,” Bachelor thesis, Ilmenau University
of Technology, Ilmenau, Germany, December 2010.

Joint Proceedings of MDSM 2011 and SQM 2011

20

Combining Multiple Dimensions of Knowledge in API Migration

Thiago Tonelli Bartolomei1, Mahdi Derakhshanmanesh2, Andreas Fuhr2, Peter Koch2,
Mathias Konrath2, Ralf Lämmel2, and Heiko Winnebeck2

1 University of Waterloo, Canada
2 University of Koblenz-Landau, Germany

Abstract—We combine multiple dimensions of knowledge
about APIs so that we can support API migration by
wrapping or transformation in new ways. That is, we
assess wrapper-based API re-implementations and provide
guidance for migrating API methods. We demonstrate our
approach with two major GUI APIs for the Java platform
and two wrapper-based re-implementations for migrating
between the GUI APIs.

Keywords-Software migration, API migration, API analy-
sis, Wrapping, Mining software repositories

I. INTRODUCTION

API migration is a kind of software migration; it may
be necessary to meet requirements for software modern-
ization, application integration, and others. API migration
is realized by wrapping or transformation. We refer to [1],
[2], [3], [4], [5], [6], [7], [8] for recent work on the subject.

For instance, consider the following re-engineering sce-
nario. Two Java applications need to be integrated, but they
use different GUI APIs, say SWING and SWT. Based on
the exercised features and possibly other considerations,
one of the two APIs is favored for the integrated ap-
plication. The disfavored API (the “source API”) can be
re-implemented in terms of the favored API (the “target
API”) as a wrapper so that the migration requires little, if
any, rewriting of the application’s code. Incidentally, there
are two advanced open-source wrappers that serve both
directions of migration: SWINGWT1 and SWTSWING2.

In previous work [6], [8], we substantiated that migra-
tion between independently developed source and target
APIs may be complex because of significantly different
generalization hierarchies, contracts, and protocols.

Contribution: In the present paper, we describe an
approach for the combination of multiple dimensions of
knowledge about APIs so that API migration can be
supported in new ways. That is, we assess wrapper-
based API re-implementations and provide guidance for
migrating API methods. To this end, we leverage a model-
based approach to the integration of knowledge about APIs
into a repository for convenient use in declarative queries.
Throughout the paper, we use the SWING/SWT APIs and
the above-mentioned wrappers as subjects under study.

Road-map: Sec. II describes the integrated reposi-
tory. Sec. III and Sec. IV cover different forms of support-
ing API migration. Related work is discussed in Sec. V,
and the paper is concluded in Sec. VI. The paper and
accompanying material are available online.3

1http://swingwt.sourceforge.net/: re-implements SWING in terms of SWT
2http://swtswing.sourceforge.net/: re-implements SWT in terms of SWING
3http://softlang.uni-koblenz.de/apirep/

Acknowledgement We are grateful to Daniel Ratiu for providing
us with data related to the programming ontology of [9], [10].
We are also grateful to four anonymous MDSM 2011 reviewers
for their excellent advice.

II. THE INTEGRATED REPOSITORY

We integrate three data sources with API knowledge
into a repository. Let us describe those data sources, the
metamodel of the integrated repository, and the repository
technology as such.

A. Data sources

• APIMODEL (developed by the present authors)—a
model of API implementations (including SWING,
SWT, SWINGWT, SWTSWING) with an underlying
metamodel that is a (very) limited Java metamodel
for structural properties and calling relationships;

• APIUSAGE (developed by Lämmel et al. [11])—a
fact base (say, database) with usage properties of
1476 open-source Java projects at SourceForge, in
particular with facts for API method calls within the
projects’ code;

• APILINKS (developed by Ratiu et al. [9], [10])—
an ontology for programming concepts that were
extracted semi-automatically from APIs in different
programming domains, complete with trace links
between concepts and the API source-code elements
from which they were derived.

The APIMODEL source contributes basic knowledge
about types and methods of genuine API implementations,
and their coverage by the typically incomplete wrapper-
based re-implementations. The APIUSAGE source helps to
assess, for example, the relevance of genuine methods that
are not implemented in a wrapper. The APILINKS source
helps to derive candidate classes and methods that could
be used in a wrapper-based API re-implementation.

B. Metamodel of the repository

Fig. 1 shows the metamodel (a UML class diagram) of
our integrated repository where metaclasses are tagged by
data sources APIMODEL, APIUSAGE, and APILINKS. We
must note that the metamodel does not cover all elements
of the sources, but is streamlined to fit our objectives.

The metaclass NamedElement represents package-
qualified names of packages, classes, and methods. Be-
cause of the composition relationships in the metamodel,
NamedElements are also qualified by the name of an
API, in fact, by a particular implementation, which could
be a genuine implementation or a wrapper-based re-
implementation.

Joint Proceedings of MDSM 2011 and SQM 2011

21

Figure 1. Metamodel of the integrated repository with API knowledge

The metaclasses Package, Class, and Method represent
the package hierarchy with the Java classes and their
methods, further with extension relationships between
classes (see association Extends) and calling relationships
between methods (see association Calls). As a means of
prioritization, we leave out interfaces; they are trivially
copied by wrappers.

Classes of genuine API implementations are linked with
the corresponding classes of wrappers (see association
CorrespondsTo). Here we note that wrappers may use
different package prefixes. Also, these links improve con-
venience for those queries that need to navigate between
the different API implementations. The metaclass Concept
models concepts in the sense of APILINKS’ ontology.
Classes and methods can be linked with concepts; see
associations IsClass and IsMethod. Hence, classes and
methods of different APIs may be linked transitively.

The metaclass MethodUsage represents the usage data
that was integrated from APIUSAGE. That is, for each
API method, we maintain the number of calls to the
method (if any) within the SourceForge projects covered
by APIUSAGE [11]. We translated this number also into a
relative measure in the sense of the percentage of the calls
to the given method relative to the number of all calls to
methods of the API.

C. Repository technology

The repository leverages the model-based TGraph ap-
proach [12]. The metamodel of Fig. 1 is represented as
a TGraph schema; converters instantiate the schema from
the different data sources. All analysis is performed by
means of queries on TGraphs using the language GReQL
(Graph Repository Query Language) [13]. For brevity,
we describe all queries (“measurements”) only informally
in this paper, but here is a simple, illustrative GReQL
example for retrieving all classes c of an API a that are
not implemented by a wrapper:

using a:
from c: V{Class}
with c.qualifiedName =˜ a and count(c−−>{CorrespondsTo}) = 0
reportSet c
end

That is, a is an argument of the query for the name of
the API; the query selects (“reports”) all classes c such
that the qualified name of c matches with a and there
are no outgoing edges of the type CorrespondsTo (see
-->{CorrespondsTo}) from c.

III. WRAPPER ASSESSMENT

Consider again our introductory scenario for API migra-
tion. Which wrapper, SWINGWT or SWTSWING, should
we favor? Such decision making should take into account
wrapper qualities, e.g., its completeness or compliance—
both relative to the genuine API implementation. In case
we want to improve a given wrapper, we should also track
progress by simple metrics. Accordingly, we propose some
concepts for wrapper assessment.

A. Coverage of source API

We can trivially compare the APIMODEL data between
genuine API implementation and wrapper to get a basic
sense of completeness in terms of (the percentage of)
genuine packages, classes, and methods that are covered
(say, re-implemented) by the wrapper. Table I collects such
metrics for the SWING/SWT wrappers. The numbers show
that the wrappers are highly incomplete.

SWINGWT SWTSWING

Packages 25 (78.12 %) 16 (51.61 %)
Classes 533 (18.61 %) 372 (56.97 %)
Methods 4533 (26.60 %) 3426 (42.59 %)

Table I
COVERAGE OF SOURCE API

B. Wrapper compliance issues

Some forms of non-compliance of a wrapper with the
genuine API implementation can be determined by simple
queries on our repository, e.g., differences regarding gen-
eralization hierarchies or the declaring classes for meth-
ods. Consider the following extension chain for SWING’s
AbstractButton:
java.lang.Object
|_ java.awt.Component

|_ java.awt.Container
|_ javax.swing.JComponent

|_ javax.swing.AbstractButton

The chain itself is preserved by SWINGWT. However,
SWING declares the method addActionListener on the
class AbstractButton whereas SWINGWT declares the
method already on the class Component.

SWINGWT SWTSWING

• Declarations on supertypes 516 161
• Empty implementations 1006 230
• Missing methods 12506 4618
◦ Class missing 9604 3698
◦ Class present 2902 920

Table II
WRAPPER COMPLIANCE ISSUES

Joint Proceedings of MDSM 2011 and SQM 2011

22

Table II shows numbers for some metrics for (lack of)
wrapper compliance. In reference to the above example
of the method addActionListener, we measure the number
of methods that are declared “earlier” on a supertype in
the wrapper. Further, we measure methods with empty
implementations, i.e., implementations without any out-
going method calls, while the corresponding genuine im-
plementations had outgoing method calls. (The substantial
number of empty implementations may be surprising,
but these wrappers are nevertheless reportedly useful in
practice.) Finally, we also subdivide missing methods into
those that are implied by missing classes vs. those that are
missing from existing classes.

C. Relevance in terms of usage

Let us qualify wrapper (in-) completeness with
APIUSAGE data. If the developers of the wrappers ap-
plied the right judgement call for leaving out classes and
methods, then the missing methods should be less relevant
in practice than the implemented ones. Table III lists usage
metrics for the SWING/SWT wrappers.

SWINGWT SWTSWING

Unimplemented methods
• Any usage 9,01 % 2,90 %
• Cumulative usage 2,88 % 2,35 %

Empty methods
• Any usage 42,53 % 25,71 %
• Cumulative usage 11,41 % 1,49 %

Non-empty methods
• Any usage 48,46 % 71,39 %
• Cumulative usage 85,72 % 96,17 %

Table III
USAGE OF API METHODS IN SOURCEFORGE

In the table, we break down SWING’s and SWT’s
methods into categories according to the wrappers as fol-
lows: unimplemented, empty, and non-empty implemented
methods. For each category, we show the percentage of
methods with “any usage” (say, any calls) in the Source-
Forge projects in the scope of the APIUSAGE source. We
also show “cumulative usage” for each category, i.e., the
contribution of the category to all API method calls. These
are contrasting numbers which show, for example, that
the many unimplemented and empty methods (see again
Table II) are exercised much less frequently than the fewer
non-empty methods.

IV. GUIDANCE FOR MIGRATION

A given wrapper may be effectively incomplete in that
a missing method is actually exercised by the application
under API migration. In this case, we seek guidance for
migrating the API method in question. Such guidance is
universally useful for API migration—even when transfor-
mation is used instead of wrapping. A practical approach
to guidance would need to combine elements of API type
matching, IDE support (such as autocompletion and stub
generation), and others. We focus here on the aspect of
proposing method candidates to be called in methods of
wrapper-based API re-implementations.

A. Concept-based method candidates

We can use APILINKS’ trace links between API meth-
ods and concepts to propose method candidates. The idea
is that if methods of the source and target APIs are
related to the same concept, then the latter may be useful
in re-implementing the former. Further, let us sort all
such candidates by their cumulative usage, say, by their
relevance as far as APIUSAGE is concerned.

Qualified candidate name Cumulative usage (%)

swing.javax.swing.ImageIcon.ImageIcon 0,4816
swing.java.awt.image.BufferedImage.BufferedImage 0,1063
swing.java.awt.Frame.getIconImage 0,0059
swing.java.awt.....MemoryImageSource 0,0046
swing.java.awt.Frame.setIconImage 0,0042
swing.javax.swing.text.html.ImageView.ImageView 0,0005
swing.java.awt.....ImageGraphicAttribute N/A

Table IV
CANDIDATES FOR RE-IMPLEMENTING SWT’S Button.setImage

Suppose you need to migrate SWT’s Button.setImage to
SWING. Table IV shows the method candidates that were
automatically determined by a GReQL query. Consider the
first line with the constructor of ImageIcon. We show the
line in bold face to convey the fact that there is an existing
wrapper, SWTSWING, whose method implementation of
setImage readily involves the constructor of ImageIcon.

Further inspection reveals that SWING’s JButton, which
is a counterpart to SWT’s Button, does not provide an Im-
age property and, hence, we cannot simply migrate SWT’s
Button.setImage to a corresponding setter of SWING. Extra
state and a more complex idiom (indeed involving Image-
Icon) is needed.

B. Assessment of the ontology

The above example shows that APILINKS may suggest
reasonable candidates—in principle. We would like to
assess APILINKS’s relevance more generally. In particular,
we could compare APILINKS-based links with actual
calling relationships in existing wrapper implementations,
as they are available through APIMODEL’s data. Table V
lists corresponding metrics for the SWING/SWT wrappers.

SWINGWT SWTSWING

Unimplemented methods with links 10.83 % 0.35 %
Implemented methods with links 28.06 % 24.98 %

Correct links 42.75 % 37.20 %

Table V
API LINKS BETWEEN SWING AND SWT

The coverage of API parts by APILINKS’ trace links
is an artifact of the underlying semi-automatic ontology
extraction approach [9], [10], which involves elements
of name matching and thresholds for the inclusion of
concepts. We cannot expect to retrieve links for arbitrary
methods from APILINKS.

In the table, we break down SWING’s and SWT’s
methods into the categories of unimplemented and im-
plemented methods according to the wrappers. For both
categories, we show the percentage of methods that are
linked (transitively) with one or more methods of the

Joint Proceedings of MDSM 2011 and SQM 2011

23

corresponding target API. The numbers are such that
implemented methods happen to be much better linked
than unimplemented ones.

At the bottom of the table, we also list the percentage
of correct APILINKS’ trace links. We say that a link from
the method m of the source API s to a method m′ of
the target API t is correct, if a given wrapper-based re-
implementation of s in terms of t implements m in a way
that it directly calls m′. When we specify the percentage,
we consider as the baseline (100%) only those methods
m that both have associated trace links to t and actually
call some method of t. It turns out that APILINKS predicts
a correct link in more than 1/3 of the cases. We have to
note though that APILINKS typically proposes multiple
candidates—with a median of 8.

V. RELATED WORK

Work on API migration has previously focused on
transformation and wrapper-generation techniques for API
upgrades [2], [3], [4], [5] and, to a lesser extent, on
migration between independently developed APIs [1], [6],
[7], [8]. The present work is the first to integrate diverse
data sources to assess wrappers and to guide their devel-
opment. Typically, wrappers are assessed by testing (i.e.,
testing whether the application under migration continues
to function, or recovers from any test failures that had to be
addressed by improving a pre-existing wrapper) [6]. There
is no previous work on guiding API-wrapper development
for independently developed APIs.

Most of the techniques that we integrate are inspired by
program comprehension research. For instance, our com-
parison of different API implementations is a simple form
of object-model matching [14]. Also, our exploitation of
API-usage data is straightforward, when compared to other
scenarios of exploiting such data in the context of API
usability [15] and understanding API usage (patterns) [16],
[17]. Our proposal for guided migration can be viewed
as one specific approach to advanced (“intelligent”) code
completion systems [18], [19].

VI. CONCLUDING REMARKS

The complexity of API migration requires many skills
and techniques. Of course, one must understand the API’s
domain, and the application under migration. Basic soft-
ware engineering skills such as testing, design by contract,
effective use of documentation are critical as well. Still
API migrations are largely unstructured today, and they
come with unpredictable costs. We submit that techniques
for assessment and guidance, such as those discussed
in this short paper, are needed to tackle non-trivial API
migrations in the future.

Clearly, our work is at an early state, and makes only
a limited contribution to the larger API migration theme.
There is a need for a comprehensive approach for guided
API migration, which should combine diverse elements
of assessment, mapping, matching, code completion, code
generation, and testing.

REFERENCES
[1] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring support for class

library migration,” in Proc. of OOSPLA 2005. ACM, 2005, pp.
265–279.

[2] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying
refactorings to support API evolution,” in Proc. of ICSE 2005.
ACM, 2005, pp. 274–283.

[3] J. H. Perkins, “Automatically generating refactorings to support
API evolution,” in Proc. of the Workshop on Program Analysis
for Software Tools and Engineering (PASTE). ACM, 2005, pp.
111–114.

[4] I. Şavga, M. Rudolf, S. Götz, and U. Aßmann, “Practical
refactoring-based framework upgrade,” in Proc. of the Conference
on Generative Programming and Component Engineering (GPCE).
ACM, 2008, pp. 171–180.

[5] D. Dig, S. Negara, V. Mohindra, and R. Johnson, “ReBA:
refactoring-aware binary adaptation of evolving libraries,” in Proc.
of ICSE 2008. ACM, 2008, pp. 441–450.

[6] T. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm,
“Study of an API Migration for Two XML APIs,” in Proc. of
Conference on Software Language Engineering (SLE 2009), ser.
LNCS, vol. 5969. Springer, 2010, pp. 42–61.

[7] M. Nita and D. Notkin, “Using Twinning to Adapt Programs to
Alternative APIs,” in Proc. of ICSE 2010, 2010.

[8] T. T. Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to SWT
and Back: Patterns for API Migration by Wrapping,” in Proc. of
ICSM 2010. IEEE, 2010, 10 pages.

[9] D. Ratiu, M. Feilkas, and J. Jürjens, “Extracting Domain Ontologies
from Domain Specific APIs,” in 12th European Conference on Soft-
ware Maintenance and Reengineering, CSMR 2008, Proceedings.
IEEE, 2008, pp. 203–212.

[10] D. Ratiu, M. Feilkas, F. Deissenboeck, J. Jürjens, and R. Marinescu,
“Towards a Repository of Common Programming Technologies
Knowledge,” in Proc. of the Int. Workshop on Semantic Technolo-
gies in System Maintenance (STSM), 2008.

[11] R. Lämmel, E. Pek, and J. Starek, “Large-scale, AST-based API-
usage analysis of open-source Java projects,” in SAC’11 - ACM
2011 SYMPOSIUM ON APPLIED COMPUTING, Technical Track
on “Programming Languages”, 2011, to appear.

[12] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in Reverse
Engineering: The TGraph Approach,” in WSR 2008, ser. GI-
EditionProceedings, vol. 126. Gesellschaft für Informatik, 2008,
pp. 67–81.

[13] D. Bildhauer and J. Ebert, “Querying Software Abstraction
Graphs,” in Query Technologies and Applications for Program
Comprehension (QTAPC 2008), Workshop at ICPC 2008, 2008.

[14] Z. Xing and E. Stroulia, “UMLDiff: an algorithm for object-
oriented design differencing,” in 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2005), Pro-
ceedings. ACM, 2005, pp. 54–65.

[15] J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: improving API
documentation using usage information,” in Proc. of the 27th
Intern. Conf. on Human Factors in Computing Systems, CHI 2009.
ACM, 2009, pp. 4429–4434.

[16] J. Stylos and B. A. Myers, “Mica: A Web-Search Tool for Finding
API Components and Examples,” in 2006 IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC 2006),
Proceedings. IEEE, 2006, pp. 195–202.

[17] T. Xie and J. Pei, “MAPO: mining API usages from open source
repositories,” in MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories. ACM, 2006, pp. 54–
57.

[18] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid
mining: helping to navigate the API jungle,” in Proc. of the 2005
ACM SIGPLAN conference on Programming language design and
implementation (PLDI 2005). ACM, 2005, pp. 48–61.

[19] M. Bruch, M. Monperrus, and M. Mezini, “Learning from ex-
amples to improve code completion systems,” in Proceedings of
ESEC/SIGSOFT FSE 2009. ACM, 2009, pp. 213–222.

Joint Proceedings of MDSM 2011 and SQM 2011

24

Proceedings of the

Fifth International Workshop on

Software Quality and Maintainability

(SQM 2011)

Fifth International Workshop on Software Quality and Maintainability
Bridging the gap between end-user expectations, vendors’ business prospects,

and software engineers’ requirements on the ground.

Magiel Bruntink
Software Improvement Group

The Netherlands
m.bruntink@sig.eu

Kostas Kontogiannis
School of Electrical and Computer Engineering

National Technical University of Athens
Greece

kkontog@softlab.ece.ntua.gr

Preface

The fifth international workshop on Software Quality
and Maintainability (SQM 2011) offered a forum to re-
searchers to present their original work and to practitioners
to relate their experiences on issues pertaining to software
quality and maintainability. Moreover, the theme of the
workshop invited discussion on how to bridge the gap be-
tween end user expectations, business requirements, vendor
performance, and engineering constraints regarding soft-
ware quality.

SQM 2011 was held as a satellite event of the 15th Eu-
ropean Conference on Software Maintenance and Reengi-
neering (CSMR 2011). In 2010, the fourth SQM workshop
was held as a satellite event of CSMR 2010.

Carl Worms of Credit Suisse kicked-off the workshop
with an invited talk titled ”Software Quality Management -
Quo Vadis?” A short paper describing his current work is
included in these proceedings.

In this volume, you will further find the papers accepted
for presentation at the workshop. Out of 8 full-paper sub-
missions, 6 papers were selected. The accepted papers were
published at CEUR-WS1.

Theme & Goals

Software is playing a crucial role in modern societies.
Not only do people rely on it for their daily operations or
business, but for their lives as well. For this reason, cor-
rect and consistent behaviour of software systems is a fun-
damental part of end user expectations. Additionally, busi-
nesses require cost-effective production, maintenance, and
operation of their systems. Thus, the demand for good qual-
ity software is increasing and is setting it as a differentiator
for the success or failure of a software product. In fact, high

1http://ceur-ws.org

quality software is becoming not just a competitive advan-
tage but a necessary factor for companies to be successful.

The main question that arises now is how quality is mea-
sured. What, where and when we assess and assure quality,
are still open issues. Many views have been expressed about
software quality attributes, including maintainability, evolv-
ability, portability, robustness, reliability, usability, and ef-
ficiency. These have been formulated in standards such as
ISO/IEC-9126 and CMMI. However, the debate about qual-
ity and maintainability between software producers, ven-
dors and users is ongoing, while organizations need the abil-
ity to evaluate the software systems that they use or develop
from multiple angles.

So, is ”Software quality in the eye of the beholder”? This
workshop session aims at feeding into this debate by estab-
lishing what the state of the practice and the way forward
is.

Accepted papers

• Automated Quality Defect Detection in Software De-
velopment Documents, Andreas Dautovic, Reinhold
Ploesch and Matthias Saft.

• Design Pattern Detection using Software Metrics and
Machine Learning, Satoru Uchiyama, Atsuto Kubo,
Hironori Washizaki and Yoshiaki Fukazawa.

• Using the Tropos Methodology to Increase the Qual-
ity of Software Design, Andrea Capiluppi and Cornelia
Boldyreff.

• Tool-Supported Estimation of Software Evolution Ef-
fort in Service-Oriented Systems, Johannes Stammel
and Mircea Trifu.

• Preparing for a Literature Survey of Software Archi-
tecture using Formal Concept Analysis, Luı́s Couto,

Joint Proceedings of MDSM 2011 and SQM 2011

26

Miguel Alexandre Ferreira, Eric Bouwers and José
Nuno Oliveira.

• Evidence for the Pareto principle in Open Source Soft-
ware Activity, Mathieu Goeminne and Tom Mens.

Organization

Chairs

• Magiel Bruntink, Software Improvement Group, The
Netherlands

• Kostas Kontogiannis, National Technical University of
Athens, Greece

• Miguel Alexandre Ferreira (publicity chair), Software
Improvement Group, The Netherlands

Program Committee

• Árpád Beszédes, University of Szeged, Hungary

• Andrea De Lucia, University of Salerno, Italy

• Florian Deissenboeck, Technische Universität
München, Germany

• Massimiliano Di Penta, University of Sannio, Italy

• Juergen Ebert, University of Koblenz-Landau, Ger-
many

• Slinger Jansen, Utrecht University, the Netherlands

• Rainer Koschke, University of Bremen, Germany

• Robert Lagerström, the Royal Institute of Technology,
Sweden

• Radu Marinescu, Politehnica University of Timisoara,
Romania

• Liam O’Brien, National ICT Australia Limited, Aus-
tralia

• Ladan Tahvildari, University of Waterloo, Canada

• Arie van Deursen, Delft University of Technology, the
Netherlands

• Jurgen Vinju, Centrum Wiskunde & Informatica, the
Netherlands

• Joost Visser, Software Improvement Group, the
Netherlands

• Carl Worms, Credit Suisse, Switzerland

• Hongyu Zhang, Tsinghua University, China

• Christos Tjortjis, University of Ioannina & University
of Western Macedonia, Greece

• Alexander Chatzigeorgiou, University of Macedonia,
Greece

• Jesus M. Gonzalez-Barahona, Universidad Rey Juan
Carlos, Spain

• Rudolf Ferenc, University of Szeged, Hungary

Sub-reviewers

• Markus Buschle

• Péter Hegedüs

• Giuseppe Scanniello

• Gabriella Tóth

Sponsors

Software Improvement Group
Amsterdam, The Netherlands

Acknowledgements

We are grateful to all members of the Program Committee
and to their sub-reviewers for helping to make SQM 2011
a success. Many thanks to Carl Worms for his keynote talk.
Also we would like to thank the Software Improvement
Group for sponsoring and hosting our website, and Easy-
Chair.org for their invaluable conference organization tool.

February 2011,
Magiel Bruntink and Kostas Kontogiannis
Chairs SQM 2011

Joint Proceedings of MDSM 2011 and SQM 2011

27

Invited Keynote: Software Quality Management – quo vadis?

Carl Worms
Quality and Process Management

Credit Suisse AG
Zürich, Switzerland

carl.f.worms@credit-suisse.com

Software engineering as a discipline startet end of the
sixties as answer to the "software crisis" – the term "software
quality" wasn't even used. Since then, it took nearly
additional 30 years to establish a normative software quality
management with ISO 9000-3 in 1997, the particular
"interpretation" of the general ISO 9000 from 1994 for
software development organizations. At the same time, often
driven by governments and military as largest IT sponsors,
procedure models like the German V-Modell '97, the spriral
model and somewhat later the Rational Unified Process have
been developed, accompanied by assessment models like
CMMI or SPICE. Nowadays, there's no successful software
company on the market without defined procedure model
and/or a CMMI or SPICE maturity level 3, and suppliers for
governments or big companies are only accepted for bidding
if they are certified against one of these standards.

Though, there seems to be still no significant change in
the yearly Chaos reports, there still dramatically fail software
projects – or even running software - what's wrong, the
sensation or software quality in reality?

The talk comprises the last 20 years of software quality
management from the view of a software engineer and
quality manager in medium and big software development
organizations, comparing the hidden impact of changing
organizational behaviour and structures on software
architecture and quality – and vice versa.

Facts and hypotheses on the following topics get
discussed:

Get requirements constrained by natural laws better
implemented than those constrained by social contracts (i.e.
business processes)?

Is there any empirically proven impact of the number of
transformation steps (between informal requests and
requirements in natural language to the final compilation into
hardware language) on software quality – and its cost?

Which promising areas for software engineering research
can be seen in the realm of very large IT systems?

For the latter, practical examples and experience from the
biggest IT hub of a global bank is shown for topics like

- evolution of a large application landscape
- organizational impact on software architecture
- the way from spaghetti to tagliatelle to letter soup and:

what's the soup?
- pitfalls in global distributed software development and

operations
- the common ground of quality management, business

analysis and enterprise architecture.
The talk concludes with observed gaps in the education

curricula for software engineers and managers.

Carl Worms is enterprise architect in Credit Suisse IT
Private Banking with focus on strategy and governance of
solution delivery processes. Since 1991, he worked in several
large enterprises in the areas of software engineering
methodology and software quality management. In 1993 he
got the Walter Masing Award of the German Society for
Quality with a paper on object orientation and automated
testing. He joined Credit Suisse IT architecture in 1999 as
leading methodologist and led the first software process
improvement program from 2002-2005. In 2006-2008 he
was head of the IT Private Banking Quality Management
unit and since 2008 is lead architect of this unit. (In
November 2010 Credit Suisse IT Private Banking/Region
Switzerland became one of the largest IT organizations
outside India on CMMI DEV maturity level 3.)

Joint Proceedings of MDSM 2011 and SQM 2011

28

Automated Quality Defect Detection in Software
Development Documents

Andreas Dautovic, Reinhold Plösch
Institute for Business Informatics - Software Engineering

Johannes Kepler University Linz
Altenberger Straße 69, 4040 Linz, Austria
andreas.dautovic | reinhold.ploesch@jku.at

Matthias Saft
Corporate Technology

Siemens AG
Otto-Hahn-Ring 6, 81739 Munich, Germany

matthias.saft@siemens.com

Abstract—Quality of software products typically has to be
assured throughout the entire software development life-cycle.
However, software development documents (e.g. requirements
specifications, design documents, test plans) are often not as
rigorously reviewed as source code, although their quality has a
major impact on the quality of the evolving software product.
Due to the narrative nature of these documents, more formal
approaches beyond software inspections are difficult to establish.
This paper presents a tool-based approach that supports the
software inspection process in order to determine defects of
generally accepted documentation best practices in software
development documents. By means of an empirical study we
show, how this tool-based approach helps accelerating inspection
tasks and facilitates gathering information on the quality of the
inspected documents.

Keywords-quality defect detection; software development
document; tool-based approach; software inspection

I. INTRODUCTION
Software quality assurance aims at ensuring explicitly or

implicitly defined quality goals for a software product.
Assuring the quality of a software product basically deals with
the fulfillment of specified functional and quality
requirements, where the checks are often realized by static and
dynamic testing of the software product. Software
development documents like requirements specifications,
which define how to build the right software product, or
design documents, which define how to build the software
product right, are also an essential part of the entire software
product. However, they are often not treated with the same
enthusiasm as source code. Consequently, software bugs are
fixed in a later phase of the software product life-cycle, which
leads to increased costs for software changes [1]. For instance,
a cost/benefit-model reveals that due to the introduction of
design inspection 44 percent of defect costs compared to
testing alone can be saved [2]. Therefore, to positively
influence the development of a software product, quality
assurance also has to systematically deal with the quality of
software development documents.

Natural language is a commonly used representation for
software development documents. However, as a result of its
informal nature, natural language text can easily lead to

inadequate or poor project documentation, which makes
software hard to understand, change or modify. Based on a
comprehensive literature study, Chen and Huang [3] identified
five quality problems of software documentation:

• Documentation is obscure or untrustworthy.
• System documentation is inadequate, incomplete or

does not exist.
• Documentation lacks traceability, as it is difficult to

trace back to design specifications and user
requirements.

• Changes are not adequately documented.
• Documentation lacks integrity and consistency.

In order to improve the overall quality of natural language
project documents throughout the software life-cycle, the use
of inspections is generally accepted. Since the introduction of
inspections in the mid-1970s by Fagan [4], some
modifications have been made to the original process.
Improved reading techniques including: checklist-based
reading [5] [6], usage-based reading [6] [7] or perspective-
based reading [8] [9] are nowadays available for checking
consistency and completeness of natural language texts.
However, analysis [10] [11] show that currently available
inspection methods are mainly used for source code reviews.
This is surprising and can be explained by the lack of tools
that fully support software inspections [12] [13], especially in
dealing with specific artifact types and locating potential
defects in this artifacts. Furthermore, high inspection costs due
to the resource-intensive nature of reviews and tedious
searching, sorting or checking tasks often restrain the
application of software inspections [11].

In this paper we present a tool-based approach that tries to

identify potential document quality defects. This tool-based
analysis relies on best practices for software documentation. In
section II we give an overview of related work in the context
of software inspection and document quality defect
management tools. Section III shows how documentation best
practices can be used to identify document quality defects. In
section IV we present our developed tool-based document
quality defect detection approach. Section V gives an
overview of the results of an empirical study where we used

Joint Proceedings of MDSM 2011 and SQM 2011

29

our approach to detect document quality defects in real-world
project documentation. Finally, in section VI we give a
conclusion and discuss further work.

II. RELATED WORK
In this section we give an overview of existing tools that

can be used in the document inspection process. As there are
different criteria for categorizing and distinguishing inspection
tools [12] [13], we focus on tools that directly address data
defects, i.e. tools that enable locating potential quality defects
in the documents. Following, we also discuss work of software
engineering domains apart from software inspections, but
enable comprehensive document quality analysis and
assessments. However, tools that support e.g. the collaborative
inspection process or the process improvement are out of
scope of this work and will not be discussed in this section.

Wilson, Rosenberg and Hyatt [14] present an approach for
the quality evaluation of natural language software
requirements specifications, introducing a quality model
containing eleven quality attributes and nine quality indicators.
Furthermore, a tool called ARM (Automatic Requirements
Measurement) is described, which enables performing analysis
of natural language requirements against the quality model
with the help of quality metrics. Lami and Ferguson [15]
describe a methodology for the analysis of natural language
requirements based on a quality model that addresses the
expressiveness, consistency and completeness of
requirements. Moreover, to provide support for the
methodology on the linguistic level of requirements
specifications, they present the tool QuARS (Quality Analyzer
of Requirements Specifications) [16]. Further tools that also
support the automatic analysis of natural language
requirements documents are described e.g. by Jain, Verma,
Kass and Vasquez [17] and Raven [18]. However, all these
tools are limited to the analysis of requirements specifications
that are available as plain text documents. Although, the
quality of a software project strongly depends on its
requirements, there are a number of additional document types
and formats that have to be considered throughout the
software development life-cycle.

Farkas, Klein and Röbig [19] describe an automated
review approach for ensuring standard compliance of multiple
software artifacts (e.g. requirements specifications, UML
models, SysML models) for embedded software using a
guideline checker called Assessment Studio. The tool
performs checks on XML-based software artifacts by using
rules formalized in LINQ (Language Integrated Query) [20].
As they use XML as a common file-basis, their approach is
not limited to one specific document type or format.
Moreover, traceability checks of multiple software artifacts are
facilitated. Nödler, Neukirchen and Grabowski [21] describe a
comparable XQuery-based Analysis Framework (XAF) for
assuring the quality of various software artifacts. XAF enables
the specification of XQuery analysis rules, based on
standardized queries and pattern matching expressions. In

contrast to the approach presented in [19], XAF uses a facade
layer for transforming XQuery rules to the individual XML
representation of the underlying software artifact. As a result
of this layered architecture, XAF enables the creation of re-
usable analysis rules that are independent from the specific
target software artifact.

III. DOCUMENTATION BEST PRACTICES FOR MEASURING
DOCUMENT QUALITY

International documentation and requirements
specification standards like NASA-STD-2100-91 [22], IEEE
Std 830-1998 [23], IEEE Std 1063-2001 [24], ISO/IEC
18019:2004 [25], and ISO/IEC 26514:2008 [26] provide best
practices and guidelines for information required in software
documentation. Most of these documentation standards focus
on guidelines for technical writers and editors producing
manuals targeted towards end users. Hargis et al. [27] focus on
quality characteristics and distinguish nine quality
characteristics of technical information, namely “task
orientation”, “accuracy”, “completeness”, “clarity”,
“concreteness”, “style”, “organization”, “retrieveability”, and
“visual effectiveness”. Moreover, they provide checklists and
a procedure for reviewing and evaluating technical
documentation according to these quality characteristics. In
order to determine the quality of project documents, Arthur
and Stevens [28] identified in their work four characteristics
(“accuracy”, “completeness”, “usability”, and
“expandability”) that are directly related to the quality of
adequate documentation. Nevertheless, documentation quality
is difficult to measure. Therefore, Arthur and Stevens [28]
refined each documentation quality attribute to more tangible
documentation factors, which can be measured by concrete
quantifiers. In order words, similar to static code analysis,
some quality aspects of project documentation can be
determined by means of metrics. Moreover, we think that
violations of documentation best practices or generally
accepted documentation guidelines can also serve as
measurable quantifiers. Consequently, violations of defined
rules, which represent such best practices or guidelines, can be
used for determining quality defects of documentation.

So far we have identified and specified more than 60
quantifiable documentation rules. Most of these document
quality rules cover generally accepted best practices according
to the documentation and requirements standards mentioned
above. In order to get a better understanding about document
quality rules, we show four typical examples. Furthermore we
try to emphasize the importance of these rules for software
projects, as well as the challenges of checking them
automatically.

A. Adhere to document naming conventions
Each document name has to comply with naming

conventions. The usage of document naming conventions helps
recognizing the intended and expected content of a document
from its name, e.g., requirements document, design
specification, test plan. A consistent naming scheme for
documents is especially important in large-scale software

Joint Proceedings of MDSM 2011 and SQM 2011

30

projects. However, defining generally accepted naming
conventions for arbitrary projects is not always simple and
requires support for easy configuration of a specific project.

B. Each document must have an author
Each document must explicitly list its authors, as content of

documents without explicit specified authors cannot be traced
back to its creators. This is important e.g., for requirements
documents in order to clarify ambiguous specifications with the
authors. However, identifying document content particles
describing author names is difficult and needs sophisticated
heuristics.

C. Ensure that each figure is referenced in the text
If a figure is not referenced in the text, this reference might

either be missing or the intended reference might be wrong.
Typically, many figures are not self-explanatory and have to be
described in the text. It is good style (e.g., in a software design
document), to explain a UML sequence diagram or a class
diagram. In order to make this explanation readable and
consistent, it must always be clear which specific UML
artifacts are explained in the text.

D. Avoid duplicates in documents
Within one document duplicated paragraphs exceeding a

defined length should be avoided and explicitly be referenced
instead, as duplicates make it difficult to maintain the
document content. Therefore, word sequences of a specified
length that are similar (e.g., defined by a percent value) to other
word sequences in the same document violate this rule.
However, the defined length of the word sequence strongly
depends on the document type and differs from project to
project.

IV. THE AUTOMATED DOCUMENT QUALITY DEFECT
DETECTION APPROACH

As shown in section III, the identification of
documentation defects in software development documents
can rely on finding violations of document quality rules, which
represent generally accepted documentation best practices and
guidelines. However, manual checks of these rules can be very
resource and time consuming, especial in large-scale software
projects. Due to this, we developed a document quality defect
detection tool, which checks software development documents
against implemented document quality rules.

Similar to existing static code analysis suites for source

code, our tool analyzes document information elements to find
out, whether documents adhere to explicitly defined
documentation best practices. In contrast to approaches and
tools mentioned in section II, our document quality defect
detection tool is not restricted to elementary lexical or
linguistic document content analysis. Furthermore, it is also
not limited to specific software development artifacts but
covers the range from requirements across system, architecture
and design, up to test specifications. The introduction of open,
standardized document formats like Office Open XML [29] or

Figure 1. Conceptual overview of the document quality defect detection tool

usage process

Open Document Format [30] has enabled the extraction of
document information in a way, which is beyond unstructured
text. In fact, our tool facilitates beside content quality analysis
also the check of document metadata like directory
information and version information. The use of standardized
and structured document models also allows checking more
specific content attributes based on the meaning of specific
document particles. Moreover, it enables traceability checks to
prove document information for project wide consistency. In
order to support inspectors in their task, the tool can therefore
be used to automatically check cross-references within the
document under inspection as well as from the document
under inspection to other related documents. The latter aspect
is especially important for identifying missing or broken
relations between e.g., design documents and software
requirements specifications.

Fig. 1 gives a conceptual overview of our developed tool
and describes the process of quality defect detection. First of
all, the tool user (e.g. project manager, software inspector,
quality manager) has to choose the software development
documents as well as the document quality rules respectively
rule sets, which will be used for the defect detection. If
necessary, the selected rules can be configured by the user to
meet defined and project specific documentation requirements.
After the user has started the tool, all relevant information is
extracted from the selected software development documents.
The information is represented as a hierarchical data structure
containing information of specific document elements (e.g.
sections, paragraphs, references, figures, sentences). In a next
step, each rule will be applied onto this document information
to check whether the document adheres to the rule conditions.
Finally, all detected potential document quality defects are
linked to the original document to provide a comprehensive
quality defect detection report to the user.

Joint Proceedings of MDSM 2011 and SQM 2011

31

As software development documents can exist in many
different document formats, considering each format for
automated quality defect detection with our tool is
challenging. Due to this we developed in a first step a tool that
is applicable for Open Office XML documents [29] and
Microsoft Office Binary Format documents [31], as these are
one of the most commonly used formats for software
development documents. Furthermore, these standardized
document formats provide access to particular document
information that is required, as some rules are applied on
specific document elements. Consequently, a traversal strategy
to visit all these elements is needed. Due to this, we have
implemented the visitor pattern [32] [33] for our tool. Using
this pattern, which provides a methodology to visit all nodes
of a hierarchical data structure, enables applying rules on each
specified element of the extracted document information. A
similar rule-checking mechanism is used by the Java source
code measurement tool PMD [34]. However, instead of using
software development rules for source code, our document
quality defect detection tool uses this methodology in order to
check software development documents by means of easily
adaptable and highly configurable document quality rules.

V. FEASIBILITY STUDY OF THE AUTOMATED DOCUMENT
QUALITY DEFECT DETECTION APPROACH

This section describes the results of a feasibility study
conducted to test, whether an automated quality defect
detection tool using 24 document quality rules is able to reveal
additional documentation defects human inspectors did not
find before. Furthermore the trustworthiness of these quality
rules is shown as well as the effort to fix documentation
defects and rule settings. Before, we will give in (A) a brief
description of the software project documentation we used in
our study and in (B) an overview of the applied document
quality rules.

A. Description of the used software project documentation
In order to get appropriate software development

documents for our feasibility study, we used project
documents of a real-world software project. The software as
well as the associated documentation was developed by
Siemens AG Corporate Technology in several iterations using
a semi-formal development process. The software is used for
monitoring the communication and control flow in distributed
applications. As we have our focus on the quality of software
development documents, more technical or organizational
background information of the project is not necessary for the
purpose of our study.

TABLE I. SOFTWARE PROJECT DOCUMENT FORMAT TYPES

document format type no. documents in project
DOC 124
XLS 11
PPT 37
PDF 7

The entire documentation of the software project contains
of 179 software development documents of four different
document format types. As it is shown in Table I, more than
two-third of them are Microsoft Office Word Binary Format
documents. However, some of them are internal documents
with intentionally lower quality. Due to this, we used a set of
50 officially published Microsoft Word project documents
consisting of different document types (requirements
specifications, systems specifications, concept analysis,
market analysis, delta specifications, function lists, user
documentation, etc.) as objects of analysis for our feasibility
study. These 50 documents should meet high documentation
quality standards and are already checked by software
inspectors. Therefore, they testify to be of a high maturity
level and ready to be checked by our tool.

B. Applied document quality rules
Following, we list and give a short description for all

document quality rules we used in our study and motivate their
importance for software development documents. However,
the used rules settings are not discussed in this work.

• ADNC - Adhere to Document Naming Conventions:

Each software development document name has to
comply with explicitly specified naming conventions,
as project members can better grasp the document
content if documents follow a defined project-wide
document naming scheme.

• ADNS - Avoid Deeply Nested Sections: Documents
should not contain a deeply nested section hierarchy.
Particularly in software development documents the
content structure should be flat, simple and clear in
order to support clarity.

• ADUP - Avoid Duplicates in Document: Similar to
duplicated source code, within software development
documents duplicated paragraphs exceeding a defined
length (number of characters) should be omitted and
are better referenced explicitly. Otherwise the
document content will be more difficult to maintain.

• AES - Avoid Empty Sections: Each section of a
software development document must contain at least
one sentence, otherwise the content may not be
complete or lacks of clarity and conciseness.

• AESD - Avoid Extremely Small Documents: Extremely
small software development documents are indicators
for unfinished content or for a bad project-wide
document structure, as small software development
documents might be better combined to larger
document of reasonable size.

• AIDOC - Avoid Incomplete Documents: Particularly in
later phases of the software development process
documents should contain all information that is
required. Therefore, documents that are formally
incomplete, i.e., contain phrases like “TBD” or
“TODO” are not yet complete by definition.

Joint Proceedings of MDSM 2011 and SQM 2011

32

• ALS - Avoid Long Sentences: Identify those sentences
in a project document that exceed a given length,
where length is expressed by the number of words
contained in the sentence. Long sentences harm the
readability of e.g. requirements specifications or test
plans and are therefore indicators for difficult to
understand content of software development
documents.

• AULD - Avoid Ultra Large Documents: Ultra-large
software development documents should be avoided as
they are more difficult to maintain and to keep
consistent. Furthermore, it is harder to check whether
all information needed is present.

• ARHT - Avoid Repeated Heading Text: In a software
development document paragraphs of a section should
not only consist of a copy of the heading text, as this a
indicator of a underspecified and incomplete section

• ASPE - Avoid Spelling Errors: Each software
development document should be free of spelling
errors, regardless whether it is written in one language
or contains a mix of languages.

• ATSS - Adhere To Storage Structure: Each software
development document should be put in the right place
of the storage system, i.e. it should typically be stored
in a directory according to project-wide rules (typically
for different types and/or phases of the software
development process).

• DESOR - Define Expected Skills Of Readers: For each
software development document the skills of readers
should be explicitly defined, as depending on the skills
of readers, the content of the software development
document has to be presented in a different way. So,
depending on the expected skills of the readers data
might be presented more formally using e.g., UML, or
must definitely avoid any formalisms.

• DMHA - Document Must Have Author: Each software
development document must explicitly list its authors,
as in the case of changes each document has to be
traceable to its creators. Therefore, this rule is violated,
if there is no author defined in the document meta-
information and no key word is found that indicates the
existence of an author name.

• DMHV - Document Must Have Version Id: Similar to
source code each document in a software project
should have an explicit version identifier.

• DMHVH - Document Must Have Version History: In
order to keep software development documents
comprehensible, each document must provide a version
history that roughly outlines the changes over time
(versions) during the entire software development
process.

• DMS - Document Must have a State: Each software
development document should outline its defined state
(e.g., draft, in review, final, customer approved), in
order to present the current document state to the
project members.

• ECNF - Ensure Continuous Numbering of Figures: In
software development documents ascending
numbering of figures improves the quality of

documentation, as this contributes to a higher
consistency and comprehensibility of the documents.

• ECNT - Ensure Continuous Numbering of Tables: In
software development documents an ascending
numbering of tables improves the document quality, as
this leads to higher consistency and comprehensibility
of the document.

• EFRT - Ensure that each Figure is Referenced in the
Text: Each figure has to be referenced in the text of
software development documents; otherwise it is
incoherent or might be ambiguous.

• ETRT - Ensure that each Table is Referenced in the
Text: Each table has to be referenced in the text of
software development documents; otherwise it is
incoherent or might be ambiguous.

• FMHC - Figures Must Have a Caption: Each figure in
a software development document must have a caption
in order to express the visualized topics linguistically;
otherwise it may be ambiguous for the readers.

• PIFF - Provide Index For Figures: If a software
development document contains figures, there must be
an index listing all figures in order to keep information
quickly retrievable for all project members.

• PIFT - Provide Index For Tables: If a software
development document contains tables, there must be
an index listing all tables in order to keep the
information quickly retrievable for all project
members.

• TMHC – Tables Must Have a Caption: Each table in a
software development document must have a caption
in order to express the visualized data of the table
linguistically; otherwise it may be ambiguous for the
readers.

C. Violations
In this section we give an overview of the results of our

software development document defect detection analysis.

TABLE II. DEFECT DETECTION TOOL RESULTS

no. documents analyzed 50
no. document quality rules 24
total no. violations found 8,955
avg. false positive rate per rule 0.172

In our feasibility study 50 project documents were

automatically checked by 24 document quality rules, which
revealed a total number of 8,955 violations. For these findings
we determined an average false positive rate per rule of 17.2
percent and a false negative rate per rule of 0.4 percent. False
positive findings are (in our case) over-detected defects that
are no documentation defects in the sense of human software
inspectors. On the other hand, false negative findings are
defects that have not been found by our tool but that are
definitely documentation defects in the sense of human
software inspectors.

Joint Proceedings of MDSM 2011 and SQM 2011

33

Figure 2. Rule violations per document quality rule distribution

TABLE III. RESULTS OVERVIEW PER RULE

rule no. violations false positive
rate

false negative
rate

ADNC 11 0 0
ADNS 14 0 0
ADUP 823 0 0
AES 337 0.033 0

AESD 30 0.933 0
AIDOC 0 0 0.020

ALS 49 0 0
AULD 9 0 0.100
ARHT 13 0.846 0
ASPE 5,956 0.602 0
ATSS 25 0 0

DESOR 50 0 0
DMHA 0 0 0.040
DMHV 21 0 0

DMHVH 14 0 0
DMS 48 0 0.040
ECNF 43 0.488 0
ECNT 46 0.326 0
EFRT 106 0.274 0
ETRT 75 0.160 0
FMHC 329 0.365 0
PIFF 50 0 0
PIFT 50 0 0

TMHC 856 0.093 0

During our investigations we also found out that the

violations per rule are unequally distributed. As shown in
Table III, the rules ADUP, AES, ASPE, FMHC and TMHC
identified more than 300 violations each. Due to this, we
accumulated the number of violations found by these five
rules and compared it with the total number of violations.
Consequently, as it can be seen in the ABC analysis diagram
in Fig. 2, we revealed that these five document quality rules
are responsible for more than 90 percent of all thrown
violations.

Figure 3. Trustworthiness of all applied document quality rules

D. Trustworthiness

The trustworthiness of a rule specifies how reliable the
detection of a violation is. We classify trustworthiness into:

• very low: There is too much over- and/or under-
detection in order to rely on the results.

• low: There is significant over- and under-detection.
• medium: Most issues are found, but there is over-

detection.
• high: Almost no over- and under-detection. Very

reliable findings.
• very high: No known over- or under-detection.

Absolutely reliable findings.

As a result of this classification scheme, a main factor to
determine the trustworthiness for a document quality rule is its
false positive rate. Indeed, we also take false negative
findings, as far as possible to indentify, and known
weaknesses of the rule implementation into account, i.e., a rule
with a false positive rate of 0.0 and/or a false negative rate of
0.0 does not implicitly have to have a trustworthiness rating of
‘very high’.

As shown in Fig. 3, we rated the trustworthiness of the
document violations for eight of our 24 applied rules with
‘very high’, i.e., these violations are very reliable.

TABLE IV. ‘VERY HIGH’ TRUSTWORTHY RULES

ADNC Adhere to Document Naming Conventions
ADNS Avoid Deeply Nested Sections
ADUP Avoid Duplicates in Document
ALS Avoid Long Sentences
ATSS Adhere To Storage Structure
DMHVH Document Must Have Version History
PIFF Provide Index For Figures
PIFT Provide Index For Tables

Furthermore, we also determined for eight document

quality rules a ‘high’ trustworthiness, as we identified almost
no over- or under-detection for this rules. As a result of this

Joint Proceedings of MDSM 2011 and SQM 2011

34

more than two-third of our rules are identified to be ‘very
high’ or ‘high’ trustworthy.

TABLE V. ‘HIGH’ TRUSTWORTHY RULES

AES Avoid Empty Sections
AIDOC Avoid Incomplete Documents
AULD Avoid Ultra Large Documents
DESOR Define Expected Skills Of Readers
DMHA Document Must Have Author
DMHV Document Must Have Version Id
ETRT Ensure that each Table is Referenced in

the Text
TMHC Table Must Have a Caption

However, our feasibility study also revealed three rules

with a ‘low’ trustworthiness.

TABLE VI. ‘LOW’ TRUSTWORTHY RULES

AESD Avoid Extremely Small Documents
ARHT Avoid Repeated Heading Text
ASPE Avoid Spelling Errors

These rules have to deal with a false positive rate of more
than 60 percent, e.g. most of the ASPE violations are thrown as
domain specific terms or abbreviations are falsely identified as
misspelled words. Nevertheless, some of the violations of these
three rules are informative as we think that, although there is
much over- and under-detection, they can be categorized as
‘low’ trustworthy. Moreover, we think that small rule
improvements, e.g. adding the usage of a domain specific
dictionary for the ASPE rule, would lead to a higher
trustworthiness.

E. Effort to fix defects
The effort to fix true positive findings specifies how much

is needed to spent for removing a defect (qualitatively):

• low: Only some local lines in a document have to be
changed.

• medium: Document-wide changes are necessary.
• high: Project-wide document changes are necessary.

Figure 4. ‘Effort to change defects’ of all applied document quality rules

As shown in Fig. 4, most violations thrown by 19 of our 24
applied rules affect only some lines in the documents, i.e.
these defects can be quickly corrected and represent easy wins.
Moreover, for fixing the defects of four of our rules we
determined that document-wide changes are required.

TABLE VII. ‘MEDIUM’ EFFORT TO FIX DEFECTS

ADNS Avoid Deeply Nested Sections
ADUP Avoid Duplicates in Document
AESD Avoid Extremely Small Documents
DMHVH Document Must Have Version History

Nevertheless, during our feasibility study we also
determined that all true positive AULD violations lead to
project-wide document changes. In this case, high effort is
needed as an ultra large document has to be split into separate
documents. Furthermore, all references are affected and have to
be checked for correctness. It is very hard to determine whether
defects of a specific rule generally affect only some lines in a
document or the entire software project, as e.g. small changes
in some lines can also lead to broken references in other
documents.

F. Effort to change settings
The effort to adapt configuration settings of the rules to the
needs of the specific project specifies how much effort is
needed to spent for adapting the rule configurations, before the
document defect detection tool can be applied:

• low: Nothing or very small adaptations are necessary
in a settings file.

• medium: Some lines have to be changed in a settings
file. Some knowledge of the analyzed project
documents is necessary to define, e.g., suitable regular
expressions.

• high: Settings files have to be changed considerably.
Detailed information of the project document content
and structure is necessary to define, e.g., suitable
regular expressions.

As stated in Fig. 5, more than two-thirds of all applied
document quality rules do not need considerable effort to be

Figure 5. ‘Effort to change settings’ of all applied document quality rule

Joint Proceedings of MDSM 2011 and SQM 2011

35

suitably configured. In order to correctly configure six of our
rules it is necessary to have some further knowledge in
specifying correct regular expressions.

TABLE VIII. ‘MEDIUM’ EFFORT TO CHANGE SETTINGS

ADNC Adhere to Document Naming Conventions
ASPE Avoid Spelling Errors
ATSS Adhere To Storage Structure
DMHV Document Must Have Version Id
EFRT Ensure that each Figure is Referenced in

the Text
ETRT Ensure that each Table is Referenced in

the Text

Furthermore, it is required to have an overview of the
document structure and document content. However, to
correctly configure the DESOR rule (effort to change settings =
‘high’), there must be also some knowledge of the used
expressions and languages in order to identify and extract the
specific document content properties that define the skills of
readers.

VI. CONCLUSION AND FURTHER WORK
Empirical studies show that tool support can significantly

increase the performance of the overall software inspection
process [10][11][12][13]. However, most available software
inspection tools are optimized for code inspections, which
usually provide support for plain text documents, only. Due to
this they are inflexible with respect to different artifact types
and limit inspectors in their work. For natural language text,
inspection tools cannot fully replace human inspectors in
detecting defects. Nevertheless, software inspection tools can
be used to make defect detection tasks easier [11]. Encouraged
by this, we developed a tool-based quality defect detection
approach to support the inspection process by checking
documentation best practices in software development
documents.

International documentation and specification standards
[22] [23] [24] [25] [26] define a set of generally accepted
documentation best practices. Furthermore, checklists and
reviewing procedures [27] are widely used as well as
documentation quantifiers in order to check specific
documentation characteristics representing quality aspects [28].
As a result of these studies we came to the conclusion, that
measurable document quality rules expressing best practices
can also be used to detect defects in software development
documents and to help enhancing documentation quality. So far
we have implemented a document quality defect detection tool,
which is applicable on Office Open XML documents [29] and
Microsoft Office Binary Format documents [31]. The tool
allows checking, whether software development documents
adhere to explicitly defined document quality rules. In a
feasibility study we showed that our automatic defect detection
tool is capable of finding additional uncovered significant
documentation defects that had been overlooked by human
inspectors.

During our analysis, we automatically checked 50
Microsoft Office Word documents of a real-world software

project with 24 document quality rules. The tool revealed 8,955
violations with an average false positive rate per rule of
17.2 percent and an average false negative rate per rule of 0.4
percent. As our study shows, two-thirds of all applied
document quality rules were rated with a ‘high’ or ‘very high’
trustworthiness. Furthermore, it has been pointed out that most
of the violations found can be easily removed (effort to change
defect = ‘low’), as they often only affect some few lines.

In our feasibility study we determined that nearly 75
percent of all rules did not need any further configuration
changes before they could be suitably applied to software
development documents. Nevertheless, seven rules had to be
adapted to project specific document conventions before they
could be applied. In the case of the project documentation used
for our study the configuration of these rules took us
approximately six hours, as we were not familiar with the
conventions defined for the document naming and content
structure. However, we saw that after the rules had been
suitably configured, the trustworthiness of the rule violations
rose considerably, i.e., the configuration effort well paid-off.

In a next step, we will apply our document quality defect
detection tool on the documents of additional software projects
to improve the implementation of the rules with an emphasis
on reducing the false positive rate and to validate the results of
our feasibility study in more detail. Moreover, as we have seen
that some of our rules are applicable for most technical
documents, we also want to implement some document quality
rules that are even more specific for software development
rules. For instance, we will add rules that deal with domain
specific terms and glossaries used in software documents or the
traceability of references between various software
development documents (of different software life-cycle
phases).

We currently also work on transferring Adobe PDF
documents in a way that the already developed document
quality rules for the Office Open XML documents and
Microsoft Office Binary Format documents can be used
without changes. As a result of this, we think that the definition
of an abstract document structure that separates the rules from
the underlying software artifacts is essential. Consequently, this
would enable a much easier development of rules that can be
applied on elements of a general document model, as there is
no need to deal with the complexity of specific document
formats for the rule development. Furthermore, we recognized
that our rules are too loosely grouped. From our experience
with rules in the context of code quality [35], we will develop a
quality model that allows a systematic clustering of rules by
means of quality attributes. This will give us the possibility to
evaluate document quality on more abstract levels, like
readability or understandability of a document.

ACKNOWLEDGMENTS
We would like to thank Siemens AG Corporate Technology
for supporting our empirical investigations by providing us
with software development documentation data in order to
conduct our feasibility study and test our approach.

Joint Proceedings of MDSM 2011 and SQM 2011

36

REFERENCES
[1] B. W. Boehm, Software Engineering. Barry W. Boehm’s lifetime

contributions to software development, management, and research.
Hoboken, N.J., Wiley-Intersience, 2007.

[2] L. Briand, K. E. Emam, O. Laitenberger, and T. Fussbroich, Using
Simulation to Build Inspection Efficiency Benchmarks for Development
Projects. International Conference on Software Engineering, IEEE
Computer Society, 1998.

[3] J. C. Chen and S. J. Huang, “An empirical analysis of the impact of
software development problem factors on software maintainability,” in
Journal of Systems and Software. Elsevier Science Inc., 2009, vol. 82,
pp. 981-992.

[4] M. E. Fagan, “Design and code inspections to reduce errors in program
development,” in IBM Systems Journal. vol. 15 (3), 1976, pp. 182-211.

[5] T. Gilb and D. Graham, Software Inspection. Addison-Wesley
Publishing Company, 1993.

[6] T. Thelin, P. Runeson, and C. Wohlin, “An Experimental Comparison of
Usage-Based and Checklist-Based Reading,” in IEEE Trans. Software
Engineering, vol. 29, no. 8, Aug. 2003, pp. 687-704.

[7] T. Thelin, P. Runeson, C. Wohlin, T. Olsson, and C. Andersson,
“Evaluation of Usage-Based Reading-Conclusions after Three
Experiments,” in Empirical Software Engineering: An Int’l J., vol. 9, no.
1, 2004, pp. 77-110.

[8] F. Shull, I. Rus, and V. Basili, “How Perspective-Based Reading Can
Improve Requirements Inspections,” in Computer, vol. 33, no. 7, July
2000, pp. 73-79.

[9] J. Carver, F. Shull, and V.R. Basili, “Can Ovservational Techniques
Help Novices Overcome the Software Inspection Learning Curve? An
Empirical Investigation,” in Empirical Software Engineering: An Int’l J.,
vol. 11, no. 4., 2006, pp. 523-539.

[10] O. Laitenberger and J.-M. DeBaud, “An encompassing life cycle centric
survey of software inspection,” in Journal of Systems and Software. vol.
50, 2000, pp. 5-31.

[11] S. Biff; P. Grünbacher, and M. Halling, “A family of experiments to
investigate the effects of groupware for software inspection,” in
Automated Software Engineering, Kluwer Academic Publishers, vol. 13,
2006, pp. 373-394.

[12] H. Hedberg and J. Lappalainen, A Preliminary Evaluation of Software
Inspection Tools, with the DESMET Method. Fifth International
Conference on Quality Software, IEEE Computer Society, 2005, pp. 45-
54.

[13] V. Tenhunen and J. Sajaniemi, An Evaluation of Inspection Automation
Tools. International Conference on Software Quality, Spinger-Verlag,
2002, pp. 351-362.

[14] W. M. Wilson, L. H. Rosenberg, and L.E. Hyatt, Automated quality
analysis of Natural Language Requirement specifications. PNSQC
Conference, October 1996.

[15] G. Lami and R. W. Ferguson, “An Empirical Study on the Impact of
Automation on the Requirements Analysis Process,“ in Journal of
Computer Science Technology. vol. 22, 2007, pp. 338-347.

[16] G. Lami, QuARS: A tool for analyzing requirements. Software
Engineering Institute, 2005.

[17] P. Jain, K. Verma, A. Kass, and R. G. Vasquez, Automated review of
natural language requirements documents: generating useful warnings
with user-extensible glossaries driving a simple state machine.

Proceedings of the 2nd India software engineering conference, ACM,
2009, pp. 37-46.

[18] Raven: Requirments Authoring and Validation Environment,
www.ravenflow.com.

[19] T. Farkas, T. Klein, H. Röbig, "Application of Quality Standards to
Mutliple Artifacts with a Universal Compliance Solution“, in Model-
Based Engineering of Embedded Real-Time Systems. International
Dagstuhl Workshop, Dagstuhl Castle, Germany, 2007.

[20] Microsoft Developer Network: The LINQ Project,
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[21] J. Nödler, H. Neukirchen, and J. Grabowski, ”A Flexible Framework for
Quality Assurance of Software Artefacts with Applications to Java,
UML, and TTCN-3 Test Specifications” in Proceedings of the 2009
International Conference on Software Testing Verification and
Validation. IEEE Computer Society, 2009, pp. 101-110.

[22] NASA Software Documentation Standard, NASA-STD-2100-91.
National Aeronautics and Space Administration, NASA Headquarters,
Software Engineering Program, July, 1991.

[23] IEEE Recommended Practice for Software Requirements Specifications,
IEEE Std 830-1998. 1998.

[24] IEEE Standard for Software User Documentation, IEEE Std 1063-2001.
2001

[25] ISO/IEC 18019:2004: Software and system engineering - Guidelines for
the design and preparation of user documentation for application
software, 2004.

[26] ISO/IEC 26514:2008: Systems and software engineering - Requirements
for designers and developers of user documentation, 2008.

[27] G. Hargis, M. Carey, A. K. Hernandez, P. Hughes, D. Longo, S.
Rouiller, E. Wilde, Developing Quality Technical Information: A
Handbook for Writers and Editors, 2nd ed. IBM Press, 2004.

[28] J. D. Arthur, and K. T. Stevens, Document Quality Indicators: A
Framework for Assessing Documentation Adequacy. Virginia
Polytechnic Institute, State University, 1990.

[29] ISO/IEC 29500:2008. Information technology – Document description
and processing languages – Office Open XML File Formats Open
Document Format, 2008.

[30] ISO/IEC 26300:2006. Information technology- Open Document Format
for Office Applications (OpenDocument), 2006.

[31] Microsoft Office Binary File Format: http://www.microsoft.com/
interop/docs/OfficeBinaryFormats.mspx

[32] P. Buchlovsky and H. Thielecke, “A Type-theoretic Reconstruction of
the Visitor Pattern. Electronic Notes,” in Theoretical Computer Science.
vol. 155, 2006, pp. 309 - 329.

[33] B. C. Oliveira, M. Wang, and J. Gibbons, The visitor pattern as a
reusable, generic, type-safe component. Proceedings of the 23rd ACM
SIGPLAN conference on Object-oriented programming systems
languages and applications. ACM, 2008, pp. 439-456.

[34] T. Copeland, PMD Applied. Centennial Books, 2005.
[35] R. Plösch, H. Gruber, A. Hentschel, Ch. Körner, G. Pomberger, S.

Schiffer, M. Saft, and S. Storck, “The EMISQ Method and its Tool
Support - Expert Based Evaluation of Internal Software Quality,” in
Journal of Innovations in Systems and Software Engineering. Springer
London, vol. 4(1), March 2008.

Joint Proceedings of MDSM 2011 and SQM 2011

37

Design Pattern Detection using Software Metrics and Machine Learning

Satoru Uchiyama

Hironori Washizaki

Yoshiaki Fukazawa

Dept. Computer Science and Engineering

Waseda University

Tokyo, Japan

s.uchiyama1104@toki.waseda.jp

washizaki@waseda.jp

fukazawa@waseda.jp

Atsuto Kubo

Aoyama Media Laboratory

Tokyo, Japan

kubo@nii.ac.jp

Abstract—The understandability, maintainability, and

reusability of object-oriented programs could be improved by

automatically detecting well-known design patterns in

programs. Many existing detection techniques are based on

static analysis and use strict conditions composed of class

structure data. Hence, it is difficult for them to detect design

patterns in which the class structures are similar. Moreover, it

is difficult for them to deal with diversity in design pattern

applications. We propose a design pattern detection technique

using metrics and machine learning. Our technique judges

candidates for the roles that compose the design patterns by

using machine learning and measurements of metrics, and it

detects design patterns by analyzing the relations between

candidates. It suppresses false negatives and distinguishes

patterns in which the class structures are similar. We

conducted experiments that showed that our technique was
more accurate than two previous techniques.

Keywords—component; Object-oriented software, Design

pattern, Software metrics, Machine learning

I. INTRODUCTION

Design patterns (hereafter, patterns) are defined as
descriptions of communicating classes that form a common
solution to a common design problem. Gang of Four (GoF)
patterns [1] are representative patterns for object-oriented
software. Patterns are composed of classes that describe the
roles and abilities of objects. For example, Figure 1 shows

one GoF pattern named the State pattern. This pattern

is composed of roles named Context, State, and

ConcreteState. The use of patterns enables software
development with high maintainability, high reusability, and
improved understandability, and it facilitates smooth
communications between developers.

Programs implemented by a third party and open source
software may take a lot of time to understand, and patterns
may be applied without explicit class names, comments, or
attached documents in existing programs. Thus, pattern
detection improves the understandability of programs.
However, manually detecting patterns in existing programs
is inefficient, and patterns may be overlooked.

Many studies on using automatic pattern detection to
solve the above problems have used static analysis. However,
static analysis has difficulty identifying patterns in which
class structures are similar and patterns with few features. In
addition, there is still a possibility that software developers
might overlook patterns if they use strict conditions like the
class structure analysis, and if the applied patterns vary from
the intended conditions even a little.

We propose a pattern detection technique that uses
software metrics (hereafter, metrics) and machine learning.
Although our technique can be classified as a type of static
analysis, unlike previous detection techniques it detects
patterns by using identifying elements derived by machine
learning based on measurement of metrics without using
strict condition descriptions (class structural data, etc.). A
metric is a quantitative measure of a software property that
can be used to evaluate software development. For example,
one such metric, number of methods (NOM), refers to the
number of methods in a class [2]. Moreover, by using
machine learning, we can in some cases obtain previously
unknown identifying elements from combinations of metrics.
To cover a diverse range of pattern applications, our method
uses a variety of learning data because the results of our
technique may depend on the kind and number of learning
data used during the machine learning process. Finally, we
conducted experiments comparing our technique with two
previous techniques and found that our approach was the
most accurate of the three.

II. PREVIOUS DESIGN PATTERN DETECTION TECHNIQUES

AND THEIR PROBLEMS

Most of the existing detection techniques use static
analysis [3][4]. These techniques chiefly analyze information
such as class structures that satisfy certain conditions. If they
vary from the intended strict conditions even a little, or two
or more roles are assigned in a class, there is a possibility
that developers might overlook patterns.

There is a technique that detects patterns based on the
degrees of similarity between graphs of pattern structure and
graphs of programs to be detected [3]. However,

Joint Proceedings of MDSM 2011 and SQM 2011

38

Figure 1. State pattern

Figure 2. Strategy pattern

distinguishing the State pattern from the Strategy
pattern is difficult because their class structures are similar
(see Figure 1 and 2). Unlike this method, we distinguish the
patterns to which the structure is similar by the identification
of the roles from the quantity and the ratio of metrics by the
machine learning. In addition, this technique [3] is available
to the public as a web-based tool.

There is a technique that outputs pattern candidates based
on features derived from metric measurements [5]. However,
it requires manual confirmation; this technique can roughly
identify pattern candidates, but the final choice depends on
the developer's skill. Our technique detects patterns without
manual filtering by metrics and machine learning but also by
analyzing class structure information. Moreover, this
technique uses general metrics concerning an object-oriented
system without using metrics for each role. Our technique
uses metrics that specialize in each role.

Another existing technique improves precision by
filtering detection results using machine learning. This
technique inputs measurements of the classes and methods of
each pattern [6]. However, it uses the existing static
analytical approach, whereas our technique instead uses
machine learning throughout the entire process.

One current technique analyzes programs both before and
after patterns are applied [7]. This method requires a revision
history of the programs used. Our technique detects patterns
by analyzing only the current programs.

Yet another approach detects patterns from the class
structure and behavior of a system after classifying its
patterns [8][9]. It is difficult to use, however, when patterns
are applied more than once and when pattern application is
diverse. In contrast, our technique copes well with both of
these challenges.

Other detection techniques use dynamic analysis. These
methods identify patterns by referring to the execution route
information of programs [10][11]. However, it is difficult to
analyze the entire execution route and use fragmentary class
sets in an analysis. Additionally, the results of dynamic
analysis depend on the representativeness of the execution
sequences.

Some detection techniques use a multilayered
(multiphase) approach [12][13]. Lucia et al. use a two-phase,
static analysis approach [12]. This method has difficulty,
however, in detecting creational and behavioral patterns
because it analyzes pattern structures and source code level
conditions. Guéhéneuc et al. use “DeMIMA,” an approach
that consists of three layers: two layers to recover an abstract
model of the source code, including binary class
relationships, and a third layer to identify patterns in the

abstract model. However, distinguishing the State pattern

from the Strategy pattern is difficult because their
structures are identical. Our technique can detect patterns in

all categories and distinguish the State pattern from the

Strategy pattern using metrics and machine learning.
Finally, one existing technique detects patterns using

formal OWL (Web Ontology Language) definitions [14].
However, false negatives arise because this technique does
not accommodate the diversity in pattern applications. The
technique [14] is available to the public via the web as an
Eclipse plug-in.

We suppress false negatives by using metrics and
machine learning to accommodate diverse pattern
applications and to distinguish patterns in which the class
structures are similar. It should be noted that only techniques
[3], [14] discussed above have been released as publicly
accessible tools.

III. OUR TECHNIQUE

Our technique is composed of a learning phase and a
detection phase. The learning phase is composed of three
processes, and the detection phase is composed of two
processes, as shown in Figure 3. Each process is described
below, with pattern specialists and developers included as
the parties concerned. Pattern specialists mean persons that
have the knowledge about the patterns. Developers mean
persons that maintain the object-oriented software. Our
technique currently uses Java as the program language.
[Learning Phase]
P1. Define Patterns

Pattern specialists determine the detectable patterns and
define the structures and roles composing these patterns.
P2. Decide Metrics

Pattern specialists determine useful metrics to judge the
roles defined in P1 by using the Goal Question Metric
decision technique.
P3. Machine Learning

Pattern specialists input programs applied patterns into
the metrics measurement system, and obtain measurements
for each role. And specialists input these measurements into
the machine learning simulator to learn. After machine
learning they verify the judgment for each role, and if

Joint Proceedings of MDSM 2011 and SQM 2011

39

Figure 3. Process of our technique

the verification results are not good, they return to P2 and
revise the metrics.
[Detection Phase]
P4. Role Candidate Judgment

Developers input programs to be detected into the
metrics measurement system, and obtain measurements for
each class. And developers input these measurements into
the machine learning simulator. Machine learning simulator
identifies role candidates.
P5. Pattern Detection

Developers input role candidates judged in P4 to the
pattern detection system by using the pattern structure
definitions defined in P1. This system detects patterns
automatically. The structure definitions correspond to the
letters P, R, and E of section III-B.

A. Learning Phase

P1. Define Patterns
Currently, our technique considers five GoF patterns

(Singleton, TemplateMethod, Adapter, State,

and Strategy) and 12 roles. The GoF patterns are grouped
into creational patterns, structural patterns, and behavioral
patterns. Our technique uses these patterns to cover all these
groups.
P2. Decide Metrics

Pattern specialists decide on useful metrics to judge roles
by using the Goal Question Metric decision technique [14]
(hereafter, GQM). GQM is a top-down approach used to
clarify relations between goals and metrics.

We experimented with judging roles by using general
metrics without GQM. However, the machine learning
results were unsatisfactory because the measurements of
some metrics were irregular. Consequently, we chose GQM
so that the machine learning could function appropriately by
stable metrics in each role. With our technique, the pattern
specialists set as a goal the accurate judgment of each role.
To achieve this goal they defined a set of questions to be
evaluated. Next, they decided on useful metrics to help
answer the questions they had established. The pattern

specialists decide metrics to identify roles by the quantity
and the ratio of measurements. Therefore, they decide
questions by paying attention to the attributes and operations
of the roles by reading the description of the pattern
definition. They decide simple metrics concerning the static
aspect like structure first to improve the recall. However, the
lack of questions might occur because GQM is qualitative.
Therefore, if the machine learning results were unsatisfactory
by irregular measurements of metrics, the procedure loops
back to P2 to reconsider metrics also concerning behavior.
Moreover, it will be possible to apply GQM to roles with
new patterns in the future.

For example, Figure 4 illustrates the goal of making a

judgment about the AbstractClass role in the

TemplateMethod pattern. AbstractClass roles have
abstract methods or methods using written logic that use
abstract methods as shown in Figure 5. The

AbstractClass role can be distinguished by the ratio of

Figure 4. Example of GQM（AbstractClass role）

Figure 5. Example of source code (AbstractClass role)

Joint Proceedings of MDSM 2011 and SQM 2011

40

TABLE I. RESULTS OF APRLING GQM

Pattern Role Goal Question Metric

Singleton Singleton
Identification of
Singleton role

Is the static field defined? NSF

Is the constructor called from other class? NOPC

Is the method that return singleton instance? NSM

Template
Method

AbstractClass
Identification of
AbstractClass role

Are abstract methods defined? NOAM

Is the template method defined? NOM

ConcreteClass
Identification of
ConcreteClass role

Is the override method defined? NORM

Adaper

Target
Identification of
Target role

Are abstract methods defined? NOAM

Is the class defined as an interface? NOI

Adapter
Identification of
Adapter role

Are override methods defined? NORM

Is Adaptee field defined?
NOF

NOOF

Adaptee
Identification of
Adaptee role

Are methods used by Adapter role defined? NOM

Is the class referred by other classes? NCOF

State

Context
Identification of
Context role

Are methods to set states defined? NOM

Is State field defined?
NOF

NOOF

State
Identification of
State role

Are abstract methods defined? NOAM

Is the class defined as an interface? NOI

Is the class referred by other classes? NCOF

Concrete
State

Identification of
ConcreteState role

Is the override method defined? NORM

Is the method that describes change state
defined?

NOM

NMGI

Strategy

Context
Identification of
Context role

Are methods to set states defined? NOM

Is Strategy field defined?
NOF

NOOF

Strategy
Identification of
Strategy role

Are abstract methods defined? NOAM

Is the class defined as an interface? NOI

Is the class referred by other classes? NCOF

Concrete
Strategy

Identification of
ConcreteStrategy
role

Is the override method defined? NORM

the number of methods to the number of abstract methods
because with this role the former exceeds the latter.
Therefore, the number of abstract methods (NOAM) and
number of methods (NOM) are useful metrics for judging
this role. Table I shows the results of applying GQM to all
roles. The details of metrics are described in Table II of
paragraph IV-A.

The previous technique [5] uses GQM, too. In this
technique, the goal is set as “Recover design patterns”. And
this technique uses general metrics concerning an object-
oriented system without deciding metrics at each role. On the
other hand, our technique uses metrics that specialize in each
role.
P3. Machine Learning

Machine learning is a technique that analyzes sample
data by computer and acquires useful rules with which to
make forecasts about unknown data. We used the machine
learning so as to be able to evaluate patterns with a variety of
application forms. Machine learning suppresses false
negatives and achieves extensive detection.

Our technique uses a neural network [16] algorithm. A
support vector machine [16] could also be used to distinguish

a pattern of two groups by using linear input elements.
However, we chose a neural network because it outputs the
values to all roles, taking into consideration the dependency
among the different metrics. Therefore, it can deal with cases
in which one class plays two or more roles.

A neural network is composed of an input layer, hidden
layers, and an output layer, as shown in Figure 6, and each
layer is composed of elements called units. Values are given
a weight when they move from unit to unit, and a judgment
rule is acquired by changing the weights. A typical algorithm
for adjusting weights is back propagation. Back propagation
calculates an error margin between output result y and the
correct answer T, and it sequentially adjusts weights from the
layer nearest the output to the input layer, as shown in Figure
7. These weights are adjusted until the output error margin of
the network reaches a certain value.

Our technique uses a hierarchical neural network
simulator [17]. This simulator uses back propagation. The
hierarchy number in the neural network is set to three, the
number of units in the input layer and the hidden layer are set
to the number of decided metrics, and the number of units of
the output layer is set to the number of roles being judged.

Joint Proceedings of MDSM 2011 and SQM 2011

41

Figure 6. Neural network

Figure 7. Back propagation

The input consists of the metric measurements of each role in
a program to which patterns have already been applied, and
the output is an expected role. Pattern specialists obtain
measurements for each role by using metrics measurement
system. And, specialists input these measurements into the
machine learning simulator to learn. The learning repetitions
cease when the error margin curve of the simulator
converges. The specialists verify the convergence of the
error margin curve manually at present. After machine
learning they verify the judgment for each role, and if the
verification results are not good, they return to P2 and revise
the metrics.

B. Detection Phase

P4. Role Candidate Judgment
Developers input programs to be detected into the

metrics measurement system, and obtain measurements for
each class. And developers input these measurements to the
machine learning simulator. This simulator outputs values
between 0–1 to all roles to be judged. The output values are
normalized such that the sum of all values becomes 1. These
output values are called role agreement values. A larger role
agreement value means that the role candidate is more likely
correct. The reciprocal of the number of roles to be detected

is set as a threshold, and the role agreement values that are
higher than the threshold are taken to be role candidates. The
threshold is 1/12 (i.e., 0.0834) because we treat 12 roles at
present. The sum of the output values is different at each
input in the neural net work. Therefore, to use a common
threshold for all the output, our technique normalizes the
output value.

For example, Figure 8 shows the role candidate judgment
results with NOM of 3 and NOAM of 2 and other metrics of

0; the output value of AbstractClass is the highest value.
By regularizing the values of Figure 8, the roles are judged to

be AbstractClass and Target.
P5. Pattern Detection

Developers input role candidates judged in P4 into the
pattern detection system by using the pattern structure
definitions defined in P1. And, this system detects patterns
by matching the direction of the relations between role
candidates and the roles of pattern in programs. The
matching moves sequentially from the role candidate with
the highest agreement value to that with the lowest value.
The pattern detection system searches all combinations of
role candidates that accord with the pattern structures. The
pattern detection system detects patterns when the directions
of relations between role candidates accord with the pattern
structure and when the role candidates accord with roles at
both ends of the relations. Moreover, the relation agreement
values reflect the kind of relation.

Currently, our method deals with inheritance, interface
implementation, and aggregation relations. The kind of
relations will increase as more patterns get added in the
future. The relation agreement value is 1.0 when the kind
agrees with the relation of the pattern, and it is 0.5 when the
kind does not agree. If the relation agreement value is 0 then
the kind of relation does not agree, the pattern agreement
value might become 0, and these classes will not be detected
as patterns. In such cases, a problem similar to those of the
previous detection techniques will occur because the
difference in the kind of relation is not recognized.

The pattern agreement value is calculated from the role
agreement values and the relation agreement values. The
pattern to be detected is denoted as P, the role set that
composes the pattern is denoted as R, and the relation set is
denoted as E. Moreover, the program that is the target of
detection is defined as P’, the set of classes comprising the
role candidates is R’, and the set of relations between
elements of R' is denoted as E’. The role agreement value is
denoted as Role, and the relation agreement is denoted as Rel.
Role means the function which is input the element of R and
the one of R' , and . Rel means the function which is input the
element of E and the one of E'. The product of the average of
two roles at both ends of the relation and Rel is denoted as
Com, and the average of Com is denoted as Pat. Moreover,
the average of two Roles is calculated when Com is
calculated, and the average value of Com is calculated to
adjust Pat and Role to values from 0 to 1 when Pat is
calculated. If the directions of the relations do not agree, Rel
is assumed to be 0.

Joint Proceedings of MDSM 2011 and SQM 2011

42

Figure 8. Example of machine learning output

Figure 9. Example of pattern detection (TemplateMethod pattern)

RReeeERReeeE

rrrRrrrR

ERPERP

lj

ki

},,,{},,,{

},,,{},,,{

),(),(

2121

2121

 　　　

　　　　

　　　　　　　

),(nm rrRole The role agreement value RrRr nm
 ,

),(qp eeelR The relation agreement value EeEe qp
 ,

),(),,(,,,,

),(
2

),(),(
),(

dbpcapdbca

qp

dcba

qp

rrerreRrrRrr

eeelR
rrRolerrRole

eeCom

　　　　　　　　　　

EeEe qp

qpqp

qp

eeCom

eeelREEee

PPPat
,

),(

0),(),(

1
),(

Figure 9 shows an example of detecting the

TemplateMethod pattern. In this example, it is assumed

that class SampleA has the highest role agreement value for

an AbstractClass. The pattern agreement value between

the program Samples and the TemplateMethod pattern is
calculated with the following algorithm.

}{

},{

),(

assConcreteClassAbstractClE

assConcreteClassAbstractClR

ERthodTemplateMeP

　

　

　

},{

},,{

),(

SampleCSampleASampleBSampleAE

SampleCSampleBSampleAR

ERSamples

◇

(: inheritance, ◇ : aggregation)

5.0),(

0.1),(

57.0),(

45.0),(82.0),(

SampleCSampleAassConcreteClassAbstractClelR

SampleBSampleAassConcreteClassAbstractClelR

SampleCassConcreteClRole

SampleBassConcreteClRoleSampleAassAbstractClRole

◇　

　　　

　　

348.05.0
2

57.082.0
),(

635.00.1
2

45.082.0
),(

SampleCSampleAassConcreteClassAbstractClCom

SampleBSampleAassConcreteClassAbstractClCom

◇　

　

 492.0348.0635.0
2

1
),(SamplesthodTemplateMePat

In the program shown in Figure 9, the pattern agreement

value of the TemplateMethod pattern was calculated to
be 0.492. Pattern agreement values are normalized from 0 to
1, just like role agreement values. Our technique uses the
same threshold among of pattern agreement value as role
agreement value because a lot of classes are detected as the
pattern that composed of the only class like the singleton
pattern. Classes with a pattern agreement value that exceeds
the threshold are output as the detection result. The
reciprocal of the number of roles for detection is taken to be

Joint Proceedings of MDSM 2011 and SQM 2011

43

the threshold, similar to the case of role candidate judgment,
and pattern agreement values that are higher than the
threshold are output as the detection result.

In Figure 9, SampleA, SampleB, and SampleC were

detected as TemplateMethod patterns. Moreover,

SampleA and SampleB, SampleA and SampleC can

also be considered to match the TemplateMethod
pattern. In this case, the relation of

“SampleA SampleB” is more similar to a

TemplateMethod pattern than the relation of

“SampleA ◇ SampleC” because its agreement value of

the former pair is 0.635 while that of the latter pair is only
0.348.

IV. EVALUATION AND DISCUSSION

We determined whether the machine learning simulator
derived identifying elements of the roles after learning.
Moreover, we compared our technique with two previous
techniques to verify the precision and recall of our approach
and to confirm whether it could match its detected patterns
with similar structures and diverse patterns.

A. Verification of Role Candidate Judgement

We used cross-validation to verify the role candidate
judgment. In cross-validation, data are divided into n groups,
and a test to verify a role candidate judgment is executed
such that the testing data are one data group and the learning
data are n-1 data groups. We executed the test five times by
dividing the data into five groups. In this paper, programs
such as programs in the reference [18], etc., are called small
scale, whereas programs in practical use are called large
scale. We used the set of programs where patterns are
applied in small-scale programs (60 in total) 1 [18][19] and
large-scale programs (158 in total from the Java library
1.6.0_13 [20], JUnit 4.5 [21], and Spring Framework 2.5
RC2 [22]) as experimental data. We judged manually and
qualitatively whether the patterns were appropriately applied
in this set of programs.

Table II shows the metrics that were chosen for the
small-scale and large-scale programs. We used different
metrics depending on the magnitude of the programs. For
instance, we chose the metric called number of methods
generating instance (NMGI) for small-scale programs
because the method for transit states in the

ConcreteState role in the State pattern generates

other ConcreteState roles in small-scale programs. We
guessed that the difference appeared in ratios of metrics
about State and Strategy, so we used the same metrics for the
large-scale programs without NMGI. Because State pattern
treats the states in State role and treats the actions of the
states in the Context role. On the other hand Strategy pattern
encapsulates the processing of each algorithm into a Strategy
role, and Context processing becomes simpler compared
with that of State pattern.

1 All small-scale code:

http://www.washi.cs.waseda.ac.jp/ja/paper/uchiyama/dp.html

We focused our attention on recall because the purpose
of our technique was detection covering diverse pattern
applications. Recall indicates the degree to which detection
results are free of leakage, whereas precision shows how free
of disagreement these result are. The data in Table III was
used to calculate recall. wr, xr, yr, and zr are numbers of roles,
and wp, xp, yp, and zp are numbers of patterns. Recall was
calculated from the data in Table III by the following
expressions.

rr

r
r

xw

w

Re

Table IV shows the average recall for each role. Role

candidates must be judged accurately because the State

pattern and Strategy pattern have the same class structure.
Therefore, our technique regards the roles of the patterns

other than State and Strategy patterns as role
candidates when the role agreement value was above the

threshold, whereas our technique regards the roles of State

and Strategy patterns as role candidates when the role
agreement value was above the threshold and the roles of
both patterns were distinguished State pattern from Strategy
pattern.

As shown in Table IV, the recalls for the large-scale
programs were lower than those for the small-scale programs.
Accurate judgment of large-scale programs was more
difficult because these programs possessed attributes and
operations that were unnecessary for pattern composition.
Therefore, it will be necessary to collect a significant amount
of learning data to adequately cover a variety of large-scale
programs.

The results in Table IV pertain to instances where the

State and Strategy patterns could be distinguished. The

Context role had high recall, but State and

ConcreteState roles had especially low recalls for large-

scale programs. However, the candidates for the State role
were output with high recall when the threshold was

exceeded. Therefore, the State pattern can be distinguished

by initiating searching from the Context role in P5, and
this improves recall.

TABLE II. CHOSEN METRICS

Abbreviation Content

NOF Number of fields

NSF Number of static fields

NOM Number of methods

NSM Number of static methods

NOI Number of interfaces

NOAM Number of abstract methods

NORM Number of overridden methods

NOPC Number of private constructors

NOTC
Number of constructors with argument
of object type

NOOF Number of object fields

NCOF
Number of other classes with field of
own type

NMGI
Number of methods to generate
instances

Recall of role candidate judgment:

Joint Proceedings of MDSM 2011 and SQM 2011

44

TABLE III. INTERSECTION PROCESSION

 detected not detected

correct
wr, wp

(true positive)
xr, xp

(false negative)

incorrect
yr, yp

(false positive)
zr, zp

(true negative)

TABLE IV. RECALL OF CANDIDATE ROLE JUDGMENT (AVERAGE)

 Average recall (%)

Pattern Role
Small-scale

programs

Large-scale

programs

Singleton Singleton 100.0 84.7

Template
Method

AbstractClass 100.0 88.6

ConcreteClass 100.0 58.5

Adapter

Target 90.0 75.2

Adapter 100.0 66.7

Adaptee 90.0 60.9

State

Context 60.0 70.0

State 60.0 46.7

ConcreteState 82.0 46.6

Strategy

Context 80.0 55.3

Strategy 100.0 76.7

ConcreteStrategy 100.0 72.4

B. Pattern Detection Results

Our technique detects patterns using test data in both the
small-scale and large-scale programs, and this result is
evaluated. We used 40 sets of programs where patterns are
applied in small-scale programs and 126 sets of programs
where patterns are applied in large-scale programs as
learning data. We judged manually and qualitatively whether
the patterns were appropriately applied in the detection
results. Table V shows precision and recall of the detected
patterns. Precision and recall were calculated from the data
in Table III by the following expressions:

pp

p

p
xw

w

Re

pp

p

p
yw

w

Pr

Small-scale and large-scale programs shared a common
point in that they both had recalls that were higher than
precisions. However, there were many non-agreements about

the State patterns and Strategy patterns in the large-
scale programs. Recall was 90% or more with the small-
scale programs, but it dropped as low as 60% with the large-
scale programs.

The large-scale programs resulted in especially low recall

for the Adapter pattern. Table IV shows the cause: The

recall of the role candidate judgment for the Adapter
pattern was not high enough. It is necessary to show that all
roles that compose patterns have agreement values that are
above the threshold so that patterns will be detected. There
were many cases in which neither of the roles that composed

patterns was judged as a role candidate for the Adapter
pattern. It will be necessary to return to P2 and choose new

TABLE V. PRECISION AND RECALL RATIO OF PATTERN DETECTION

Number of

test data
Precision (%) Recall (%)

Pattern
Small-

scale
programs

Large-

scale
programs

Small-

scale
programs

Large-

scale
programs

Small-

scale
programs

Large-

scale
programs

Singleton 6 6 60.0 63.6 100.0 100.0

Template

Method
6 7 85.7 71.4 100.0 83.3

Adapter 4 7 100.0 100.0 90.0 60.0

State 2 6 50.0 40.0 100.0 66.6

Strategy 2 6 66.7 30.8 100.0 80.0

metrics. The State pattern was identified by searching

from the Context role, for instance, in the State pattern
detection in the large-scale programs, and the recall of the
pattern detection was higher than the recall of role candidate
judgment. Table V shows holistically that our technique
suppresses false negatives because the recall is high.

C. Experiment Comparing Previous Detection Techniques

We experimentally compared our technique with
previous detection techniques [3][14]. These previous
techniques have been publicly released, and they consider
three or more patterns addressed by our own technique. Both
target Java programs, as does our own. The technique
proposed by Tsantails’s technique [3](hereafter, TSAN) has

four patterns in common with ours (Singleton,

TemplateMethod, Adapter and State/Strategy).

Because this technique cannot distinguish the State pattern

from the Strategy pattern, these are detected as one
pattern. Dietrich’s technique [14] (hereafter, DIET) has three

patterns in common (Singleton, TemplateMethod,

Adapter) with our own. TSAN detects patterns based on
the degree of similarity between the graphs of the pattern
structure and graphs of the programs to be detected, whereas
DIET detects patterns by using formal OWL (Web Ontology
Language) definitions. Patterns were detected and evaluated
with the small-scale and large-scale test data. Moreover, the
test data and learning data were different.

Figure 10 shows the recall and precision graphs for our
technique and TSAN, and Figure 11 shows the
corresponding graphs for our technique and DIET. We
ranked the detection results of our technique with the pattern
agreement values. Next, we calculated recall and precision
according to the ranking and plotted them. Recall and
precision were calculated from the data in Table III by using
the expressions of paragraph IV -B. In the results of TSAN
and DIET, we alternately plotted results because these
previous detection techniques output no value to rank. In the
recall and precision graphs higher values are better.

Figure 10 and 11 show particularly good results for all
techniques when small-scale programs was examined. This
is because small-scale programs do not include unnecessary
attributes and operations in the composition of patterns.

Table VI and VII show the average F measure for each
plot of Figure 10 and 11. The F measure is calculated with

Recall of pattern detection :

Precision of pattern detection :

Joint Proceedings of MDSM 2011 and SQM 2011

45

Figure 10. Recall-precision graph of detection results (vs. TSAN)

Figure 11. Recallprecision graph of detection results (vs. DIET)

TABLE VI. THE AVERAGE OF F MEASURE (VS. TSAN)

 Small-scale programs Large-scale programs

Our technique 0.67 0.56

Previous technique
 (TSAN)

0.39 0.36

TABLE VII. THE AVERAGE OF F MEASURE (VS. DIET)

 Small-scale programs Large-scale programs

Our technique 0.69 0.55

Previous technique
 (DIET)

0.50 0.35

recall and precision calculated by the above-mentioned
expression as follows.

pp

pp
measureF

RePr

RePr2

A large F measure means higher accuracy, and these
tables show that our technique had a larger F measure than
the previous techniques had.

Distinction between State pattern and Strategy pattern

Our technique distinguished State pattern Strategy
pattern. Table VIII is an excerpt of the metrics measurements

for the Context role in State pattern and Strategy
pattern that were distinguished by the experiment on the

large-scale programs. State pattern treats the states in

State role and treats the actions of the states in the

Context role. Strategy pattern encapsulates the

processing of each algorithm into a Strategy role, and

Context processing becomes simpler compared with that

of State pattern. Table VIII shows 45 fields and 204

methods as the largest in Context role in State pattern

(18 and 31 respectively in Context role of Strategy

pattern). Therefore, the complexity of Context role of both
patterns appears in the number of fields and the number of
methods, and these are distinguishing elements. Figure 10

shows that our technique is especially good because State

pattern and Strategy pattern could not be distinguished
with TSAN.

Detection of Subspecies of Patterns

Figure 11 shows that the recall of DIET is low in the case
of large-scale programs because this technique doesn't
accommodate the diversity in pattern applications.
Additionally, large-scale programs not only contain many
attributes and operations in the composition of patterns but
also subspecies of patterns.

Our technique detected subspecies of patterns. For
example, our technique detected the source code of the

Singleton pattern that used the boolean variable as shown

in Figure 12. This Singleton pattern was not detected in
TSAN or DIET. However, unlike the previous techniques,
our technique is affected by false positives because it is a
gradual detection using metrics and machine learning instead

of strict conditions. False positives of the Singleton

pattern especially stood out because Singleton pattern is
composed of only one role. It will be necessary to use
metrics that are specialized to one or a few roles to make
judgments about patterns composed of one role like the

Singleton pattern (P4).
Therefore, our technique is superior to previous one

because the curve of our technique is above the previous in
Figures 10 and 11.

TABLE VIII. MEASUREMENTS OF THE CONTEXT ROLE’S METRICS

Pattern - Role Number of fields Number of methods

State - Context

12 58

45 204

11 72

Strategy - Context

18 31

3 16

3 5

Figure 12. Example of diversity in pattern application (Singleton pattern)

Joint Proceedings of MDSM 2011 and SQM 2011

46

V. CONCLUSION AND FUTURE WORK

We devised a pattern detection technique using metrics
and machine learning. Role candidates are judged using
machine learning that relies on measured metrics, and
patterns are detected from the relations between classes. We
worked on the problems associated with overlooking patterns
and distinguishing patterns in which the class structures are
similar.

We demonstrated that our technique was superior to two
previous detection techniques by experimentally
distinguishing patterns in which the class structures are
similar. Moreover, subspecies of patterns were detected, so
we could deal with a very diverse set of pattern applications.
However, our technique was more susceptible to false
positives because it does not use strict conditions such as
those used by the previous techniques.

We have several goals for our future work. First, we plan
to add more patterns to be detected. Our technique can
currently cope with five patterns. However, we predict it will
be possible to detect other patterns if we can decide upon
metrics to identify them. It is also necessary to collect more
learning data to cover the diversity in pattern applications.
Moreover, we plan to more narrowly adapt the metrics to
each role by returning to step P2 because results might
depend on the data. This process would lead to the
enhancement of recall and precision.

Second, we currently qualitatively and manually judge
whether to return to step P2 and to apply GQM again; hence,
in the future, we should find an appropriate automatic
judgment method.

Third, we plan to prove the validity of the expressions
and the parameters of agreement values and thresholds. We
consider that it is possible to reduce the false positive rate by
deciding on the optimum thresholds for role agreement
values and pattern agreement values.

Finally, we plan to determine the learning number of
times automatically and examine the correlation of the
learning number of times and precision.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[2] M. Lorenz and J. Kidd Object-Oriented Software Metrics.
Prentice Hall, 1994.

[3] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis. Design Pattern Detection Using Similarity Scoring.
IEEE Trans. Software Engineering, Vol.32, No.11, pp. 896-
909 2006.

[4] A. Blewitt, A. Bundy, and L. Stark. Automatic Verification of
Design Patterns in Java. In Proceedings of the 20th
International Conference on Automated Software Engineering,
pp. 224–232, 2005.

[5] H. Kim and C. Boldyreff. A Method to Recover Design
Patterns Using Software Product Metrics. In Proceedings of
the 6th International Conference on Software Reuse:
Advances in Software Reusability, pp. 318-335, 2000.

[6] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele. Design Pattern
Mining Enhanced by Machine Learning. 21st IEEE
International Conference on Software Maintenance, pp. 295-
304 2005.

[7] H. Washizaki, K. Fukaya, A. Kubo, and Y. Fukazawa.
Detecting Design Patterns Using Source Code of Before
Applying Design Patterns. 8th IEEE/ACIS International

Conference on Computer and Information Science, pp. 933-
938, 2009.

[8] N. Shi and R.A. Olsson. Reverse Engineering of Design

Patterns from Java Source Code. 21st IEEE/ACM
International Conference on Automated Software Engineering,
pp. 123-134, 2006.

[9] H. Lee, H. Youn, and E. Lee. Automatic Detection of Design
Pattern for Reverse Engineering. 5th ACIS International
Conference on Software Engineering Research, Management
and Applications, pp. 577-583, 2007.

[10] L. Wendehals and A. Orso. Recognizing Behavioral Patterns
at Runtime Using Finite Automata. In 4th ICSE 2006
Workshop on Dynamic Analysis, pp. 33–40, 2006.

[11] S. Hayashi, J. Katada, R. Sakamoto, T. Kobayashi, and M.
Saeki. Design Pattern Detection by Using Meta Patterns.
IEICE Transactions, Vol. 91-D, No. 4, pp. 933–944, 2008.

[12] A. Lucia, V. Deufemia, C. Gravino and M. Risi. Design
pattern recovery through visual language parsing and source
code analysis. Journal of Systems and Software, Vol.82 (7),
pp. 1177-1193, 2009.

[13] Y. Guéhéneuc and G. Antoniol. DeMIMA: A Multilayered
Approach for Design Pattern Identification. IEEE Trans.
Software Engineering. Vol.34, No. 5, pp. 667–684, 2008.

[14] J. Dietrich, C. Elgar. Towards a Web of Patterns. In
Proceedings of First International Workshop Semantic Web
Enabled Software Engineering, pp. 117-132, 2005.

[15] V. R. Basili and D.M. Weiss. A Methodology for Collecting
Valid Software Engineering Data. IEEE Transactions on
Software Engineering, Vol. 10, No. 6, pp. 728–738, 1984.

[16] T. Segaran. Programming Collective Intelligence. O’Reilly.
2007.

[17] H. Hirano. Neural network implemented with C++ and Java.
Personal Media. 2008.

[18] H. Yuki. An introduction to design pattern to study by Java.
http://www.hyuki.com/dp/

[19] H. Tanaka. Hello World with Java!
http://www.hellohiro.com/pattern/

[20] Oracle Technology Network for Java Developers.
http://www.oracle.com/technetwork/java/index.html

[21] JUnit.org. Resources for Test Driven Development.
http://www.junit.org/

[22] SpringSource.org. Spring Source.
http://www.springsource.org/

Joint Proceedings of MDSM 2011 and SQM 2011

47

Using the Tropos Approach to Inform the UML Design:
An Experiment Report

Andrea Capiluppi Cornelia Boldyreff
School of Computing, Information Technology and Engineering

University of East London
London, United Kingdom

{a.capiluppi,c.boldyreff}@uel.ac.uk

Abstract—Tropos is an agent-oriented software engineering
(AOSE) methodology, based on the notion of actors, with goals
and plans, and spanning all the phases of software development,
from the very early phases of requirements analysis down to the
actual implementation. The effectiveness of such methodology
in the production of better design documents is evaluated in this
study, by investigating the null hypothesis “using the Tropos
Methodology before the analysis and design phases can produce
a more accurate and complete set of UML diagrams than when
no such technology is used”.

The evaluation of a real case scenario was given as part of a
coursework in a BSc module at the University of East London,
and the Tropos and UML diagrams were requested as part of
the deliverables. The results of how students performed in such
tasks, and how the Tropos approach helped in the drawing of
the UML diagrams, are presented here.

The results show that generally, and confined to this exper-
iment, the Tropos methodology has not helped in the design of
the UML diagrams, and that students failed in understanding
the link between the two methodologies.

Keywords-Software Quality; UML; Tropos Methodology

I. I NTRODUCTION

Among the core skills employed during the phase of
requirements gathering and elicitation, is that of being able
to identify and model the basic concepts of the application
domain upon which the software system will be built.
Such activity has been namedconceptual modelling, and
it serves the purpose of glueing together the requests by the
customers, and the expertise of designers and developers,
providing a platform to ease communication, meet users
expectations and distribute knowledge [1]. Two techniques
have recently been considered and compared for the mod-
eling of such concepts, one based on scenarios ofhow
the system is going to behave (or how the users will
interact with it (e.g., the UML approach [2]); the other
expressingwhat are the needs that the built system will
fulfill, relating the business goals of the stakeholders with the
functional and non-functional requirements of such system.
The latter has been termedgoal-basedapproach, and the
agent-oriented software engineering (AOSE) methods have
been one the more developed branches of such approach in
the requirements elicitation.

Among the goal-based approaches, Tropos is an AOSE
methodology based on two key ideas: agents and their
interactions within the system environment. The main aim
of Tropos is to produce a better understanding of the
application domain where a system will operate, and of the
kind of interactions that should occur between such system
and the human agents. Within Tropos, the notion of agent,
together with their goals and plans, are used since the early
analysis of requirements elicitation: in the early phase of
such analysis, the organizational setting is studied for the
purpose of better understanding the scenario. In the late
phase of requirements gathering and elicitation, the system
is also inserted in the operational environment as one actor:
the dependencies with the other actors represent the system’s
functional and non-functional requirements.

In both phases, theactor andgoal diagrams are produced
as outcomes, with the system being inserted in the diagrams
in the late phase, but not in the early phase. The actor
diagram represents the overall view of all the actors with
their high-level dependencies to other actors, while the goal
diagram is a refinement of the former with emphasis on the
goals of a single actor (see Figure 1).

The focus of this work is on the early and late phases of
requirements elicitation covered by the Tropos methodology,
where the business entities are identified as actors, their
goals assessed, and their inter-dependencies defined. In the
UML notation instead, as summarised in Table I, these
two phases correspond to the production of amodel in
the problem space(MOPS [3]). Such a model comprises
of a set of use cases and business class diagrams (i.e.,
diagrams documenting business entities, their attributesand
behaviors). When the business entities are converted into
implementable entities, the UML notation produces the
Model of Solution Space (MOSS) with the aim of feeding
such model to the design phase.

The aim of this paper is to compare the UML outcomes
from the MOPS phase (use cases and business class di-
agrams) as produced by undergraduate and postgraduate
students, when combining (or not) the Tropos methodology
as a “treatment”. The rationale of such experiments is
to determine through evaluation whether the joint use of

Joint Proceedings of MDSM 2011 and SQM 2011

48

Early Require-
ments (ER)

Late Requirements
(LR)

Tropos ER actors and
goals

LR actors and goals
(with system)

UML MOPS MOPS + MOSS

Table I
TROPOS ANDUML DELIVERABLES IN THE EARLY AND LATE PHASES

OF REQUIREMENTS GATHERING

goal-based (Tropos) and scenario-based (UML) approaches
should be preferred to the use of only a scenario-based
approach in the production of quality UML diagrams.

This paper details one experiment where BSc students at
the university of East London, UK, produced both Tropos
and UML diagrams towards the assessment of a scenario
where a software system has to be built. The UML and
Tropos diagrams were assessed against the benchmark pro-
duced as a marking scheme, and it is questioned whether
the presence of the Tropos methodology has helped in the
completeness of the resulting UML diagrams. This paper is
the first of two experiments, where the Tropos methodology
is used to inform the UML design: we plan to replicate
this experiment in the semester starting in February 2011,
without the Tropos “treatment”: students will be required to
work on the same scenario, but no Tropos diagrams will be
required (or taught), therefore allowing for the comparison
of two different sets of UML diagrams. This will provide
the basis for comparing the effectiveness (or not) of the two
combined approaches.

II. BACKGROUND AND RELATED WORK

This paper builds upon the scenario-based and the goal-
based approaches as two viable tools in the requirements
elicitation phase and for validation purposes. As a practi-
cal exemplification of the scenario-based requirement en-
gineering method, we have used the Jacobson’s Use Case
technique, which has been lately incorporated into the UML
notation language [2]. Such a model is based on the notion of
“scenario” which is asequence of interaction events between
a system and its environment in the restricted context of
achieving some implicit purposes[4], [5].

On the other hand, this paper relies on the concepts of
agents and the agent-oriented paradigm (AOSE), as one
example of goal-oriented approach [6], [7], [8]. This second
approach is based on agents interacting as a group within a
system, not just reacting to stimuli, but also communicating,
coordinating, and cooperating as an autonomous and social
entity that can to achieve individual and organizational goals.

The main notations of UML (as a scenario-based method-
ology) and Tropos (as goal-based) are summarised in Fig-
ure 1 (taken from [5]). Specifically for the Tropos notation,
every system can be thought of several actors, having goals

to fulfill with the use of such system. Such goals could
be “hard” or “soft”, depending on whether it is clear what
actions and plans (or resources) should be performed (or
used) in order to achieve such goals. A Tropos “actor
diagram” details the overall connections between all the
actors in the scenario, where a dependee (e.g. actor3 in
Figure 1) fulfills the goal(s) of a depender (e.g., actor1 in
Figure 1). A Tropos “goal diagram” focuses more precisely
on one actor, and tries and elaborates on what plans, actions
and resources should be performed to achieve each goal, and
which actors are needed to fulfill these goals.

In the literature, the effectiveness of goal-oriented and
scenario-based approaches is analyzed in several works
illustrating the application of different methods to case
studies (e.g., [9], [10], [11] or comparing the strengths and
limitations of the approaches according to different criteria
(e.g., [12], [13]). However, to the best of our knowledge,
experimental comparisons of these requirements modelling
paradigms using different visualization methods are rare [5].
Such comparisons may raise insights and help decide which
modelling paradigm to adopt for a given software devel-
opment project. The “quality” of UML models, comprised
guidelines for the aesthetic quality, have also been evalu-
ated [14].

One important factor for comparison or evaluation is
the immediacy in understanding the respective models by
projects stakeholders, for instance by requirements ana-
lysts [15], who have to understand a given model dur-
ing analysis and refinement tasks to accommodate new or
changed requirements.

III. E MPIRICAL APPROACH

This section introduces the definitions used in the fol-
lowing empirical study and presents the general objective
of this work, and it does that in the formal way proposed
by theGoal-Question-Metric(GQM) framework [16]. The
GQM approach evaluates whether a goal has been reached,
by associating that goal with questions that explain it from
an operational point of view, and providing the basis for
applying metrics to answer these questions. This study
follows this approach by developing, from the wider goal
of this research, the necessary questions to address the goal
and then determining the metrics necessary for answering
the questions.

Goal: The long term goal of this research is to evalu-
ate whether the Tropos methodology (as an experimental
“treatment”), jointly with the UML MOSS notation, produce
higher standards of conceptual modelling than the UML
notation alone.

Question: In this paper, and considering a given scenario
as a case study, the following research questions will be
evaluated:

1) Are the models produced by the students with the Tro-
pos notation “complete” against a given benchmark?

Joint Proceedings of MDSM 2011 and SQM 2011

49

Figure 1. Main UML and Tropos concepts and notations (from [5])

Rationale: the aim of this question is to check whether
the diagrams produced with the Tropos notation are
compliant with a minimum list of actors and goals
directly derived from the scenario. Such list of actors
and goals should be considered as the “absolutely
mandatory” in a typical requirements elicitation and
gathering phase.

2) Are the models produced with UML complete against
a given benchmark?
Rationale: similarly to the question above, the aim of
this question is to check whether the diagrams pro-
duced with a UML editor (Rational Rose, ArgoUML,
etc) can be mapped to a minimum list of use case
diagrams, necessary to describe the how the users of
the system interact with its functionalities.

3) Can students map the Tropos actors and goals to UML
use cases?
Rationale: the aim of this question is to evaluate
whether the use of “goals” and “actors” can help
in focusing on the main functionalities of the system,
expressed as UML use cases. Given the set of Tropos
diagrams produced by any group of students, and a
benchmark mapping of “Goals-to-use-cases” (see last
column of Table III), it will be evaluated how the
Tropos diagrams have informed the specified group
of students in the creation of use cases.

Metrics: The Tropos actor and goal diagrams for this
scenario have been listed in their minimum form, i.e., the

minimum number of functionalities that are expected for
(and from) this system, corresponding to both functional
and non-functional requirements (see Table II). Also, the
minimum set of UML use cases has been developed and it
served as a benchmark to evaluate how students assessed
the scenario (see Table III). Each group coursework was
evaluated against these two lists, and the number of correct
diagrams produced by the students evaluated against these
baselines.

IV. EXPERIMENTAL DESIGN

The first part of the experiment was set up at the Univer-
sity of East London, during the Level 3 module “Advanced
Information Systems Development”. The experiment popu-
lation comprised some 65 students, divided in 17 groups of
3 to 4 members1. Each group was in charge of producing
two sets of diagrams: the Tropos goal and actor diagrams
(for both the early and late phase of the requirements); and
the UML use cases and class diagrams. All the students in
the module had already studied the basic UML concepts in a
previous module, while the Tropos concepts were introduced
during several lectures, and their practical implementation
was assisted in the lab sessions. The scenario was distributed
to students on week 4 (out of 12 weeks in the module),
and it represents the coursework needed to pass the module,

1Since the selection of students and groups was not random, thestudy
should be referred to as aquasi-experiment. We will use the term “experi-
ment” as a synonym throughout the study

Joint Proceedings of MDSM 2011 and SQM 2011

50

together with the final exam. The students had 9 weeks to
complete the task.

In order to produce the Tropos diagrams, the OME tool,
implementing the i* notation2, was taught and demonstrated
during the lab sessions. In order to produce the UML class
and use case diagrams, students could select the UML editor
of their choice (e.g., the IBM Rational Rose toolkit, or the
Open Source ArgoUML tool3, etc.).

A. Scenario

The following problem statement was provided to the
students, with the request for modeling such scenario via
a scenario-based approach and a goal-based approach. This
is based on a previous job placement where a student effec-
tively designed and developed the system outlined below.

A company has supplied and supported its clients
in the area of Tax and Returns Automation for
more than 10 years. This involves an employee
going to the client sites and inspecting the rev-
enues that each of the client companies claim in
a given year and giving advices and filling the
necessary forms for Tax Return purposes. Once
the employee has filled the relevant forms (on a
per-client basis), these forms need to be saved to
a couple of paper copies, one to be kept by the
client, one to be archived within the company.
The company is seeking to streamline and au-
tomatise its systems for record keeping, therefore
enabling the business to offer their clients a bet-
ter service. The aim of this project would be to
develop a system allowing data collection during
site visits to be entered onto an online application,
that sits on the web: the employee visiting the site’s
premises would input the data to a specified form
(which can be extended by a System Administrator
to contain more fields and input data, it could be
reused from existing form, and new forms can be
created ad-hoc). The data once collected would
be synchronized with the companys database, but
during the initial trial period, the paper-based
system, and the on-line system, would need to run
together, and be synchronised.
The data collected would be used to keep the
clients informed of the results of the employee’s
visits and the next visit’s date. This upgrade
project would be expected to cover the following
areas: data acquisition using online, secure sys-
tems; synchronizing of data; a database to store
the data of clients; and a PC based management
tool for the data-captured database.

2OME3, available online at http://www.cs.toronto.edu/km/ome/
3ArgoUML, freely available at http://argoUML.tigris.org/

B. Expected Outcomes – Tropos Marking Scheme

In order to assess the courseworks produced by the
students, a list of “model solutions” was produced, and
checked against the delivered set of diagrams. In partic-
ular, a minimum list of the Tropos actors present in the
scenario was produced and their main goals were identified:
the following Table II was therefore used as the baseline
for marking the assignment. These goals and actors were
prepared by one of the authors (running the module) and
the assistant, a PhD student whose focus is on the secure
aspects of Tropos.

Three main actors (Client, Company and Employee) were
identified as expressing goals within the interaction with the
system, while other two (the System, and the HM Revenue
and Customs agency – HMRC) are also present, acting as
dependees in one or more of those goals by the three main
actors.

The marks available for the completion of such task were
25 out of 50.

Goal-based approach – TROPOS
Actor Goals – (H)ard or (S)oft Dependee

Company

GCo1 Schedule periodic meetings
(H)

Client

GCo2 Get data to fill forms (H) Client
GCo3 Get up-to-date Returns

rules (H)
HMRC

GCo4 Secure data based on client
or employee (H)

System

GCo5 Provide a better service to
clients (S)

Self

GCo6 Rationalise forms (S) Self

Employee

GE1 Get training on up-to-date
procedures (H)

Company

GE2 Get online access during
visits (H)

Client

GE3 Access clients details on
system (H)

System

GE4 Log activity or duration (H) System

Client

GCl1 Obtain copies of job per-
formed (H)

Employee

GCl2 Get Tax Return advices (H) Employee
GCl3 Browse activity logs (H) System
GCl4 Get secure service (S) Company

System
HMRC

Table II
MARKING SCHEME – TROPOS ACTORS AND GOALS

C. Expected Outcomes – UML Marking Scheme

The following Table III summarises instead the list of
UML use cases that were set up as a baseline for marking
the scenario-based part of the assignments: three main UML
actors were expected to be interacting with the system, with
increasing amount and type of provileges: the clients of

Joint Proceedings of MDSM 2011 and SQM 2011

51

the Tax Revenue company (ci in Table III, i = 1..5), its
employees (ei in the same Table, withi = 1..7) and the
system administrator (si in the same Table, withi = 1..6).

The UML use cases listed, and intended as a “model
solution”, are a subset of what was documented during a
business consultancy,where the described system was ac-
tually implemented by a student in a job placement. The
listed UML use cases should be inferred by reading the
problem statement of the scenario, and they should also
become clearer after working on the Tropos goals and actors.
Albeit more specified UML actors could be identified (e.g.,
the ISP administrator, the project manager in charge of
delivering the requested system, the Tax Revenue company
owner, etc.), the above three provide the minimum set
of scenarios that fulfill most of the functional and non-
functional requirements of the scenario. In some of these,
one UML use case could be the extension, or being included
in some other use case (for instance, the “log-in” use case
is typically included in any interaction with the system,
independently from the privileges).

The marks available for the completion of the UML task
were also 25 out of 50. This was decided to balance the
relative importance of both Tropos and UML tasks.

D. Results

As said above, the results obtained from the marking
of the presented coursework represent the first part of
this study: the second part will be based on assessing the
diagrams produced by the students when the “treatment”
Tropos is not taught or requested.

Table IV shows how each group coursework (G1 to G17)
was evaluated against the list of Tropos goals and UML
use cases, gathered around the main actors expressing their
requirements, either in a goal-based approach, or a scenario-
based approach.

At a first glance, the results found in the table show that
the students found easier to assess the Tropos actors and
goals, rather than producing the relative UML diagrams to
describe how the actors are interacting with the system.
Even when breaking down the aggregated results in the
main components and actors, it is visible that some actors
were assessed better than others: the Tropos models for
the Company providing the Tax Revenue service are more
complete than other actors (as visible in Table V where on
average 70% of the groups assessed the benchmark goals
from the Company actor).

The striking difference with such a finding is visible
by observing the results of the UML cases, summarised
in Table VI, where on average, only 38% of the groups
assessed the “Employee” use cases, and only 43% delivered
the “administrator” cases. As a grand average, some 64%
of groups successfully assessed the set of Tropos goals
proposed as a baseline, while only 38% of students assessed
the set of UML cases of the benchmark.

Tropos
Goal

Groups
delivering

Perc Average

GCo1 12 70.59%

70.59%

GCo2 14 82.35%
GCo3 8 47.06%
GCo4 11 64.71%
GCo5 17 100.00%
GCo6 10 58.82%
GE1 7 41.18%

58.82%GE2 15 88.24%
GE3 13 76.47%
GE4 5 29.41%
GCl1 12 70.59%

58.82%GCl2 14 82.35%
GCl3 8 47.06%
GCl4 6 35.29%
Grand
Average

63.87%

Table V
RESULTS– BY GROUP

UML use
case

Groups
delivering

Perc Average

c1 9 52.94%

27.06%
c2 3 17.65%
c3 4 23.53%
c4 3 17.65%
c5 4 23.53%
e1 7 41.18%

38.66%

e2 11 64.71%
e3 5 29.41%
e4 15 88.24%
e5 2 11.76%
e6 2 11.76%
e7 4 23.53%
a1 12 70.59%

43.53%

a2 3 17.65%
a3 13 76.47%
a4 5 29.41%
a5 1 5.88%
a6 15 88.24%
Grand
Average

38.56%

Table VI
RESULTS– BY GROUP

These discrepancies are also visible when considering
single students groups:

• among the Tropos goals, 4 goals out of 6 were on av-
erage correctly identified, with regards to the Company
goals (average 4.23 goals); among the Employee goals,
2 goals out of 4 were on average assessed (average 2.35
goals); finally, among the Client goals, 2 out of 4 goals
were identified (average 2.35 goals);

• with respect to the UML cases, 1 out of 5 cases were
identified for the client (average 1.35 cases); 2 out of 7

Joint Proceedings of MDSM 2011 and SQM 2011

52

Scenario-based approach – UML
UML actor UML use cases Via Tropos goal(s)

Client

c1 Can log-in GCl3, GCl4, GCo4, GCo5
c2 Can update their details GCl4
c3 Can browse the log of activity GCL3, GE4
c4 Can browse relevant documentation GCo3, GCl4
c5 Has sole access to private area GCl4

Employee

e1 Can schedule visit GCo1
e2 Can log-in GE2
e3 Can select appropriate forms based on client GE1, GCo6
e4 Can fill in forms GCo2, GE4
e5 Can fill in the log of activity GE4, GCl3
e6 Can upload relevant documentation GCo3
e7 Has privileged access to all clients private areaGCo4, GCo5, GE3

Administrator

a1 Can log-in GCo5
a2 Can create/update/remove employees GCo4, GE1
a3 Can create/update/remove forms GCo6
a4 Can create/update/remove clients GCo4
a5 Can monitor the activity of employees GE1, GE4
a6 Can synchronise the database GE1, GE4, GCo6

Table III
MARKING SCHEME – LIST OF UML USE CASES

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17
GCo1

√ √ √ √ √ √ √ √ √ √ √ √
GCo2

√ √ √ √ √ √ √ √ √ √ √ √ √ √
GCo3

√ √ √ √ √ √ √ √
GCo4

√ √ √ √ √ √ √ √ √ √ √
GCo5

√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
GCo6

√ √ √ √ √ √ √ √ √ √

GE1
√ √ √ √ √ √ √

GE2
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

GE3
√ √ √ √ √ √ √ √ √ √ √ √ √

GE4
√ √ √ √ √

GCl1
√ √ √ √ √ √ √ √ √ √ √ √

GCl2
√ √ √ √ √ √ √ √ √ √ √ √ √ √

GCl3
√ √ √ √ √ √ √ √

GCl4
√ √ √ √ √ √

c1
√ √ √ √ √ √ √ √ √

c2
√ √ √

c3
√ √ √ √

c4
√ √ √

c5
√ √ √ √

e1
√ √ √ √ √ √ √

e2
√ √ √ √ √ √ √ √ √ √ √

e3
√ √ √ √ √

e4
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

e5
√ √

e6
√ √

e7
√ √ √ √

a1
√ √ √ √ √ √ √ √ √ √ √ √

a2
√ √ √

a3
√ √ √ √ √ √ √ √ √ √ √ √ √

a4
√ √ √ √ √

a5
√

a6
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Table IV
RESULTS– BY GROUP

Joint Proceedings of MDSM 2011 and SQM 2011

53

cases were identified for the employee (average 2.70
cases); and 2 out of 6 cases were assessed for the
administrator of the system (average 2.88 cases)

Relatively to the experiment performed with the students
of the University of East London, we can conclude that the
use of the Tropos approach was not effective to inform the
UML conceptual model.

V. THREATS TOVALIDITY

Like any other empirical study, the validity of ours is
subject to several threats. In the following, threats tointernal
(whether confounding factors can influence your findings),
external(whether results can be generalized), andconstruct
validity (relationship between theory and observation) are
illustrated.

• Internal validity – the terminology “quality of UML
models” was used to define whether “better” models
could be obtained with the use of the additional Tropos
analysis. Obviously the quality of UML diagrams is a
multi-faceted dimension of several possible: aesthetic
aspects could be considered, but also others based
on design metrics of UML diagrams, as coupling,
complexity, etc).

• External validity – the following threats to external
validity have been identified:

1) these findings cannot be generalised by one sce-
nario, distributed to some 70 students, and based
on one observation only. Replications are needed
not only regarding the presence or absence of the
Tropos “treatment”, but also with more students
involved.

2) Despite the initial results, a stronger statistical
formalism cannot be used for investigating the
research questions: this is because since there
is no comparison with a null hypothesis, such
analysis cannot be properly performed. The results
will become much more reliable when the second
part of the experiment will be carried out.

• Construct validity : the minimum set of actor and
goal diagrams, and the minimum set of UML use
cases derived for the construction of the benchmark
could play an important part in the outcomes of this
experiment. The reason of choosing these use cases, and
the relative Tropos actors and goals, are of a practical
nature: the proposed one is a real scenario of a past job
placement, where a student designed and implemented
the system to be delivered: the “model answers” are a
subset of the diagrams implemented for the deployment
of such system.

VI. A CKNOWLEDGEMENTS

The authors would like to thank Dr H. Mouratidis and
Michalis Pavlidis for the extensive comments, and the help

in formulating the Tropos goals and actors. The authors
would also like to thank the anonymous reviewers, since
many improvements were added to the text, based on their
suggestions.

VII. C ONCLUSION AND FURTHER WORK

The usage of visual modelling tools has become a com-
mon support for the design of a software system’s capabili-
ties; the use of such tools has become more valuable in the
early phase of requirement gathering, where the interaction
with non-technical stake-holders requires jargon-free and
easily usable approaches. Among these techniques, this pa-
per has considered the goal-based (Tropos) and the scenario-
based (UML) methodologies, trying to assess whether the
use of the first could be useful to inform the definition of
more complete use cases.

A set of “model solutions” was prepared for a given
scenario, that was handed out as part of a coursework at
the University of East London, UK. A baseline set of actors
was prepared for the Tropos approach, and one for the UML
use cases. Each coursework was assessed against these two
baselines. Contrarily to what was expected, a larger number
of students correctly assessed a larger amount of Tropos
goals, whereas the UML cases were delivered less often, and
more erroneously. Although the correct UML cases were
assessed where the relevant Tropos actors were identified,
this was not always the case: students found it difficult to
connect the two approaches, and synchronise the actors and
goals with how the system was supposed to perform.

These results are interesting, but we need to produce
a similar set of observations when removing the Tropos
approach from the experiment: we plan to replicate this
experiment in a course starting in February 2011, where
the same scenario will be provided, and where only the
UML use cases will be requested. This will help in assessing
whether the use of the Tropos approach can be considered to
play a difference in the requirements gathering phase, when
coupled to the UML notation.

REFERENCES

[1] A. van Lamsweerde, “Requirements engineering in the year
00: a research perspective,” inProceedings of the22nd

International Conference on Software engineering (ICSE 00).
New York, NY, USA: ACM, 2000, pp. 5–19.

[2] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified Mod-
eling Language User Guide,2nd Edition (Addison-Wesley
Object Technology Series). Addison-Wesley Professional,
2005.

[3] B. Unhelkar,Verification and Validation for Quality of UML
2.0 Models. Wiley-Interscience, 2005.

[4] A. Sutcliffe, “Scenario-based requirements engineering,” in
Proceedings of the11th IEEE International Conference on
Requirements Engineering. Washington, DC, USA: IEEE
Computer Society, 2003, pp. 320–.

Joint Proceedings of MDSM 2011 and SQM 2011

54

[5] I. Hadar, T. Kuflik, A. Perini, I. Reinhartz-Berger, F. Ricca,
and A. Susi, “An empirical study of requirements model
understanding: Use Case vs. Tropos models,” inProceedings
of the25th ACM Symposium on Applied Computing. New
York, NY, USA: ACM, 2010, pp. 2324–2329.

[6] J. Mylopoulos, “Information modeling in the time of the
revolution,” Information Systems, vol. 23, pp. 127–155, May
1998.

[7] E. S. Yu, “Modelling strategic relationships for process
reengineering,” Ph.D. dissertation, Toronto, Ont., Canada,
Canada, 1996.

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-
directed requirements acquisition,”Science of Computer Pro-
gramming, vol. 20, pp. 3–50, April 1993.

[9] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and
A. Perini, “TROPOS: An agent-oriented software develop-
ment methodology,”Autonomous Agents and Multi-Agent
Systems, vol. 8, no. 3, pp. 203–236, May 2004.

[10] J. Castro, M. Kolp, and J. Mylopoulos, “Towards
requirements-driven information systems engineering:
the tropos project,” Information Systems, vol. 27, pp.
365–389, September 2002.

[11] M. Kim, S. Park, V. Sugumaran, and H. Yang, “Managing
requirements conflicts in software product lines: A goal and
scenario based approach,”Data & Knowledge Engineering,
vol. 61, pp. 417–432, June 2007.

[12] J. L.M.C. Filho, V.Werneck and E. Yu, “Agentgoal orientation
vs object orientation for requirements engineering: A practical
evaluation using an exemplar,” inProceedings of the8th

Workshop on Requirements Engineering, 2005, pp. 123–134.

[13] C. Rolland, G. Grosz, and R. Kla, “Experience with goal-
scenario coupling in requirements engineering,” inProceed-
ings of the4th IEEE International Symposium on Require-
ments Engineering. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 74–.

[14] H. Eichelberger and K. Schmid, “Guidelines on the aesthetic
quality of UML class diagrams,”Information and Software
Technology, vol. 51, no. 12, pp. 1686 – 1698, 2009.

[15] C. F. J. Lange, “Improving the quality of UML models in
practice,” inProceedings of the28th International Conference
on Software engineering. New York, NY, USA: ACM, 2006,
pp. 993–996.

[16] V. R. Basili, G. Caldiera, and D. H. Rombach, “The goal
question metric approach,” inEncyclopedia of Software En-
gineering. John Wiley & Sons, 1994, pp. 528–532, see also
http://sdqweb.ipd.uka.de/wiki/GQM.

Joint Proceedings of MDSM 2011 and SQM 2011

55

Tool-Supported Estimation of Software Evolution Effort
in Service-Oriented Systems

Johannes Stammel and Mircea Trifu
FZI Forschungszentrum Informatik

10-14 Haid-und-Neu Str., Karlsruhe, Germany
{stammel, mtrifu}@fzi.de

Abstract

Existing software systems need to evolve in order to keep
up with changes in requirements, platforms and technolo-
gies. And because software evolution is a costly business,
an early and accurate estimation of evolution efforts is
highly desirable in any software development project. In
this paper we present KAMP, a tool-supported approach,
based on change impact analysis, enabling software archi-
tects to express a potential design for a given change re-
quest at the architecture level and to accurately estimate the
evolution effort associated with its implementation in source
code. The approach is also used to compare alternative de-
signs before carrying out the implementation work. We ap-
ply the KAMP approach on an enterprise SOA showcase
and show how it supports the predictable and cost-effective
evolution of this software system.

Keywords: software evolution, effort estimation, archi-
tecture, change impact analysis.

1 Introduction

In order to keep service-oriented software systems up-to-
date with changes in requirements, platforms and technolo-
gies they need to evolve. Evolution is very common and in-
volves changes to the software system and its architecture.
However, architecture changes may have significant impact
on software quality attributes such as performance, reliabil-
ity and maintainability, which is why it is highly desirable
to be able to predict these quality impacts.

As a result, the topic of quality impact prediction for
evolving service-oriented software systems has been ad-
dressed in various research initiatives, such as the Q-
ImPrESS [3] research project. The project provides tool-
supported methods that predict and analyze quality at-
tributes on architecture level using formalized architecture
models.

The project considers multiple quality attributes, i.e.,
performance, reliability and maintainability, that are con-
flicting to each other and provides support for balancing
them and exploring trade-offs. This paper describes the
maintainability prediction approach within the Q-ImPrESS
project.

Within this paper, we focus on three types of evolu-
tion scenarios. The first type is the requirement of new or
changed functionality, i.e., a new service needs to be imple-
mented. The second type is a changed runtime environment,
e.g., a new middleware platform, that has to be supported.
And the third type is a changed usage profile, e.g., system
has to cope with more users without impaired performance.

The implementation of an evolution scenario generates
costs and for a good project management it is important to
have control over costs and efforts related to evolution. For
this reason within the context of the Q-ImPrESS project,
we developed the KAMP (Karlsruhe Architectural Main-
tainability Prediction) approach, a tool-supported approach,
based on change impact analysis, enabling software archi-
tects to express a potential design for a given change request
at the architecture level. Its goal is to estimate the evolution
effort associated with its implementation in source code.

The approach is based on architecture modeling using
views for static structure, behavior and deployment of ser-
vices. A service is represented as a deployed component
providing service operations to its clients.

Note that evolution effort does not represent only im-
plementation effort. KAMP is able to cover different ef-
forts for different activities, utilizing the information an-
notated in the architecture models. In particular, KAMP
considers management efforts for (re-)deployment and (re-
)configuration.

Section 2 discusses foundations about estimation of soft-
ware evolution efforts, maintainability and change requests.
In Section 3 we present the KAMP approach. Section 4 de-
scribes the results of an initial case-study applying KAMP.
Section 5 summarizes the related work, while section 6 con-
cludes this paper.

Joint Proceedings of MDSM 2011 and SQM 2011

56

2 Foundations

2.1 Effort Estimation

Nowadays, effort estimation is an essential part during
planning and execution of software development projects.
Most projects have a limited budget, therefore a careful
planning is necessary to avoid running out of budget. Ef-
fort estimation helps to detect resource problems early and
allows for timely corrections, where necessary.

Effort estimation approaches derive their estimation val-
ues from planned project scope and from anticipated com-
plexity. In addition most approaches have plenty of input
parameters.

Existing effort estimation approaches support different
project phases. There are approaches, which focus on the
requirements engineering phase, others aim at estimation
during the design phase or the implementation phase.

The input parameters depend on the supported project
phase and are determined by the project artifacts available
at that point, i.e., during the requirement engineering phase
the inputs come from the requirements document, during
the design phase the inputs are based on design specifica-
tion and during the implementation phase data and progress
values of the running project can be used. The earlier the
estimation is done the more imprecise the available data is
and the less confident the estimations are.

So, in order to get valid results from estimation ap-
proaches the input parameters need to be calibrated to fit the
given project context. This is done with data derived from
similar projects for example by using a project database.
However, such a database is not always available at the be-
ginning. Nevertheless, the input parameters have to be read-
justed while the project is progressing in order to fit the ac-
tual circumstances.

Therefore estimation should be established as a continu-
ous task during the project life cycle. Since the architecture
is one of the central artifacts for managing software devel-
opment projects, effort estimation should be closely aligned
with it, and support for seamless continuous effort estima-
tion during the architecture design phase is highly desirable.

2.2 Maintainability Definition

Maintenance efforts represent a significant part of the to-
tal effort of a software development project. During the life-
time of a system, the system has to evolve in order to be still
usable.

With respect to [12], we define maintainability as ”The
capability of a software product to be modified. Modifi-
cations may include corrections, improvements or adapta-
tion of the software to changes in environment, and in re-
quirements and functional specifications”. We focus our

approach on the last part of the maintainability definition
which is covering the evolution aspect.

Maintainability is strongly associated with the effort re-
quired to implement occurring change requests, which is
why, for now, the KAMP approach is concerned with esti-
mating maintenance efforts.

2.3 Change Requests

A change request is a particular situation when the soft-
ware system needs to be modified. Since an architecture
can not be arbitrarily flexible and implementing flexibility
costs time and money, it is difficult to make a general state-
ment about maintainability. Even patterns and anti-patterns
are not clearly distinguishable on architecture level without
relation to change requests. In order to reduce the effort
for change requests that need to be implemented, one needs
to anticipate which changes occur in the future. Overall our
approach helps with estimating the efforts necessary for im-
plementing anticipated change requests.

Within this paper we distinguish several kinds of change
requests, based on their causes or stimuli. There are require-
ment changes regarding functionality, that request a new or
altered functionality. Another stimulus is the evolution of
the technical environment, which the software system de-
pends on, e.g., changes in the platform (operating system,
middleware). Another stimulus is the evolution of a COTS
product, used by the software system, i.e., API changes of
underlying libraries. Other stimuli arise from changed user
profiles, (e.g., increased number of users, different usage
behaviors), which require changes in order to fulfill non-
functional aspects like performance, reliability, and secu-
rity.

Besides the stimulus, the effect of a change request plays
an important role in KAMP, since a change request needs
to be translated into concrete work tasks. The effect is
represented by all tasks and subtasks that lead to the ful-
filment of the change request, including follow-up tasks
due to change propagation. These tasks can affect various
kinds of effort types. This comprises in the first place ef-
forts for implementation (code changes), but also efforts
for (re-)configuration, (re-)compilation, (re-)testing, (re-
)deployment, data handling (modeling, conversion, migra-
tion), components-off-the-shelf (COTS) handling (survey,
selection, tailoring, configuration, replacement), as well as
efforts for retaining and increasing the internal code quality
(refactoring, anti-pattern detection and removal).

Joint Proceedings of MDSM 2011 and SQM 2011

57

3 The KAMP Approach

3.1 Overall

The Karlsruhe Architectural Maintainability Prediction
(KAMP) approach aims to enable effort estimation for
change requests based on architecture models.

Given a change request the approach derives from the ar-
chitecture model a change description, i.e., work plan. This
work plan contains the tasks, that are necessary for imple-
menting the change request, coupled with tasks related to
other activities like (re-)configuration, (re-)deployment of
components, etc.

In order to get effort estimates, KAMP provides sup-
port to determine the complexity for each task in the work
plan. A bottom-up estimation approach is used to map
the complexity of each task to corresponding time effort.
Overall KAMP combines a top-down derivation phase for
creating the work plan with a bottom-up estimation phase.
Note, in the current state of the approach the bottom-up es-
timates have to be provided manually by the user, whereas
the workplan derivation is automated as is explained in the
following sections.

The level of detail and granularity of the work plan tasks
starts high, covering abstract tasks, and is then stepwise re-
fined, by gathering additional information from the user and
from architecture models, following a guided procedure.
On the one hand the level of detail can be refined by going
from the component level to the level of single service op-
erations, while on the other hand the work plan description
can be extended by following up on change activities that
are detected using a semi-automated change impact analy-
sis.

3.2 Inputs and outputs

KAMP takes as inputs 1) the description of the software
architecture and 2) the description of the change request.

For the description of the software architecture the user
creates an instance of Q-ImPrESS Service Architecture
Meta-Model (SAMM) [2] that provides all elements of a
component-based and service-oriented software architec-
ture.

The architecture model can be created manually or, given
certain conditions, retrieved automatically from source
code by applying the Q-ImPrESS Reverse Engineering tool
chain. A set of heuristics for detection of structural archi-
tecture parts, such as component boundaries and interfaces,
as well as the statical analysable behaviour, is provided. In
the project context of Q-ImPrESS these heuristics are appli-
cable to Java and C/C++ code.

As an intermediate result of the reverse engineering, we
obtain a Generalized Abstract Syntax Tree (GAST) and a

mapping between the architecture model and the GAST.
The GAST model can be used to calculate code and de-
sign metrics, which allows for an automatic determination
of complexity metrics for corresponding architecture ele-
ments.

The description of a change request contains a name and
an informal description of the stimulus, referring to the re-
quirements that are affected by the change request. More-
over it covers the kind of stimulus (functional requirement
change, technical environment change, COTS evolution, us-
age profile change).

The Q-ImPrESS SAMM allows for specifying alterna-
tive and sub-alternative models for various sequences of
change requests, leading to a tree-like hierarchy of architec-
tural models, each path within this hierarchy starting from
the root model representing an evolution alternative of the
software architecture. Each element in the tree represents a
an architecture alternative, that consists of models for each
supported architectural view, i.e., repository, system struc-
ture, behaviour, hardware environment, deployment, and
quality annotations. Each subnode in the tree is basically
a copy of its parent alternative with some modifications.

In order to specify how the change request is mapped to
the architecture model, the user creates a sub-alternative of
the actual system model and adapts the architecture model
according to the change request.

The output of KAMP is a work plan, containing the
change tasks, annotated with complexity values and effort
estimates. Work plans can be compared, by comparing the
structure or by comparing the aggregated complexity and
effort values.

3.3 Work plan model

A work plan contains a list of activities or tasks. The
types of activities are defined in a meta model. An activity
refers to an architectural element and a basic activity.

The Q-ImPrESS Service Architecture Meta-Model
(SAMM) [2] specifies the architecture elements like Com-
ponent, Interface, Interface Port, Operation, Parameter,
Datatype, etc.

Basic activities are add, modify and remove. Add
means that the architecture element has to be newly im-
plemented, modify means that the element has to be modi-
fied, and remove means that the element needs to be deleted
from the code. For example the work plan can contain ac-
tivities like ”Modify Component A”, ”Add Operation B”,
or ”Remove Parameter C”.

Besides these implementation related work plan activi-
ties the work plan metamodel provides activities that cover
other effort types related to configuration, testing and de-
ployment. Provided activities are ”Modify configuration”,
”Run Tests”, ”Deploy components” and ”Update deployed

Joint Proceedings of MDSM 2011 and SQM 2011

58

components”.

3.4 Work plan derivation

The last section presented the ingredients of the work
plan. Let us now have a look at how KAMP derives work
plan instances. The work plan derivation in our approach
is achieved in two ways. First, the work plan can be de-
rived from changes in the architecture model, and second,
the work plan can be derived by following a wizard dialog.
The following paragraphs explain both ways in detail and
compare them.

Derivation from architecture model changes The first
way of work plan derivation is by calculating tasks from
changes in the architecture model. In this way the user cre-
ates a copy of the architecture model and changes it accord-
ing to the selected change request. KAMP calculates the
differences from the changed architecture model to the base
architecture model and translates the differences into work
tasks. The work plan is filled with translated work tasks.

For example lets assume a client-server-database appli-
cation. Now the software architect decides to introduce a
cache between the server and the database. The architect
creates a sub-alternative model and inserts the cache into the
architecture model and fixes the interfaces and connectors
using a model editor. Then, KAMP calculates the differ-
ences and creates a work plan containing an activity ”Add
Component Cache”. Additionally the changes to interfaces
and connectors are retrieved and represented by correspond-
ing work plan activities.

Technically, the SAMM as well as the workplan meta-
model are implemented using the EMF Ecore technology.
Therefore we use EMFDiff to calculate a diff model be-
tween instances of SAMM. We defined a mapping between
the elements of the diff model to corresponding workplan
activities and wrote a transformation, that creates the work-
plan out of it.

Derivation by wizard dialog The second way of deriva-
tion is by following a wizard dialog. As the first step of
this way the user determines the primary changes, i.e., ar-
chitecture elements that need to be changed representing a
starting point for the change. On the first wizard page the
user marks the components that have to be added, modi-
fied or removed. On the second and third wizard pages the
user refines this information to interface port and operation
level, thus telling KAMP what interface ports or operations
of the selected components need to be added, modified and
removed.

For example, if a functionality in a user interface has to
be modified, the user points out the components that build
up the user interface and marks them with ”modify”. On the

second and third wizard page the user marks the interface
ports and operations of the user interface component that
need to be modified.

Outgoing from this starting point the approach helps
with identifying follow-up changes. For example, the com-
ponents that are connected to the user interface components
that implement the business logic of the functionality have
to be changed due to the changes of the user interface com-
ponents. Computing follow-up tasks is necessary because
it ensures that all locations depending on a change, such
as an interface signature or a behavior change, are changed
consistently. If a change can not be kept locally it will prop-
agate to other system parts.

The KAMP tool suite uses a wizard dialog to query the
user to declare the primary changes and mark whether in-
terface changes will propagate. The dialog guides the user
stepwise through connected system parts to gather follow-
up changes.

Let’s briefly compare both derivation approaches. The
benefit of using derivation from architecture model changes
is that the user, i.e., software architect, can use a simple
and familiar architecture model editor. However, there are
changes that do not affect the architecture and that can not
be derived by changing the architecture model. On the other
hand the wizard dialog is something new to the user but can
handle activities that are not visible by changing the archi-
tecture model. Therefore we recommend a hybrid usage of
wizard guidance and architecture modeling.

3.5 Bottom-Up Effort Estimation

The work plan contains the split-up work activities.
KAMP uses a bottom-up effort estimation approach for
gathering the time effort estimates. In other words, the de-
velopers are asked to give time effort estimates for each
work activity. KAMP aggregates all effort estimates to a
single number at the work plan level.

The benefit of using bottom-up estimation is that a cali-
bration of model parameters from historical data is not nec-
essary since people consider their own productivity implic-
itly when giving estimates. Nevertheless, the approach is
open to be connected to parametric estimation approaches
such as Function Point or COCOMO.

4 Initial Case-Study

We implemented the approach as tool in the Eclipse en-
vironment and integrated it with the rest of Q-ImPrESS tool
chain. In order to show the applicability of the approach we
used KAMP on a case study. For this purpose we used the
Enterprise SOA showcase, [10], that is one of the demon-
stration systems of the Q-ImPrESS project.

Joint Proceedings of MDSM 2011 and SQM 2011

59

CRM

Simulator

CRMSimulatorInterface

PDM

Simulator

PDMSimulatorInterface

Pricing

Simulator

PricingSimulatorInterface

Demo

Application

DemoApplicationInterface

Figure 1. UML component diagram of Enter-
prise SOA showcase

4.1 System description

The Enterprise SOA showcase consists of several small
software systems implementing basic processes in the area
of Supply Chain Management and Order Management. Its
focus lies on the interaction between those software systems
without providing full implementation of the various pro-
cesses. Also components for simulating the usage of par-
ticular software systems are provided. Most of the systems
consist of a database, a web front-end and web services for
remote access.

The core systems of the Enterprise SOA showcase are
CRM (Customer Relationship Management System), PDM
(Product Data Management System), Pricing Engine and
Inventory System. The simulation systems are Order Simu-
lator, Shipment Simulator and Simulation Manager. Finally
there is a Demo application for retrieving information from
CRM, PDM and Pricing through Web Services.

A part of the system as UML component diagram is
shown in Figure 1.

4.2 Architecture models

Our project partner, Itemis, that is responsible for the
showcase, created an architecture model of the system. We
refer to this model as the main alternative of the system.
For the Enterprise SOA showcase we collected a set of
change requests, which are anticipated during system evo-
lution. For illustration purposes in this paper we selected
one change request that is described in the following. For
this change request a subalternative model has been cre-
ated in the architecture model evolution hierarchy of the
Q-ImPrESS tool chain.

CRM

Simulator

CRMSimulatorInterface

PDM

Simulator

PDMSimulatorInterface

Pricing

Simulator

PricingSimulatorInterface

Demo

Application

DemoApplicationInterface

Cache

CacheInterface

Figure 2. UML component diagram of Enter-
prise SOA showcase with cache

4.3 Change request: Introduce Cache to Demo
Application

Change request specification Due to performance issues
with respect to the Demo application the following change
request arises. A cache should be inserted. The Demo appli-
cation manager should ask a cache for query results. Only
in case of cache miss it should submit requests to the web
services of the other subsystems CRM, PDM and Pricing.

Scenario modelling KAMP is utilized to determine a
work plan for this change request. Therefore a subalter-
native architecture model is created and adapted according
to the change request.

Here we list the steps done in the model editor: The
cache component (Cache) is inserted into the repository. A
cache interface (CacheInterface) with three operations (get-
QueryResult, putQueryResult, clear) for putting and getting
of values and clearing the cache is specified in the reposi-
tory. The cache component gets a provided interface port
of type CacheInterface. A subcomponent instance of type
Cache is created. A required interface port of type CacheIn-
terface is added to the Demo application manager compo-
nent. A connector is drawn that links provided and required
interface ports of Cache component and Demo application
manager component.

Besides the structural changes the architects adapt the
dynamics. As a result the provided operation queryPrice
of the Demo application manager is modified. The control
flow is adapted by inserting a branch action to differentiate
the cases of cache hit and cache miss.

An UML component diagram of the changed static struc-
ture is presented in Figure 2

Joint Proceedings of MDSM 2011 and SQM 2011

60

Deployment

Node

Demo

Application

30

Figure 3. Deployment diagram for DemoAppli-
cation component. Component is deployed
on 30 nodes.

Work plan derivation After creating the subalternative
model that represents the target model after the change re-
quest is implemented the architect starts the KAMP deriva-
tion process. KAMP calculates a differences model be-
tween the mainalternative model files and the subalternative
model files. The resulting work plan from the derivation
process is shown in Listing 1.

Listing 1. Workplan for Change Request

Add InterfaceDefinition CacheInterface
Add OperationDefinition getQueryResults
Add OperationDefinition putQueryResults
Add OperationDefinition clear

Add Component Cache
Add Provided InterfaceImplementation

CacheInterface
Add OperationImplementation

getQueryResults
Add OperationImplementation

putQueryResults
Add OperationImplementation clear

Modify Component DemoApplication
Modify Provided InterfaceImplementation

DemoApplicationInterface
Modify OperationImplementation queryPrice

Deriving deployment activities As can be seen in the
work plan the component DemoApplication has to be mod-
ified. From the information present in the deployment view
of the architecture model (see Figure 3) KAMP retrieves
that this component is allocated to 30 nodes. Hence, KAMP
adds a new activity to the work plan: Redeploy component
DemoApplication (on 30 Nodes). As a result, the modifica-
tion of a component leads to the follow-up effort for rede-
ployment of the components.

Effort Estimation Our project partners annotated the
work plan activities with time effort estimates in Person
Days. The aggregated time efforts are then exported to the

Figure 4. Result overview

Q-ImPrESS result model which can be used as input for
trade-off analysis. A screenshot of the result overview is
shown in Figure 4. The results are given in Person Days.

5 Related work

5.1 Scenario-Based Architecture Quality Analysis

In literature there are several approaches which analyze
quality of software systems based on software architectures.
In the following paragraphs we discuss approaches which
make explicitly use of scenarios. There are already two sur-
vey papers ([1], [9]) which summarize and compare existing
architecture evaluation methods.

Software Architecture Analysis Method (SAAM) [7]
SAAM was developed in 1994 by Rick Kazman, Len Bass,
Mike Webb and Gregory Abowd at the SEI as one of the
first methods to evaluate software architectures regarding
their changeability (as well as to related quality properties,
such as extensibility, portability and reusability). It uses
an informally described architecture (mainly the structural
view) and starts with gathering change scenarios. Then via
different steps, it is tried to find interrelated scenarios, i.e.,
change scenarios where the intersection of the respective
sets of affected components is not empty. The components
affected by several interrelated scenarios are considered to
be critical and deserve attention. For each change scenario,
its costs are estimated. The outcome of SAAM are clas-
sified change scenarios and a possibly revised architecture
with less critical components.

The Architecture Trade-Off Analysis Method
(ATAM) [7] ATAM was developed by a similar group
for people from the SEI taking into account the experi-
ences with SAAM. In particular, one wanted to overcome
SAAM’s limitation of considering only one quality at-
tribute, namely, changeability. Much more, one realised
that most quality attributes are in many architectures
related, i.e., changing one quality attribute impacts other
quality attributes. Therefore, the ATAM tries to identify
trade-offs between different quality attributes. It also
expands the SAAM by giving more guidance in finding
change scenarios. After these are identified, each quality
attribute is firstly analysed in isolation. Then, different to
SAAM, architectural decisions are identified and the effect
(sensitivity) of the design decisions on each quality attribute

Joint Proceedings of MDSM 2011 and SQM 2011

61

is tried to be predicted. By this ”sensitivity analysis” one
systematically tries to find related quality attributes and
trade-offs are made explicit. While the ATAM provides
more guidance as SAAM, still tool support is lacking due
to informal architectural descriptions and the influence
of the personal experience is high. (Therefore, more
modern approaches try to lower the personal influence, e.g.,
POSAAM [8].) Different to our approach, change effort is
not measured as costs on ATAM.

The Architecture-Level Prediction of Software Main-
tenance (ALPSM) [4] ALPSM is a method that solely fo-
cuses on predicting software maintainability of a software
system based on its architecture. The method starts with the
definition of a representative set of change scenarios for the
different maintenance categories (e.g. correct faults or adapt
to changed environment), which afterwards are weighted
according to the likelihood of occurrence during the sys-
tems’s lifetime. Then for each scenario, the impact of im-
plementing it within the architecture is evaluated based on
component size estimations (called scenario scripting). Us-
ing this information, the method finally allows to predict the
overall maintenance effort by calculating a weighted aver-
age of the effort for each change scenario. As a main ad-
vantage compared to SAAM and ATAM the authors point
out that ALPSM neither requires a final architecture nor
involves all stakeholders. Thus, it requires less resources
and time and can be used by software architects only to
repeatedly evaluate maintainability. However, the method
still heavily depends on the expertise of the software archi-
tects and provides little guidance through tool support or au-
tomation. Moreover, ALPSM only proposes a very coarse
approach for quantifying the effort based on simple compo-
nent size measures like LOC.

The Architecture-Level Modifiability Analysis
(ALMA) [5]
The ALMA method represents a scenario-based software
architecture analysis technique specialized on modifiability
and was created as a combination of the ALPSM approach
[4] with [13]. Regarding the required steps, ALMA to
a large extend corresponds to the ALPSM approach, but
features two major advantages. First, ALMA supports
multiple analysis goals for architecture-level modifiability
prediction, namely maintenance effort prediction, risk
estimation and comparison of architecture alternatives.
Second, the effort or risk estimation for single change
scenarios is more elaborated as it explicitly considers
ripple effects by taking into account the responsible
architects’ or developers’ expert knowledge (bottom up
estimation technique). Regarding effort metrics, ALMA
principally allows for the definition of arbitrary quantitative
or qualitative metrics, but the paper itself mainly focuses
on lines of code (LOC) for expressing component size and
complexity of modification (LOC/month). Moreover, the

approach as presented in the paper so far only focuses on
modifications relating to software development activities
(like component (re-)implementation), but does not take
into account software management activities, such as
re-deployment, upgrade installation, etc.

5.2 Change Effort Estimation

Top-Down Effort Estimation Approaches in this sec-
tion estimate efforts in top-down manor. Although they
are intended for forward engineering development projects,
one could also assume their potential applicability in evolu-
tion projects. Starting from the requirement level, estimates
about code size are made. Code size is then related some-
how to time effort. There are two prominent representatives
of top-down estimation techniques: Function Point Analy-
sis (FPA) [11] and Comprehensive Cost Model (COCOMO)
II [6]. COCOMO-II contains three approaches for cost es-
timation, one to be used during the requirement stage, one
during early architectural design stage and one during late
design stage of a project. Only the first one and partially
the second one are top-down techniques. Although FPA
and COCOMO-II-stage-I differ in detail, their overall ap-
proach is sufficiently similar to be treated commonly in this
paper. In both approaches, the extent of the functional-
ity of a planned software system is quantified by the ab-
stract unit of function points (called ”applications points”
in COCOMO). Both approaches provide guidance in count-
ing function points given an informal requirements descrip-
tion. Eventually, the effort is estimated by dividing the to-
tal number of function points by the productivity of the de-
velopment team. (COCOMO-II-stage-I also takes the ex-
pected degree of software reuse into account.) In particu-
lar COCOMO-II in the later two stages takes additional in-
formation about the software development project into ac-
count, such as the degree of generated code, stability of re-
quirements, platform complexity, etc. Interestingly, archi-
tectural information is used only in a very coarse grained
manner (such as number of components). Both approaches
require a sufficient amount of historical data for calibration.
Nevertheless, it is considered hard to make accurate pre-
dictions with top-down estimations techniques. Even Barry
Boehm (the author of COCOMO) notes that hitting the right
order of magnitude is possible, but no higher accuracy1.

Bottom-Up Effort Estimation – Architecture-Centric
Project Management [14]
(ACPM) is a comprehensive approach for software project
management which uses the software architecture descrip-
tion as the central document for various planning and man-
agement activities. For our context, the architecture based
cost estimation is of particular interest. Here, the architec-
ture is used to decompose planned software changes into

1http://cost.jsc.nasa.gov/COCOMO.html

Joint Proceedings of MDSM 2011 and SQM 2011

62

several tasks to realise this change. This decomposition
into tasks is architecture specific. For each task the as-
signed developer is asked to estimate the effort of doing
the change. This estimation is guided by pre-defined forms.
Also, there is no scientific empirical validation. But one can
argue that this estimation technique is likely to yield more
accurate prediction as the aforementioned top-down tech-
niques, as (a) architectural information is used and (b) by
asking the developer being concerned with the execution of
the task, personal productivity factors are implicitly taken
into account. This approach is similar to KAMP by using
a bottom-up estimation technique and by using the archi-
tecture to decompose change scenarios into smaller tasks.
However, KAMP goes beyond ACPM by using a formal-
ized input (architectural models must be an instance of a
predefined meta-model). This enables tool-support. In ad-
dition, ACPM uses only the structural view of an archi-
tecture and thus does not take software management costs,
such as re-deployment into account.

6 Conclusions

In this paper we presented the KAMP approach for esti-
mating the evolution effort of a given change request based
on the architectural model of a service-oriented software
system. The main contributions of our method are:

• a way to map change requests to architecture models
and derive a work plan by calculating differences be-
tween models, enhanced with user inputs from a wiz-
ard dialog and

• an integrated bottom-up estimation approach provid-
ing evolution effort estimations, which are not limited
to implementation efforts only.

We showed the applicability of our approach by using it
on the Enterprise SOA Showcase, an open-source industrial
demonstration systems developed within the Q-ImPrESS
project.

7 Acknowledgements

The work presented in this paper was funded within
the Q-ImPrESS research project (FP7-215013) by the Eu-
ropean Union under the Information and Communication
Technologies priority of FP7.

References

[1] M. Babar, L. Zhu, and R. Jeffery. A framework for classi-
fying and comparing software architecture evaluation meth-
ods. Software Engineering Conference, 2004. Proceedings.
2004 Australian, pages 309–318, 2004.

[2] S. Becker, L. Bulej, T. Bures, P. Hnetynka, L. Kapova,
J. Kofron, H. Koziolek, J. Kraft, R. Mirandola, J. Stam-
mel, G. Tamburelli, and M. Trifu. Q-ImPrESS Project
Deliverable D2.1: Service Architecture Meta Model
(SAMM). Technical Report 1.0, Q-ImPrESS consortium,
September 2008. http://www.q-impress.eu/wordpress/wp-
content/uploads/2009/05/d21-service architecture meta-
model.pdf.

[3] S. Becker, M. Trifu, and R. Reussner. Towards Supporting
Evolution of Service Oriented Architectures through Qual-
ity Impact Prediction. In 1st International Workshop on Au-
tomated engineeRing of Autonomous and run-time evolving
Systems (ARAMIS 2008), September 2008.

[4] P. Bengtsson and J. Bosch. Architecture level prediction of
software maintenance. Software Maintenance and Reengi-
neering, 1999. Proc. of the Third European Conference on,
pages 139–147, 1999.

[5] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (alma). Journ. of
Systems and Software, 69(1-2):129 – 147, 2004.

[6] B. W. Boehm, editor. Software cost estimation with Cocomo
II. Prentice Hall, Upper Saddle River, NJ, 2000.

[7] P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures. Addison-Wesley, 4. print. edition, 2005.

[8] D. B. da Cruz and B. Penzenstadler. Designing, Document-
ing, and Evaluating Software Architecture. Technical Re-
port TUM-INFO-06-I0818-0/1.-FI, Technische Universität
München, Institut für Informatik, jun 2008.

[9] E. Dobrica, L.; Niemela. A survey on software architecture
analysis methods. Transactions on Software Engineering,
28(7):638–653, Jul 2002.

[10] C. Häcker, A. Baier, W. Safonov, J. Tysiak, and W. Frank. Q-
ImPrESS Project Deliverable D8.6 Enterprise SOA Show-
case initial version. Technical Report 1.0, Q-ImPrESS con-
sortium, January 2009.

[11] IFPUG. Function Point Counting Practices Manual. Inter-
national Function Points Users Group: Mequon WI, 1999.

[12] ISO/IEC. Software Engineering - Product Quality - Part 1:
Quality. ISO/IEC 9126-1:2001(E), Dec 1990.

[13] N. Lassing, D. Rijsenbrij, and H. van Vliet. Towards a
broader view on software architecture analysis of flexibil-
ity. Software Engineering Conference, 1999. (APSEC ’99)
Proceedings. Sixth Asia Pacific, pages 238–245, 1999.

[14] D. J. Paulish and L. Bass. Architecture-Centric Software
Project Management: A Practical Guide. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.

Joint Proceedings of MDSM 2011 and SQM 2011

63

Preparing for a Literature Survey of Software Architecture
using Formal Concept Analysis

Luı́s Couto and José Nuno Oliveira
CCTC

Departamento de Informática
Universidade do Minho

Braga, Portugal
{pg15260@alunos.uminho.pt, jno@di.uminho.pt}

Miguel Ferreira and Eric Bouwers
Software Improvement Group

Amsterdam, Netherlands
{m.ferreira, e.bouwers}@sig.eu

Abstract—The scientific literature on Software Architecture
(SA) is extensive and dense. With no preparation, surveying
this literature can be a daunting task for novices in the field.
This paper resorts to the technique of Formal Concept Analysis
(FCA) in organizing and structuring such a body of knowledge.

We start by surveying a set of 38 papers bearing in mind the
following questions: “What are the most supported definitions
of software architecture?”, “What are the most popular research
topics in software architecture?”, “What are the most relevant
quality attributes of a software architecture?” and “What are
the topics that researchers point out as being more interesting to
explore in the future?”. To answer these questions we classify
each paper with appropriate keywords and apply FCA to
such a classification. FCA allows us to structure our survey
in the form of lattices of concepts which give evidence of main
relationships involved.

We believe our results will help in guiding a more compre-
hensive, in-depth study of the field, to be carried out in the
future.

Keywords-Introductory and Survey; Software Architectures;
Formal Concept Analysis;

I. INTRODUCTION

Architecture is a relevant aspect of software systems
because it “allow[s] or preclude[s] nearly all of the systems
quality attributes” [38]. Although the term “architecture”,
referring to software, seems to be widely accepted in both
academia and industry we notice that there is no consen-
sual understanding of it. A quick overview of just a few
papers will reveal significantly different definitions of SA,
for instance. This calls for knowledge classification and
aggregation in the field. Our main motivation in this paper
is to use formal concept analysis (FCA) [39] to help us in
classifying and structuring the vast bibliography in the area,
paving the way to the future construction of a taxonomical
body of knowledge. We consider that a survey could help
to clear this and other issues, such as what the main topics
of the field are, what quality attributes are more relevant to
consider when working with the architecture of a software
system, or what the most promising topics for future research
are. Before starting a full fledge literature review of the
field (as proposed in [40] for instance), we propose to do a

preliminary study to shed some light on these, and possibly
other, research questions (RQs). With such a preliminary
review and analysis one can get a better focus on subsequent
reviews due to a better understanding of how the field is
partitioned in streams of research, who is working on what
and how different topics relate to each other.

Our main assumption is that it is possible to use FCA
to answer questions. FCA is a mathematical theory for data
analysis that derives ontologies from sets of objects and their
properties. It can be used to explore a domain, reason about
it or simply describe it in a structured way. We rely on FCA
visualization capabilities to help reason about the field to be
surveyed.

The contributions of this paper are:
• the exemplification of how can FCA be used in prepar-

ing research literature reviews;
• answers to the RQs used to illustrate the technique.
For the illustration of the preliminary survey approach,

we formulate the following RQs about SA.
1) What are the most supported definitions of software

architecture?
2) What are the most popular research topics in software

architecture?
3) What are the most relevant quality attributes of a

software architecture?
4) What are the topics that researchers point out as being

more interesting to explore in the future?
The remainder of this paper is structured as follows.

Section II introduces FCA and the lattices used later on in
the paper. Section III describes the proposed approach to
a preliminary literature review. Each of the following four
sections is an illustration of how the generic approach can
be applied to a specific RQ. The paper terminates with a
discussion of the outcome of the study in Section VIII.

II. FORMAL CONCEPT ANALYSIS

This section provides background on FCA in general, and
the interpretation of the lattices used in the paper. Readers
familiar with FCA may want to skip this section altogether.

Joint Proceedings of MDSM 2011 and SQM 2011

64

Figure 1. Example concept lattice

FCA comes from the field of applied mathematics and it
is described by its proponent as follows:

The aim and meaning of Formal Concept Analysis
as mathematical theory of concepts and concept
hierarchies is to support the rational communi-
cation of humans by mathematically developing
appropriate conceptual structures which can be
logically activated. [39]

The input for FCA is a context, which is a relation (typi-
cally a matrix) between objects and attributes. This relation
forms an ontology of concepts and their relationships. A
concept can be considered a subconcept if its extension
(the set of its objects) is contained in the extension of
its superconcept or, dually, if its intension (the set of its
attributes) contains the intention of its superconcept [39].

Although FCA provides advanced features for knowledge
exploration, in our analysis we only use it for visualizing
concept lattices, which provide a structured view of the con-
cepts under study. We are interested in understanding which
objects (papers in our case) relate to which attributes (the
different attributes we defined for each RQ), what clusters
of objects and attributes are there, and what hierarchical
relations exist among concepts. We refer the reader to a
paper [41] where FCA was used for the same purpose.

To create the concept lattices in this study, we chose
to use the “The Concept Explorer” (conexp) 1 tool. Let
us start by showing how to interpret a concept lattice in
FCA. Figure 1 depicts one such concept lattice where books
(objects) are related to their properties (attributes). The
figure shows 6 concepts (nodes in the lattice) of 3 different
types. White labels represent objects, whereas gray labels
represent attributes. The dashed lines between concepts and
labels are a visual aid to help identify to which concepts
labels belong. Solid lines represent the super/sub-concept
relationship. Concepts depicted by half white, half black

1http://conexp.sourceforge.net

circles only refer to objects, meaning that objects in such
nodes have empty intentions (such is the case of the top most
concept where Book3 sits) because it is not related to any of
the attributes, or that the objects in that concept inherit the
attributes from their superconcepts (the case of the concept
where Book2 sits, which inherits the attributes DIGITAL
COPY and HARD COPY from its two superconcepts). Con-
cepts depicted by half blue, half black circles refer to both
objects and attributes (see e.g. the concept where Book4 sits).
The objects in these concepts are related to the attributes
that sit on the same concept, and to the attributes of their
superconcepts. Finally, the concepts depicted by a rather
small and empty circle can refer to attributes (the case of
the concept where the attribute HARD COPY sits), or merely
serve as hierarchical links between their superconcepts and
their subconcepts.

III. GENERIC APPROACH

The approach proposed in this paper is carried out in four
steps: paper selection, paper classification, use of FCA, and
analysis of results. This section gives an overview of these
steps.

A proper selection of papers should have strictly defined
criteria for searching and filtering papers. However, because
this is simply a preliminary study we skipped such a
structured selection and from a set of 4 papers we chased
bibliography references until we reached a larger set that
both contained different types of papers (such as surveys,
evaluations, new proposals, etc), and covered several dif-
ferent topics within the field of SA. We ended up with a
selection of 38 papers published between 1992 and 2010.
This set of papers is not meant to be fully representative of
the field of SA, but it is vast enough for a preliminary study
such as this one.

With the set of papers to survey established it is necessary
to classify each paper according to the attributes selected
for each of the RQs. Different sets of attributes are used to
answer different RQs. For each RQ, a first (more extensive)
set of attributes is manually collected from all papers.
The collected attributes were found in abstract, keywords,
introduction, future work and conclusion sections. Then, the
related attributes are grouped together in order to reduce the
number of attributes in the final set. Attributes are dropped if
too few papers support them. This is typically the case for
attributes that are not related to more than 1 or 2 papers
whenever there are more attributes that get related to a
significantly larger number of papers. Once this set is stable,
then a relation is built between each paper and the attributes
that are relevant to that paper.

The following step is to apply FCA. There are several
tools that implement FCA. As mentioned previously, we use
conexp, an open source FCA tool.

Finally, the resulting concept lattices are analyzed and
interpreted, so as to focus on the structural relations they

Joint Proceedings of MDSM 2011 and SQM 2011

65

uncover between papers and attributes.
The following four sections report the results of applying

this generic approach to the selected RQs. The set of papers
is the same for all the RQs, except for one where it was
further reduced.

IV. WHAT ARE THE MOST SUPPORTED DEFINITIONS OF
SOFTWARE ARCHITECTURE?

A. Attributes

The attributes for this RQ are the following.
Design SA is the set of design decisions, specifica-

tion or otherwise abstract representation of
the software system.

Structure SA is the structure of components, their
relationship and external properties.

Constraints SA defines the constraints on the realization
or satisfaction of properties of its elements,
or on the legal and illegal patterns in the
communication between elements.

Quality SA influences and/or determines quality at-
tributes of software.

B. Results

The lattice of Figure 2 shows that a group of 8 papers
does not support any of the 4 given definitions of SA, as they
sit in the topmost concept. Some papers are related to just
one definition of SA. These are the papers that inhabit the
concepts that also hold the attributes QUALITY (3 papers),
DESIGN (6 papers) and STRUCTURE (11 papers). All other
papers support two definitions simultaneously. Regarding
attributes, the odd one out is CONSTRAINTS because no
paper supports it alone. The papers that support the defini-
tion CONSTRAINTS also support DESIGN or STRUCTURE.
Finally, no paper supports more than two definitions.

C. Discussion

The initial scan of the papers revealed 15 definitions. This
number was, however, reduced to 4. Some definitions were
simply dropped because too few papers supported them, and
others were merged together. An example of such a merge
is the case of STRUCTURE, which aggregates three of the
initial definitions, namely STRUCTURE, DECOMPOSITION
and RELATIONSHIP. The reason for this aggregation is that
most papers that support these definitions articulate them
together in sentences like “. . . software architecture of a
program or computer system is the structure or structures
of the system, which comprise software components, the
externally visible properties of those components, and the
relationships among them” Bengtson et al. 2004 [8].

We found that 8 papers do not support any of the analyzed
definitions, 5 of these not providing any definition at all. The
remaining 3 papers do provide definitions, but these were
dropped. Eight of the papers that provide a definition for
SA quote it from elsewhere.

It turns out that STRUCTURE is the most supported (17
papers) definition among the papers we surveyed, followed
by DESIGN (13 papers). Recall the definitions of DESIGN
and STRUCTURE from Section IV-A. These definitions,
although not exactly the same, look fairly similar to us.
DESIGN refers to decisions and abstract representations.
On the other hand, STRUCTURE refers to a structure of
components that are related to each other in some way.
We think that the decomposition of a software system in
different components that are structurally related can be
viewed as an abstract representation of that system. Also,
such structure of components exists due to decisions made
by people developing the system. This understanding of the
definitions, however, does not make them the same thing.
The structure of components can be observed at different
abstraction levels, such as the structure of source code
packages (or equivalent) which are already highly concrete
and far away from the abstract representation. The point is
that SA viewed from the STRUCTURE perspective can be
too detailed to be considered abstract. All in all, we believe
that although there might be some overlapping these are two
different definitions of SA.

V. WHAT ARE THE MOST POPULAR RESEARCH TOPICS IN
SOFTWARE ARCHITECTURE?

A. Attributes

The attributes for this RQ are the following.
Notation Addresses a notation (or description lan-

guage) for representing SA.
Method Addresses a method for analysis or evaluation

of SAs.
Tool Addresses a tool for the analysis or evaluation

of SAs.
Evaluation Pertains to SA evaluation with respect to one

or more quality attributes.
Analysis Pertains to SA analysis not leading to appre-

ciation of quality attributes.
Scenarios Addresses scenarios as a technique for eval-

uation or analysis of SA.
Metrics Addresses metrics as tools for evaluation or

analysis of SA.
Reviews Addresses reviews as tools for evaluation or

analysis of SA.
Prototypes Addresses prototypes as tools for either eval-

uation or analysis of SA.

B. Results

Due to the overly complex concept lattice obtained if
using the entire attribute set we decided for simplification
in detriment of a complete view of the concepts. To this
end, we consider a core set of topics containing NOTATION,
EVALUATION, ANALYSIS, TOOL and METHOD. This leaves
out SCENARIOS, METRICS, REVIEWS and PROTOTYPES as

Joint Proceedings of MDSM 2011 and SQM 2011

66

Figure 2. Concept lattice for software architecture definitions.

we expect these to be bound to some of the topics of the
core set.

Figure 3 depicts the concept lattice built from classifying
each surveyed paper according to the attributes of the core
set. This lattice shows that there is one paper (Shaw and
Clements 2006 [35]) that does not cover any of the 6
analyzed topics. In the lattice it is visible that 5 concepts
descend directly from the topmost. For easy reference we
will refer to these as level1 concepts. Four of these hold both
objects and attributes, and one only holds the attribute TOOL,
which means that no paper covers the TOOL topic alone. On
the other hand, the 4 that hold both objects and attributes
reveal that some papers are focused on just one topic. These
topics are EVALUATION (9 papers), NOTATION (6 papers),
METHOD (1 paper) and ANALYSIS (4 papers). Moving
further down along the lattice it becomes clear that the
number of connections among concepts increases. Two of
the concepts that descend directly from level1 concepts hold
papers, and both have two direct superconcepts. Kazman
1996 [20] covers TOOL and ANALYSIS, whereas a group
of 10 papers cover EVALUATION and METHOD. Analyzing
the lattice from the bottom up, there are 4 concepts that
are superconcepts of the bottommost concept and only
hold papers. All these papers cover some combination of
three topics. No paper covers all topics and every topic is
associated to at least one paper.

Adding METRICS to the analysis produces the concept
lattice depicted in Figure 4 in which we see that METRICS
are covered by 4 papers. All of these papers cover METRICS
in addition to some other topic(s). For example Bouwers et
al. 2009 [10] also covers EVALUATION.

Taking SCENARIOS into account together with the core set
yields the lattice of Figure 5. Nine papers cover SCENARIOS.
A group of 6 papers cover it together with EVALUATION
and METHOD. Lung et al. 1997 [26] is not part of this

set because it also covers NOTATION. Kruchten 1995 [23]
covers SCENARIOS together with ANALYSIS, METHOD and
NOTATION. Finally, Kazman 1996 [20] also covers TOOL
and ANALYSIS.

The lattice resulting from adding REVIEWS to the analysis
is depicted in Figure 6. REVIEWS are covered only by 3
papers, all also covering EVALUATION and METHOD.

PROTOTYPES, the last attribute, generates the lattice of
Figure 7. Only Luckham et al. 1995 [25] covers this attribute
and it does so in addition to NOTATION.

C. Discussion

EVALUATION is the topic gathering most papers (21),
followed by METHOD (17) and NOTATION (11). The dif-
ference in the number of papers that cover EVALUATION
(21) and the number of papers that cover ANALYSIS (8)
seems to indicate that the research community represented in
the surveyed papers believes that attributing quality notions
to SA is of paramount importance. On the other hand, it
could also mean that there are sufficiently mature analysis
techniques available and that quality attributes are the next
logical step. The most frequent (12 papers) combination of
two topics is EVALUATION and METHOD, which indicates
that a good deal of papers focuses on methods for evaluation
of SAs. Except for Kazman 1996 [20] all papers that cover
more than one topic, cover METHOD. This indicates that
methods for SA evaluation or analysis are still a hot topic in
the field. It could be seen as a consequence of the definition
of the attribute METHOD. However the attribute TOOL was
defined in a similar way and does not gather as many papers.
This is perhaps a sign of method immaturity (too early for
tool development).

With the exception of one paper (Kazman 1996 [20]), all
other papers that cover METRICS also cover EVALUATION.
This reveals that researchers consider metrics to be adequate

Joint Proceedings of MDSM 2011 and SQM 2011

67

Figure 3. Concept lattice for the core set of research topics.

Figure 4. Concept lattice for the core set of research topics plus METRICS.

Figure 5. Concept lattice for the core set of research topics plus SCENARIOS.

indicators (or predictors) for quality attributes. Similarly
to METRICS, REVIEWS are only covered together with
EVALUATION and METHOD. When compared to METRICS
and REVIEWS, SCENARIOS are more diversified in the
field. Figure 5 shows that SCENARIOS are related to all

other topics in the core set, which implies a broad scope
of applications. Finally, PROTOTYPES are always covered
together with NOTATION and nothing else. This does not
mean researchers find prototyping inadequate for evaluation
or analysis. Instead, modeling and building prototypes seems

Joint Proceedings of MDSM 2011 and SQM 2011

68

Figure 6. Concept lattice for the core set of research topics plus REVIEWS.

Figure 7. Concept lattice for the core set of research topics plus PROTOTYPES.

in most cases inherent to any of these activities. This could
explain why researchers do not mention it explicitly when
covering topics such as EVALUATION, ANALYSIS, METHOD
or TOOL.

92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Notation
Evaluation
Method & Analysis
Tool

Year

Timeline of researched topics.

From the surveyed papers we do not see a clear evolution
in research topics, meaning that most topics were and are
researched in parallel. As depicted in the above timeline all
topics overlap along most of the timeline.

VI. WHAT ARE THE MOST RELEVANT QUALITY
ATTRIBUTES OF A SOFTWARE ARCHITECTURE?

A. Attributes

The attributes for this RQ are the following.
Maintainability How easily can software be maintained.

Usability How easily can software be used.
Reusability How easily can software (or parts of it)

be re-used.
Performance The amount of useful work accom-

plished by software compared to the time
and resources used.

Reliability The capability of software to maintain
performance under stated conditions for
a stated period of time.

Availability The capability of a software product to
be in a functioning state.

Security The capability of software to prevent
unintended usage and unintended access
to its data.

Modifiability How easily can software be modified.
Interoperability How easily can software interact with

other systems.
Testability How easily can software be tested.
Scalability The capability of software to handle

growing work loads without prejudice of
its service quality.

Joint Proceedings of MDSM 2011 and SQM 2011

69

Generic The quality attribute is a parameter in the
evaluation.

B. Results

For this RQ the set of papers was reduced to the 22 papers
that cover the topic EVALUATION which, by definition of the
topic, refer to some quality attribute, leading to the lattice
of Figure 8. This lattice shows that all papers cover at least
one quality attribute. Out of the 22 papers 18 cover at most
one quality attribute (including the GENERIC). Which only
leaves 4 papers that cover more than one attribute. Two pa-
pers, Immonen and Niemelä [19] and Lung et al. 1997 [26],
cover two quality attributes (respectively RELIABILITY and
AVAILABILITY, and MODIFIABILITY and REUSABILITY).
Babar et al. 2004 [5] covers 6 quality attributes. Finally, the
paper O’Brien et al. 2007 [31] covers 9 attributes. From the
perspective of the quality attributes, three (SCALABILITY,
TESTABILITY, and INTEROPERABILITY) are covered by a
single paper (O’Brien et al. 2007 [31]). SECURITY is always
covered together with other quality attributes (RELIABILITY,
AVAILABILITY, PERFORMANCE, and USABILITY). AVAIL-
ABILITY is always covered together with RELIABILITY. The
last odd attribute is GENERIC for which the associated pa-
pers do not cover any other quality attribute (this is actually
a meta quality attribute as explained in Section VI-A).

C. Discussion

The fact that AVAILABILITY and RELIABILITY are al-
ways covered together hints at the similarities between these
two quality attributes. In fact a software system that is very
reliable should have no problems in being available to its
users. However, the contrary might not be true, since a
system can be available but in the end not so reliable. For
instance a system could be available for its users to perform
whatever tasks they need it for, but still lose important
data without the user perceiving it. This seems to indicate
AVAILABILITY as an aspect of RELIABILITY.

Because SECURITY is always covered together with RE-
LIABILITY, AVAILABILITY, PERFORMANCE and USABIL-
ITY it does not seem a main concern of researchers focusing
on SA. The fact that it is covered by no more than two papers
seems to reinforce this interpretation.

Seven papers cover GENERIC evaluations, meaning that
the quality attribute is a parameter of the evaluation method,
therefore these methods can be applied to different qual-
ity attributes. The next most covered quality attribute is
REUSABILITY (6 papers) which indicates this quality at-
tribute as the most relevant for the surveyed papers. This
makes sense if one considers that most SAs are built from
scratch every time, over and over. Just like with code
libraries, researchers believe that there should be ways to
reutilize existing SAs, or at least bits and pieces. Lastly, we
have MAINTAINABILITY and RELIABILITY each with 4.

The remaining quality attributes are covered by three or
two papers, with the exception of INTEROPERABILITY and
TESTABILITY. A possible explanation for these two quality
attributes to appear in isolation from the others, could be
the development stage of the SA they apply to. There is a
distinction between designed and implemented architecture.
The former refers to the architecture that was initially
designed for a system typically using an Architecture De-
scription Language (ADL), whereas the latter refers to the
architecture that got implemented in source code. It could
be that both INTEROPERABILITY and TESTABILITY can be
better assessed when considering implemented architectures.

VII. WHAT ARE THE TOPICS THAT RESEARCHERS POINT
OUT AS BEING MORE INTERESTING TO EXPLORE IN THE

FUTURE?

A. Attributes

The attributes for this RQ are the following.
Notation Improve notation support for SA, including

enrichment of semantics.
Knowledge Create and/or extend a reusable SA body

of knowledge.
Validation Validate usefulness of methods, tools and

languages used for evaluation and analysis
of SAs.

Evaluation Improve SA evaluation methods.
Tooling Improve SA tool support.
Quality Study SA quality attributes.
Integration Promote integration of SA evaluation and

analysis methods in software development
processes.

Measurement Propose new, or select from existing, met-
rics for SA.

B. Results

The lattice of Figure 9 shows that all topics sit in concepts
that directly descend from the topmost concept. This means
that the topics are fairly independent. A group of 6 papers
sits in the topmost concept, meaning that they either do not
propose any future work, or their topics cannot be found
in the attribute set. No paper proposes EVALUATION or
TOOLING alone. All other topics are singled out in some
papers. Before moving on to the remaining 20 papers that
propose several topics, one noteworthy observation is that
VALIDATION is the topic which is most proposed together
with other topics (11 papers), followed by INTEGRATION
(10 papers), and TOOLING (7 papers). The 17 papers that
propose multiple topics do so in pairs.

C. Discussion

When compiling the attribute set for this RQ, we en-
countered two papers (Perry and Wolf 1992 [33] and Babar
et al. 2004 [5]) which proposed a working definition of

Joint Proceedings of MDSM 2011 and SQM 2011

70

Figure 8. Concept lattice for the most explored quality attributes.

Figure 9. Concept lattice for the research topics that researchers point out as more interesting to explore in the future.

SA. Although this topic did not make it into the analyzed
attribute set, it shows the relevance of our first RQ.

The pairs of topics that were pointed out by more papers
(3 each) were NOTATION and TOOLING, and INTEGRATION
and VALIDATION. This seems to stress the need for tool
support for SA specific notations, and that methods and tools
need to be both validated with respect to their usefulness and
better integrated in development processes.

Six papers do not propose future work topics at all.
The most proposed topics VALIDATION and INTEGRATION
(11 papers each), by definition, only make sense when
researched together with something else. Even though some
papers single these two out, we believe that the intention of
the authors is to validate or integrate whatever methods or

tools they have developed. All in all, it appears that there
are many avenues to be explored by new research and that
there is no topic that gathers the majority of the researchers.

Contrary to what we found for RQ2, there is not as much
time overlapping between proposals for future research top-
ics. The following timeline shows that both MEASUREMENT
and KNOWLEDGE span over short periods of time 1994–
1997 and 2006–2009, respectively. For the remaining topics
there is significant overlap for most of the analyzed period,
which means that for this RQ there is no crystal clear
evolution in what researchers consider to be important to
research in the future.

Joint Proceedings of MDSM 2011 and SQM 2011

71

92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10

Measurement
Notation
Integration
Tooling
Evaluation
Validation
Quality
Knowledge

Year

Timeline of future research topics.

VIII. CONCLUSIONS

Our preliminary survey shows that the term SA lacks
a clear definition. Two of the surveyed papers actually
mention the desirable clarification of the term as future work.
From the analysis of RQ1 (“What are the most supported
definitions of software architecture?”) we were able to single
out 2 (DESIGN and STRUCTURE) of the 4 main definitions as
being the most supported. This dichotomy can be explained
by the gap existing between the designed architecture (what
is initially designed for a system) and the implemented
architecture (what is actually implemented in the source
code). In a full fledge survey of the field it might be
desirable to take both definitions into account, or to just
focus on one. If one already knows the field to be surveyed,
such differences might be obvious. However, if the field is
unknown, a preliminary study as the one described in this
paper can help to focus on what to include and what to
exclude from the survey.

With respect to RQ2 (“What are the most popular re-
search topics in software architecture?”), one thing that
stands out is the fact that whenever a paper covers two
topics, METHOD is almost always (there is one exception)
one of them. So if the focus of the survey would be “methods
for SA”, one would already expect not to exclude any topic
from the literature selection. On the other hand, should the
focus of the survey be “tools for dealing with SA”, one
would already expect to find more papers regarding methods
for architectural analysis that than, for instance, architectural
evaluation. Of course, these are not rules of thumb, but
they help set the expectations, which in turn guide literature
searches and help validate findings. RQ2 also shows how to
partition the analysis if the lattice is overly complex.

Regarding RQ3 (“What are the most relevant quality
attributes of a software architecture?”), we observed that
the maintainability, reusability, usability, performance, reli-
ability and modifiability quality attributes seem to be more
impacted by decisions taken at the level of SA. Furthermore,
other quality attributes, such as scalability, testability and
interoperability, seem to be less relevant according to the
number of papers that cover those.

Finally, the analysis of RQ4 (“What are the topics that
researchers point out as being more interesting to explore
in the future?”) shows that there are many avenues for future

work and that there are many proposals for combining these
avenues into streams of research. From all the identified
future research topics the ones that gather more consensus
are validation and integration efforts. This seems to indicate
that the field has matured to the point where there is
enough confidence in what has been developed thus fur
to start embracing integration of such methods and tools
into mainstream software engineering practices. On the other
hand, the field has not yet matured enough to have provided
full confidence in its methods and tools, thus requiring
additional empirical validation studies.

We recognize limitations in this preliminary study for a
survey, namely the bias introduced in the selection of papers
and attributes. To overcome this bias, one should rely on
strictly defined criteria for searching and selecting papers,
and the elicitation of the attributes. Since the goal of this
study is the demonstration of how FCA can help in preparing
for a full fledge survey, we do not consider this bias to be a
problem. The way to structure such criteria and protocols
for searching, classifying and extracting knowledge from
scientific literature has already been addressed in systematic
literature reviews for software engineering [40].

From this study we conclude that FCA can help in
gathering knowledge about a multifaceted field, and better
focus a survey. In addition, we believe that this is also true
if the target of the survey is something more specific, such
as “methods for SA evaluation that use metrics”. Validating
this hypothesis is yet to be done.

REFERENCES

[1] P. Abrahamsson, M. Babar, and P. Kruchten, “Agility and
architecture: Can they coexist?” IEEE Softw., vol. 27, no. 2,
pp. 16 –22, Mar/Apr 2010.

[2] R. Allen and D. Garlan, “Formalizing architectural connec-
tion,” in ICSE, May 1994, pp. 71 –80.

[3] M. Babar and I. Gorton, “A tool for managing software
architecture knowledge,” in SHARK/ADI. IEEE, 2007, p. 11.

[4] M. A. Babar and I. Gorton, “Software architecture review:
The state of practice,” IEEE Comp., vol. 42, no. 7, pp. 26–
32, 2009.

[5] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for
classifying and comparing software architecture evaluation
methods,” in ASEC, ser. ASWEC ’04. IEEE CS, 2004, pp.
309–.

[6] L. Bass and B. E. John, “Linking usability to software
architecture patterns through general scenarios,” JSS, vol. 66,
no. 3, pp. 187 – 197, 2003.

[7] P. Bengtsson and J. Bosch, “Scenario-based software archi-
tecture reengineering,” in ICSR. IEEE, 2002, pp. 308–317.

[8] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet,
“Architecture-level modifiability analysis (ALMA),” JSS,
vol. 69, no. 1-2, pp. 129 – 147, 2004.

Joint Proceedings of MDSM 2011 and SQM 2011

72

[9] E. Bouwers and A. van Deursen, “A lightweight sanity check
for implemented architectures,” IEEE Softw., vol. 27, no. 4,
pp. 44 –50, Jul 2010.

[10] E. Bouwers, J. Visser, and A. van Deursen, “Criteria for the
evaluation of implemented architectures,” in ICSM. IEEE,
2009, pp. 73–82.

[11] E. Bouwers, J. Visser, C. Lilienthal, and A. van Deursen,
“A cognitive model for software architecture complexity,” in
ICPC. IEEE Comp. Soc., 2010, pp. 152–155.

[12] L. Dobrica and E. Niemelä, “A survey on software architec-
ture analysis methods,” IEEE TSE, vol. 28, pp. 638–653, Jul
2002.

[13] S. Ducasse and D. Pollet, “Software architecture reconstruc-
tion: A process-oriented taxonomy,” IEEE TSE, vol. 35, no. 4,
pp. 573–591, 2009.

[14] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mis-
match: Why reuse is so hard,” IEEE Softw., vol. 12, pp. 17–26,
Nov 1995.

[15] ——, “Architectural mismatch or why it’s hard to build
systems out of existing parts,” in ICSE, 1995, pp. 179–185.

[16] D. Garlan, R. Monroe, and D. Wile, “Acme: an architecture
description interchange language,” in CASCON, ser. CAS-
CON ’97. IBM Press, 1997, pp. 7–.

[17] D. Garlan, R. Allen, and J. Ockerbloom, “Architectural mis-
match: Why reuse is still so hard,” IEEE Softw., vol. 26, no. 4,
pp. 66 –69, Jul/Aug 2009.

[18] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran,
and P. America, “A general model of software architecture
design derived from five industrial approaches,” JSS, vol. 80,
no. 1, pp. 106 – 126, 2007.

[19] A. Immonen and E. Niemelä, “Survey of reliability and avail-
ability prediction methods from the viewpoint of software
architecture,” SSM, vol. 7, pp. 49–65, 2008.

[20] R. Kazman, “Tool support for architecture analysis and
design,” in ISAW-2 and Viewpoints ’96 on SIGSOFT ’96
Workshops, ser. ISAW ’96. ACM, 1996, pp. 94–97.

[21] R. Kazman, L. Bass, M. Webb, and G. Abowd, “SAAM:
A method for analyzing the properties of software architec-
tures,” in ICSE. IEEE CS, 1994, pp. 81–90.

[22] R. Kazman, L. Bass, M. Klein, T. Lattanze, and L. Northrop,
“A basis for analyzing software architecture analysis meth-
ods,” SQJ, vol. 13, pp. 329–355, 2005.

[23] P. Kruchten, “The 4+1 view model of architecture,” IEEE
Softw., vol. 12, no. 6, pp. 42 –50, Nov 1995.

[24] C. Lange, M. Chaudron, and J. Muskens, “In practice: UML
software architecture and design description,” IEEE Softw.,
vol. 23, no. 2, pp. 40 – 46, Mar/Apr 2006.

[25] D. Luckham, J. Kenney, L. Augustin, J. Vera, D. Bryan, and
W. Mann, “Specification and analysis of system architecture
using rapide,” IEEE TSE, vol. 21, no. 4, pp. 336 –354, Apr
1995.

[26] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An
approach to software architecture analysis for evolution and
reusability,” in CCASCR, ser. CASCON ’97. IBM Press,
1997, pp. 15–.

[27] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specify-
ing distributed software architectures,” in ESEC, ser. LNCS,
W. Schäfer and P. Botella, Eds. Springer Berlin / Heidelberg,
1995, vol. 989, pp. 137–153.

[28] N. Medvidovic and R. Taylor, “A classification and com-
parison framework for software architecture description lan-
guages,” IEEE TSE, vol. 26, no. 1, pp. 70 –93, Jan 2000.

[29] G. Molter, “Integrating SAAM in domain-centric and reuse-
based development processes,” in NOSA, 1999, pp. 1–10.

[30] R. Monroe, A. Kompanek, R. Melton, and D. Garlan, “Ar-
chitectural styles, design patterns, and objects,” IEEE Softw.,
vol. 14, no. 1, pp. 43 –52, Jan/Feb 1997.

[31] L. O’Brien Lero, P. Merson, and L. Bass, “Quality attributes
for service-oriented architectures,” in SDSOA, May 2007, pp.
3–3.

[32] I. Ozkaya, L. Bass, R. Nord, and R. Sangwan, “Making
practical use of quality attribute information,” IEEE Softw.,
vol. 25, no. 2, pp. 25–33, 2008.

[33] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” SIGSOFT SEN, vol. 17, pp. 40–52,
Oct 1992.

[34] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for mea-
suring the quality of modularization of large-scale object-
oriented software,” IEEE TSE, vol. 34, no. 5, pp. 700–720,
2008.

[35] M. Shaw and P. Clements, “The golden age of software
architecture,” IEEE Softw., vol. 23, no. 2, pp. 31 – 39,
Mar/Apr 2006.

[36] B. Tekinerdogan, H. Sozer, and M. Aksit, “Software architec-
ture reliability analysis using failure scenarios,” JSS, vol. 81,
no. 4, pp. 558 – 575, 2008.

[37] L. G. Williams and C. U. Smith, “PASASM: a method for the
performance assessment of software architectures,” in IWSP,
ser. WOSP ’02. ACM, 2002, pp. 179–189.

[38] P. Clements, R. Kazman, and M. Klein, Evaluating Software
Architectures: Methods and Case Studies. Addison-Wesley,
2001.

[39] R. Wille, “Formal concept analysis as mathematical theory
of concepts and concept hierarchies,” in FCA, ser. LNCS,
B. Ganter, G. Stumme, and R. Wille, Eds., vol. 3626.
Springer, 2005, pp. 1–33.

[40] B. Kitchenham, “Evidence-based software engineering and
systematic literature reviews,” in PROFES, ser. Lecture Notes
in Computer Science, J. Münch and M. Vierimaa, Eds., vol.
4034. Springer, 2006, p. 3.

[41] J. Poelmans, P. Elzinga, S. Viaene, and G. Dedene, “Formal
concept analysis in knowledge discovery: A survey,” in ICCS,
ser. LNCS, M. Croitoru, S. Ferré, and D. Lukose, Eds., vol.
6208. Springer, 2010, pp. 139–153.

Joint Proceedings of MDSM 2011 and SQM 2011

73

Evidence for the Pareto principle
in Open Source Software Activity

Mathieu Goeminne and Tom Mens
Institut d’Informatique, Faculté des Sciences

Université de Mons – UMONS
Mons, Belgium

{ mathieu.goeminne | tom.mens }@umons.ac.be

Abstract—Numerous empirical studies analyse evolving open
source software (OSS) projects, and try to estimate the activity
and effort in these projects. Most of these studies, however, only
focus on a limited set of artefacts, being source code and defect
data. In our research, we extend the analysis by also taking into
account mailing list information. The main goal of this article
is to find evidence for the Pareto principle in this context, by
studying how the activity of developers and users involved in
OSS projects is distributed: it appears that most of the activity
is carried out by a small group of people. Following the GQM
paradigm, we provide evidence for this principle. We selected
a range of metrics used in economy to measure inequality in
distribution of wealth, and adapted these metrics to assess how
OSS project activity is distributed. Regardless of whether we
analyse version repositories, bug trackers, or mailing lists, and
for all three projects we studied, it turns out that the distribution
of activity is highly imbalanced.

Index Terms—software evolution, activity, software project,
data mining, empirical study, open source software, GQM, Pareto

I. INTRODUCTION

Numerous empirical studies aim to understand and model
how open source software (OSS) evolves over time [1]. In
order to gain a deeper understanding of this evolution, it
is essential to study not only the software artefacts that
evolve (e.g. source code, bug reports, and so on), but also
their interplay with the different project members (mainly
developers and users) that communicate (e.g., via mailing lists)
and collaborate in order to construct and evolve the software.

In this article, we wish to understand how activity is spread
over the different members of an OSS project, and how this
activity distribution evolves over time. Our hypothesis is that
the distribution of activity follows the Pareto principle, in the
sense that there is a small group of key persons that carry
out most of the activity, regardless of the type of considered
activity. To verify this hypothesis, we carry out an empirical
study based on the GQM paradigm [2]. We rely on concepts
borrowed from econometrics (the use of measurement in
economy), and apply them to the field of OSS evolution.
In particular, we apply indices that have been introduced
for measuring distribution (and inequality) of wealth, and
use them to measure the distribution of activity in software
development.

The remainder of this paper is structured as follows. Sec-
tion II explains the methodology we followed and defines

the metrics that we rely upon. Section III presents the ex-
perimental setup of our empirical study that we have carried
out. Section IV presents the results of our analysis of activity
distribution in three OSS projects. Section V discusses the
evidence we found for the Pareto principle. Section VI presents
related work, and Section VII concludes.

II. METHODOLOGY

A. GQM paradigm

To gain a deeper understanding of how OSS projects evolve,
we follow the well-known Goal-Question-Metric (GQM)
paradigm. Our main research Goal is to understand how ac-
tivity is distributed over the different stakeholders (developers
and users) involved in OSS projects. Once we have gained
deeper insight in this issue, we will be able to exploit it to
provide dedicated tool support to the OSS community, e.g.,
by helping newcomers to understand how the community is
structured, by improving the way in which the community
members communicate and collaborate, by trying to reduce
the potential risk of the so-called bus factor1, and so on.

To reach the aforementioned research goal, we raise the
following research Questions:

1) Is there a core group of OSS project members (develop-
ers and/or users) that are significantly more active than
the other members?

2) How does the distribution of activity within an OSS
community evolve over time?

3) Is there an overlap between the different types of activity
(e.g., committing, mailing, submitting and changing bug
reports) the community members contribute to?

4) How does the distribution of activity vary across differ-
ent OSS projects?

As a third step, we need to select appropriate Metrics that
will enable us to provide a satisfactory answer to each of the
above research questions. For our empirical study, we will
make use of basic metrics to compute the activity of OSS
project members, and aggregate metrics that allow us to com-
pare these basic metric values across members (to understand
how activity is distributed), over time (to understand how they

1The bus factor refers to the total number of key persons (involved in the
project) that would, if they were to be hit by a bus, lead the project into
serious problems

Joint Proceedings of MDSM 2011 and SQM 2011

74

evolve), and across projects (to compare the situation between
different OSS projects).

B. Basic metrics

To obtain the basic metrics of OSS activity, we will extract
information from three different types of data sources we have
at our disposal: version repositories, mailing lists, and bug
trackers. For each of these data sources, we can define metrics
that extract and reflect a particular type of activity:

• Development activity: the activity of developers com-
mitting source code to a version repository, measured as
number of commits.

• Mailing activity: the activity of project members posting
messages to a mailing list, measured as number of mails.

• Bug tracker activity: the activity of persons interacting
with a bug tracker, measured in three different ways:
number of new bug report submissions, number of com-
ments added to existing bug reports, number of changes
to existing bug reports.

Since we are not only interested in a static view of a
particular snapshot of an OSS project at a particular moment
in time, we will extract each of the above activity metrics
during the entire life of the considered OSS projects.

C. Aggregate metrics

Since several of the research questions require a comparison
of the basic metrics (across persons, across projects, and
over time), we need aggregate metrics that combine the basic
metrics. This is valuable, in particular, if we want to reason
about the distribution of activity across OSS project members.

To study such distribution, we borrow ideas from econo-
metrics. This discipline uses statistics and metrics to analyse
economic data. As an example, various aggregation measures
of statistical dispersion have been proposed (e.g., the Hoover,
Gini, and Theil indices) and applied to assess the inequality of
the wealth distribution among people, regions, countries, and
so on.

Recently, some of these aggregation measures have been
used for analysing evolving software systems. Vasa et al. [3]
proposed to use the Gini index as an alternative to traditional
software metrics. Serebrenik et al. [4] proposed to use the
Theil index instead. Following this emerging trend, we will
use three different aggregation measures to study OSS activity
distribution. Below we provide the definitions of the three
aggregation measures we selected: the Hoover index, the Gini
index, and the Theil index. These definitions rely on two
auxiliary definitions.

Let X = {x1, . . . , xn} be a set of values indexed in
ascending order (∀i ∈ 1 . . . n − 1, xi ≤ xi+1). The sum of
all these values will be called xtotal (Equation 1). The mean
of all values will be called x̄ (Equation 2).

xtotal =

n∑

i=1

xi (1)

x̄ =
xtotal

n
(2)

The Hoover index, defined in Equation 3, is one of the
simplest ways to assess inequality of wealth or income. Its
value is the ratio of incomes to take up from the richest
part of the population to redistribute to the poorest one so
that the incomes become perfectly equal. A Hoover index of
0 represents perfect equality, while a value of 1 represents
perfect inequality.

H(X) =
1

2

n∑

i=1

∣∣∣∣
xi

xtotal
− 1

n

∣∣∣∣ (3)

The Gini index, defined in Equation 4, provides a more
complex (but also more representative) way to assess inequal-
ity of income. The cumulative function of income distribution
is represented by a perfect diagonal if all entities in the
population would have the same income, and by a curve under
the perfect line otherwise. The Gini index is the value of the
surface area between the perfect line and the curve, divided
by the surface area below the perfect line.

G(X) = 1− 2

n− 1
·

n−

n∑

i=1

ixi

n∑

i=1

xi

(4)

Yet another index to assess inequality of income or wealth
is the Theil index. It is based on the Shannon entropy [5],
and is defined in Equation 5. Because the Theil index is not
bounded a priori, one cannot easily compare it with the two
aforementioned indices. To normalize the Theil index so that
it always returns a value between 0 and 1, we can apply the
normalisation function N described in Equation 6 to it.

T (X) =
1

n

n∑

i=1

(xi

x̄
· ln
(xi

x̄

))
(5)

N : t→ 1− e−t (6)

III. EXPERIMENTAL SETUP

A. Implementation

In order to obtain replicable and verifiable results, we do
not only need a good methodology. At least as important is
automated tool support that enables us to extract data from
the different data sources, compute the basic and aggregate
metrics based on this data, statistically analyse the obtained
metrics, and visually confirm the results.

To this extent, we use and extend our generic framework for
analysing open source software projects. This framework, pre-
sented in [6], has been developed in a modular and extensible
way, facilitating the implementation of new modules meeting
specific needs. Support for automatic extraction of data from
version repositories, mailing lists and bug tracking systems
was already built-in. The framework also supports generation
and visualisation of various types of software (project) metrics.

Joint Proceedings of MDSM 2011 and SQM 2011

75

For the specific purposes of this article, we added a new
module to compute activity distribution (i.e. the relative activ-
ity of each involved person), and different variants of activity
are supported. In particular, we implemented the three types
of activity defined in Section II-B. We also added a module
for computing aggregation indices. Among others, the Hoover,
Gini, and Theil index are currently supported. The existing
statistic analysis and visualisation modules can directly exploit
the information computed by the activity distribution module
and the aggregation index module to produce statistical output
representing the inequality indices.

B. Pareto principle

Many types of distributions in which people are involved
correspond to the so-called Pareto principle: roughly 80% of
the effects stem from approximately 20% of the causes [7].
This principle and the associated law have been observed
repeatedly in a variety of domains, including software evo-
lution [8], [9].

Answering the first research question of Section II-A boils
down to finding empirical evidence for the Pareto principle
in OSS project activity distribution. One should note the
difference between the Pareto principle and the related notion
of Pareto distribution [10]. While a Pareto distribution satisfies
the Pareto principle, the inverse is not true: a statistical
distribution may satisfy the Pareto principle without being
a Pareto distribution. In fact, many types of power law
probability distributions have been observed when analysing
human activity, and OSS project activity in particular, and the
Pareto distribution is only one them [7], [11]. Many power
law distributions satisfy the Pareto principle without being a
Pareto distribution.

The second research question of Section II-A corresponds to
determining whether the Pareto principle is present throughout
the entire life of the project, and whether it emerges, stabilises
or disappears over time.

C. Selected projects

We will analyse the distribution and evolution of activ-
ity on the following OSS projects: Brasero (projects.gnome.
org/brasero), Wine (www.winehq.org), and Evince (projects.
gnome.org/evince). They have been selected based on a variety
of factors: popularity, age size, availability of the necessary
data sources for analysis, and so on. Some of the characteris-
tics of the three selected projects are presented in Table I.

IV. EMPIRICAL STUDY

A. Brasero

Figure 1 shows the cumulative activity distribution in the
Brasero community, for three types of activity: commits made
to the version repository, mails sent to the mailing list,
and changes made to bug reports in the bug tracker. These
distributions are shown for the last version of Brasero we
analysed, namely the one available on November 2010. For the
previous versions, with the exception of the earliest versions,
we get similar results.

OSS project Brasero Evince Wine
main programming language C C/C++ C
versioning system git svn git
age (in years) 8 11 11
size (in KLOC) 107 580 2001
of commits 4100 4000 74500
of mails 460 1800 14000
bug reports 250 950 3300
commiters 206 204 1229
mailers 102 610 6879
bug reporters 386 961 2676

TABLE I
MAIN CHARACTERISTICS OF SELECTED OSS PROJECTS. THE REPORTED

VALUES HAVE BEEN COMPUTED FOR THE LAST VERSION, NOVEMBER
2010.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. Cumulative view of distribution of activity for Brasero (November
2010). The x-axis shows the cumulative percentage of active persons, ordered
from most to least active; the y-axis shows the cumulative percentage of
activity. The upper distribution (blue circles) corresponds to the commit
activity . The distribution with red squares corresponds to the mail activity.
The distribution with green triangles corresponds to the bug report change
activity.

These distributions illustrate that there always is a small
core team of persons that account for most of the activity. For
the commit activity, 3 out of 193 persons carry out about 70%
of the total number of commits. Even more striking is the fact
that a single developer accounts for 60% of the total number
of commits. For the mail activity, 7 out of 92 persons sent
about 60% of all the mails. For the bug report change activity,
5 out of 253 persons carry out about 40% of all bug report
changes.

While a detailed statistical analysis of the exact type of
distribution is left for future work, we do find clear support for
the Pareto principle: for the commit activity, 20% of the most
active committers contribute to about 85% of all commits. For
the mail (resp. bug report change) activity, 20% of the most
active committers contribute with about 75% of all mails (resp.
bug report changes).

Figure 2 compares the activity distribution between different
types of bug report activities available in the bug tracker:
submitting new bug reports, changing existing bug reports,
and commenting on existing bug reports. It provides similar

Joint Proceedings of MDSM 2011 and SQM 2011

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Cumulative view of distribution of activity for Brasero bug reports
(November 2010). The x-axis shows the cumulative percentage of active bug
reporters, ordered from most to least active; the y-axis shows the cumulative
percentage of bug report activity. The upper distribution (green triangles)
corresponds to bug report changes, the middle one (red squares) to bug report
submissions, and the lower one (blue circles) to bug report comments.

distributions as those found in Figure 1.
To answer research question 3 of Section II-A, we deter-

mined the overlap between different categories of activities
(committing, mailing, changing bug reports), by analysing
those persons that were involved in different activities. Fig-
ure 3 presents the results of this analysis. The triplet notation
(c%,m%, b%) used in each of the intersections corresponds
to the percentage of activity of a particular individual that
contributed to more than one activity category. For example,
there is a person with (61%, 11%, 20%), indicating that he
contributed to 61% of the total activity of the top 20 most
active committers, to 11% of the mail activity of the top 20
most active mailers, and to 20% of the bug report change
activity of the top 20 most active bug report changers.

As expected, we find a clear overlap of activity. The two
most active committers (out of the top 20) are also very active
mailers and bug report changers. In fact, the same two persons
account for 67% of the top 20 commit activity, 34% of the
top 20 mail activity and 27% of the top 20 bug report change
activity in Brasero. We also observe that three of the 20 most
active mailers are also active as top 20 bug report changers.

Note that the analysis process for obtaining the results in
Figure 3 was manual, which explains the restriction to the
top 20 most active individuals only. The reason is that it
is quite challenging to automate a reliable identification of
identities (logins, e-mail addresses, names) that correspond to
the same person. As can be seen in Figure 3, the total sum
of all contributors per activity category is 19 instead of 20
for committers and mailers. The reason for this is that, during
the manual analysis, we observed that two different identities
actually corresponded to the same individual (because he has
used two different e-mail addresses or logins over time).
Therefore, we merged the corresponding data into a single
entity.

To find out how the distribution of activity evolves over

Fig. 3. Overlaps of activity for the top 20 most active individuals of the
Brasero community for the three considered categories of activity (November
2010).

time, we used the econometric aggregation measures intro-
duced in Section II-C. Figure 4 displays the evolution of three
indices (Hoover, Gini and Theil) for the commits in Brasero.
Each data point in this figure corresponds to a different
distribution such as the ones shown in Figure 1. We observe
that, regardless of the index used, the values do not fluctuate a
lot, and tend to stabilise over time. For Gini, for example, we
see that the index remains most of the time between 0.8 and
0.9, indicating a very unequal distribution of commit activity
for all observed versions. This corroborates what we already
observed before: a low number of individuals contribute most
of the commits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Oct-06 Feb-07 Jun-07 Oct-07 Feb-08 Jun-08 Oct-08 Feb-09 Jun-09 Oct-09 Feb-10 Jun-10 Oct-10

Gini

Hoover

Theil (normalised)

Fig. 4. Comparison of three aggregation indices, Gini (blue straight line),
Theil (green dotted line) and Hoover (red dashed line), applied to the evolution
of commit activity for Brasero since October 2006.

Figure 5 shows how the Gini index differs across the
different activity categories we analysed over time for Brasero:
commits, mails and bug report changes. Again, the results
correspond to what we observed in the distributions of Fig-
ure 1. In all cases, the activity is unequally distributed across
individuals. This is especially the case for the commits (with
a single committer accounting for 60% of the total number
of commits), explaining the high value of the Gini index. For

Joint Proceedings of MDSM 2011 and SQM 2011

77

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0!)" 1230!*" -./0!*" 1230!+" -./0!+" 1230!," -./0!," 1230$!" -./0$!"

.4556/7"

58697"

:;"0".<8=>?7"

Fig. 5. Comparison of Gini indices over the evolution of Brasero commits
(blue straight line) and bug report changes (green dotted line) since October
2006, and mails (red dashed line) since September 2007.

mail activity and bug report change activity, there is also an
unequal distribution, but less flagrant than for the commits.
This explains why their Gini index curve is below the one for
the commit activity.

B. Evince

A study of the evolution of the Evince community provides
similar results. Perhaps an important difference is that the
development activity is a bit more equally distributed than
for Brasero (where we found a single person responsible for
60% of the total commit activity).

Figure 6 shows the cumulative activity distribution for three
types of activity for Evince: commits to the version repository,
mails sent to the mailing list, and changes made to bug
reports in the bug tracker. Evince has two top committers,
each accounting for 15% of the total commit activity. The
Pareto principle is also clearly present in Figure 6: 20% of
all committers contribute to 80% of the total commit activity,
20% of all mailers contribute to 70% of the total mail activity,
and 20% of all bug report changers contribute to 88% of the
total bug report change activity.

Figure 7 provides a different view on the same data,
obtained by manually analysing the top 20 of most active
persons for each activity category. As for Brasero, the 4 most
active persons of the Evince community contribute to each of
the three activity categories. Together, they account for 35%
of all top 20 commits, 26% of all top 20 mails, and 36% of
all top 20 bug report changes.

Figure 8 shows the evolution of the three econometric ag-
gregation indices on the evolution of Evince’s commit activity.
After a steep startup phase, we see that the indices start to
stabilise rapidly to a more or less stable value. This value
is lower than for Brasero, since the distribution of commit
activity is a bit more equally distributed for Evince.

Since Figure 8 reveals a similar pattern for all three indices,
in Figure 9 we restricted ourselves to the Gini index only.
We used it to compare the evolution of the commit, mail and
bug report activity of Evince. For each of these activities, we
observe that the Gini index stabilises rapidly to a more or less

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6. Cumulative distribution of activity for Evince (November 2010).
The distribution with blue circles corresponds to the commit activity. The
distribution with red squares corresponds to the mail activity. The distribution
with green triangles corresponds to the bug report change activity.

Fig. 7. Overlaps of activity for the top 20 individuals contributing to the
considered Evince activity categories (November 2010).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Apr-99 Dec-99 Aug-00 Apr-01 Dec-01 Aug-02 Apr-03 Dec-03 Aug-04 Apr-05 Dec-05 Aug-06 Apr-07 Dec-07 Aug-08

Gini
Hoover
Theil (normalised)

Fig. 8. Comparison of three aggregation indices applied to the evolution of
commit activity for Evince since April 1999.

Joint Proceedings of MDSM 2011 and SQM 2011

78

constant value, indicating that the way in which the community
is structured is fairly stable. For commits and mails, the high
Gini index indicates that the activity is not equally distributed
over the community members. For mails, the Gini index is
lower so this activity is more spread over different persons.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0,," -./0!!" -./0!$" -./0!%" -./0!&" -./0!'" -./0!(" -./0!)" -./0!*" -./0!+" -./0!," -./0$!"

1233456"

37486"

9:;"/<.2/5"1=7>;<6"

Fig. 9. Comparison of the evolution of Gini indices for Evince, since April
1999 for commits (blue straight line), since January 2005 for mails (red dashed
line), and since August 2004 for bug report changes (green dotted line).

C. Wine

A study of the Wine community reveals that the number of
persons involved is much bigger than for the other two systems
studied. This was already apparent from Table I.

Fig. 10. Cumulative distribution of activity for Wine (November 2010).
The distribution with blue circles corresponds to the commit activity. The
distribution with red squares corresponds to the mail activity. The distribution
with green triangles corresponds to the bug report change activity.

Figure 10 shows the cumulative activity distribution for
Wine committers, mailers and bug report changers. The most
active committer accounts for 13% of the total commit activity,
the two most active bug report changers each account for 13%
and 11% of the total change activity, respectively.

Concerning the mail activity of Wine, we observed that
there is one huge mailer wineforum-user@winehq.org
accounting for 48% of the total project mail activity. It turned
out that this mailer was in fact an automated transcription of
the discussion forum in the mail system. After excluding this
outlier from the mail activity data set, we found that the most
active mailer only accounts for 4% of the total mail activity.

Figure 10 also provides evidence for the Pareto principle.
11% of all committers account for a total of 90% of commits.
Similarly, a total of 13% of bug report changers account for
80% of all changes.

As a side note, we observed that the use of logins and
accounts in Wine was poorly structured. For example, many
committers have 4 or 5 email addresses that are rarely used.
This may be explained by the fact that the Wine community
is very open: it is very easy for new persons to become active
in this community.

Figure 11 shows the overlap of activity of the top 20 most
active persons in each activity category for Wine. Again,
we needed to merge two different identities corresponding
to the same individual into a single identity (explaining a
total sum of 19 instead of 20 for committers). In contrast
to the previously analysed projects, none of the 20 most
active persons contributed to three different activity categories.
Another major difference was that the core group of active
persons for Wine was significantly bigger, explaining the
smaller percentages we obtained for the most active persons
involved in a particular activity.

Fig. 11. Overlaps of activity of top 20 individuals contributing to the
considered Wine activity categories (November 2010).

Figure 12 compares the evolution of Wine’s commit activity
using three different aggregation indices. We observe that the
Gini and Theil indices are very high and continue to increase
over time, indicating a very unequal distribution of activity,
with a large group of inactive persons and a small group of
active persons.

Figure 13 displays the evolution of the three types of activity
for Wine over time, using the Gini index as aggregation
measure. For mail activity, the Gini index is initially much
lower than for the commit activity, but after a while its
value starts to increase to comparable values. This high value
is largely explained by the presence of a single artificial
mailer (corresponding to the wineforum). For the bug report
change activity, we also observe an increasing growth of
the Gini index, revealing an increasing inequality of activity
distribution over time.

Joint Proceedings of MDSM 2011 and SQM 2011

79

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nov-98 Nov-99 Nov-00 Nov-01 Nov-02 Nov-03 Nov-04 Nov-05 Nov-06 Nov-07 Nov-08 Nov-09 Nov-10

Gini

Hoover

Theil (normalised)

Fig. 12. Comparison of three aggregation indices applied to the evolution
of commit activity for Wine since November 1998.

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

-./0,+"-./0,," 1230!!" 1230!$" 1230!%" 1230!&" 1230!'" 1230!(" 1230!)" 1230!*" 1230!+" 1230!," 1230$!"

2.44536"

47586"

9:;"<=>.<3"2?7@;=6"

Fig. 13. Comparison of the evolution of Gini indices for Wine, since
November 1998 for commits (blue straight line), since September 2005 for
mails (red dashed line), and since November 2005 for bug report changes
(green dotted line).

V. DISCUSSION

The results shown in the previous section provide strong
evidence for the Pareto principle. The activity of contributors
to open source projects is not equally distributed: in all three
studied projects, a core group of persons appears to carry
out the majority of the work. This kind of behaviour may
be related to the way in which open source developer com-
munities are structured. According to [12], a typical structure
is the so-called onion model. It is followed, among others,
by the community in charge of the Linux kernel. In such a
layered model, there is a single responsible of the project,
surrounded by a small core team of software developers,
around which there is a bigger layer of active developers,
followed an even bigger layer of occasional developers. The
last layer constitutes those users of the project that do not
contribute anything themselves. The more to the center of the
onion, the more active a developer, and conversely. Although
many variants of this layered model exist, the general idea
behind it remains the same.

Our empirical analysis showed the usefulness of applying
results from econometry to the analysis of the activity in
software ecosystems. We used three different aggregation

indices of statistical dispersion, the Hoover index, Theil index
and Gini index. They all gave similar results, i.e., they tend to
evolve in the same way for a given OSS project’s history.
This probably implies that one can freely choose any of
these indices to assess the evolution of activity distribution.
This corresponds to the findings of Vasilescu et al. [13] that
compared different aggregation measures applied to software
metrics and observed a strong correlation between them.

For all three OSS projects we studied, the distribution of
activity was initially more equally distributed, but over time
the activity tends to become concentrated in a core group of
persons that is significantly more active than the others. This
knowledge is quite important, as the sudden disappearance
of some members of the core group may have an important
impact on the future of the software project. In other ways,
we found empirical evidence of the so-called bus factor, the
total number of key persons that would, if they were to be
hit by a bus, lead the project into serious problems. Note that
this was less the case for Wine, by far the biggest of the three
projects, where the activity was more equally distributed over
the most active committers than for the other two projects.

For all types of activities, we found a long tail of persons
whose activity rate can be largely neglected: during the entire
lifetime of the project, they contributed once or twice to one of
the considered project activity categories (commits, mails and
bug reporting). We also observed that, except for Wine, the
most active project members take part in all these activities.

As a potential threat to validity, during our experiments,
we encountered some problems to determine which persons
contribute to different activity categories (Figures 3, 7, 11).
This was mainly a manual and error-prone process that took a
lot of effort. In the future we intend to automate this process.
To achieve this, an efficient identity merging algorithm is
needed that allows one to identify matches between entities
participating in different data sources. But for poorly struc-
tured projects such as Wine this may still be quite problematic
and difficult to automate. We have studied this topic in more
detail in [14].

VI. RELATED WORK

Some researchers focus on the study of core teams [15], [16]
and the inequality of distribution in software development [13],
[3], [4]. Our work distinguishes itself from that of most other
researchers involved in mining software repositories [17], [18],
[19], [20], [21], who tend to focus on the analysis of the
software development artefacts (e.g. source code, bug reports,
and so on) and the dependencies between those. Instead, our
main interest goes to the individuals involved in creating
and modifying those artefacts, as well as the interaction and
communication between those individuals.

Because the data related to software development activity
is dispersed and incomplete, and due to the heterogeneity of
data formats used in software development, an important effort
must be made in order to collect and represent all available
data in a uniform way [22], [23]. In previous work [14], we
discuss the need to merge identities (logins, e-mail addresses,

Joint Proceedings of MDSM 2011 and SQM 2011

80

names) across different data sources, and compare existing
identity merging algorithms that try to achieve this.

Numerous studies have found evidence for the Pareto
principle (or, more generally, a power law distribution) in
human-related networks [24]. For instance, evidence for a
power law distribution has been found in the number of
citations in papers [25], the number of sexual partners in
human societies [26], and many more. In software evolution,
Herraiz founds a double Pareto distribution in software size [8]
(using different measures of size). Mitzenmacher generalized
this observation for file system distributions [27]. Hunt and
Johnson demonstrated [28] that most of the data available in
Sourceforge, a software forge for free/open source software2,
follows a Pareto distribution.

VII. CONCLUSION

In this article, we studied and compared the evolution of
OSS project activity. Following the GQM paradigm, our main
research goal was to understand how activity is distributed
in OSS projects over time. We considered three categories of
activity: committing data and code, sending mail and changing
bug reports. We extracted and analysed such activity based on
three different types of data sources: version repositories, mail-
ing lists, and bug tracking data. We carried out an empirical
analysis over three different long-lived OSS projects for which
this data was available: Brasero, Evince and Wine.

For all three studied projects and for all considered activity
categories, we found evidence for the Pareto principle. The
activity distributions showed a strong inequality in the activity
of different persons involved in an OSS project: there is a small
group of very active members, and a much bigger group of
largely inactive members. For two of the three studied projects,
the core group of most active members takes part in more than
one activity category. In Wine this was much less the case.

In order to gain understanding in how OSS projects evolve,
we studied this inequality of distribution over time. To do
so we relied on statistical techniques borrowed from econo-
metrics. We applied three economic aggregation measures
(the Hoover, Gini and Theil index). The evolution of activity
distribution appeared to follow two kinds of behaviour. The
first one is typical of a totally new project: at the beginning,
the activity is more or less equally distributed, but quickly
we observe a tendency towards a more unequal distribution
where the activities become more concentrated in a small
core team. In the second type of observed behaviour, the
activity distribution is already imbalanced since the beginning
of the project, and this imbalance continues to become more
pronounced over time.

Studying who are the most active persons involved in each
type of activity, we discovered that these persons are often very
active in different activity categories. For Brasero and Evince,
the two projects in which we observed this behaviour, the
project is led by a small group of very active members wearing
several hats at the same time. We have not yet been able to

2http://sourceforge.net/

identify the cause of overlaps between activities, because our
definitions for measuring activity need to be refined further.

While Brasero and Evince show a similar evolution of
activity distribution and similar overlaps between most active
persons’ activity categories, the Wine software project appears
to have a different behaviour. It has a significantly bigger
community, there is significantly less overlap between activity
categories, and we observed a higher inequality in the activity
distribution. We can only speculate as to the causes of this.

VIII. FUTURE WORK

While the work presented in this article is very promising,
many challenges lay still ahead of us.

We intend to carry out a detailed statistical study of the
activity distributions we presented in this article. In particular,
we would like to find out which kind of statistical distribution
they represent. Can we find evidence for power laws, Pareto
distributions or other types of statistical distributions?

We also intend to analyse the activity distribution for
subgroups and subprojects, and study how the structure and
size of the project community and the software itself affects
the type of activity distribution. Another aspect worthy of
further study is the evolution of the activity of individuals
involved in OSS projects. Can we find evidence for a learning
curve for newcomers in a project? Does the activity of core
members increase or decrease over time? Can we identify
certain typical evolution patterns of activity?

Within an OSS project we would like to study the statistical
correlation between different characteristics such as software
quality, stakeholder activity, and software size. We also want
to study how each of these characteristics correlate across
different projects.

The notions of activity studied in this article, and the metrics
used for computing them, are perhaps too high-level. We could
define and use more fine-grained and more specific definitions,
in order to get a more detailed picture of how project members
interact, and in order to come up with new effort estimation
and effort prediction models based on the activity of project
members.

It remains an open question whether the type of activity
distribution we observed in our empirical study is specific to
open source projects. Our hypothesis is that this is indeed the
case. To verify this hypothesis, we would like to repeat our
experiment on proprietary, closed source software projects.
The main challenge here it to get access to such data, in
particular, the evolutionary data related to the activities of the
developers involved in these projects.

Finally, the long term goal is to provide assistance or
guidance, through interactive or automated tool support, for
all stakeholders involved in an (open source) software project.
Users may rely on information such as the bus factor to decide
on using a particular open source software product. Developers
may use it to identify the core developers and influential
persons. Project managers may wish to control the activity
distribution, to estimate or predict the effort, or to reduce the
bus factor risk through a better distribution of activity.

Joint Proceedings of MDSM 2011 and SQM 2011

81

ACKNOWLEDGMENT

The research is partially supported by (i) F.R.S.-FNRS
FRFC project 2.4515.09 “Research Center on Software Adapt-
ability”; (ii) research project AUWB- 08/12-UMH “Model-
Driven Software Evolution”, an Action de Recherche Con-
certée financed by the Ministère de la Communauté française
- Direction générale de l’Enseignement non obligatoire et de
la Recherche scientifique, Belgium.

REFERENCES

[1] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi,
“Empirical studies of open source evolution,” in Software Evolution,
T. Mens and S. Demeyer, Eds. Springer, 2008, pp. 263–288.

[2] V. R. Basili, “Software modeling and measurement: the
goal/question/metric paradigm,” College Park, MD, USA, Tech.
Rep., 1992.

[3] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Comparative analysis
of evolving software systems using the Gini coefficient,” in Proc. Int’l
Conf. Software Maintenance, 2009, pp. 179–188.

[4] A. Serebrenik and M. van den Brand, “Theil index for aggregation of
software metrics values,” in IEEE International Conference on Software
Maintenance. Los Alamitos, CA, USA: IEEE Computer Society, 2010,
pp. 1–9.

[5] H. Theil, Economics and information theory. Center Math. Stud.
Business Econ., Univ. Chicago, 1967.

[6] M. Goeminne and T. Mens, “A framework for analysing and visualising
open source software ecosystems,” in Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE), ser. IWPSE-EVOL ’10.
New York, NY, USA: ACM, 2010, pp. 42–47.

[7] M. Newman, “Power laws, Pareto distributions and Zipf’s law,” Con-
temporary Physics, vol. 46, no. 5, pp. 323–351, 2005.

[8] I. Herraiz, “A statistical examination of the evolution and properties of
libre software,” Ph.D. dissertation, Universidad Rey Juan Carlos, 2008.

[9] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing email social networks,” in MSR ’06: Proceedings of the 3rd IEEE
International Working Conference on Mining Software Repositories,
A. Press, Ed., Shanghai, China, May 2006.

[10] M. Hardy, “Pareto’s law,” The Mathematical Intelligencer, vol. 32, pp.
38–43, 2010, 10.1007/s00283-010-9159-2.

[11] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distri-
butions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703,
2009.

[12] M. Antikainen, T. Aaltonen, and J. Vaisanen, “The role of trust in
OSS communities - case Linux Kernel community,” in Open Source
Development, Adoption and Innovation. Springer, Jun. 2007, pp. 223–
228.

[13] B. Vasilescu, A. Serebrenik, and M. van den Brand, “Comparative
study of software metrics aggregation techniques,” in BENEVOL 2010,
December 2010.

[14] M. Goeminne and T. Mens, “A comparison of identity merging algo-
rtihms for open source software ecosystems,” Journal on Systems and
Software. [Submitted], 2011.

[15] G. Robles, J. M. Gonzalez-Barahona, and I. Herraiz, “Evolution of
the core team of developers in libre software projects,” in MSR ’09:
Proceedings of the 6th IEEE International Working Conference on
Mining Software Repositories. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 167–170.

[16] S. Minto and G. C. Murphy, “Recommending emergent teams,” in
Proceedings of the Fourth International Workshop on Mining Software
Repositories. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 5–.

[17] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger, “Analysing software
repositories to understand software evolution,” in Software Evolution,
T. Mens and S. Demeyer, Eds. Springer, 2008, pp. 37–67.

[18] S. Diehl, H. C. Gall, and A. E. Hassan, Eds., Special Issue on Mining
Software Repositories, ser. Empirical Software Engineering, vol. 14,
no. 3, Jun. 2010.

[19] R. Abreu and R. Premraj, “How developer communication frequency
relates to bug introducing changes,” in IWPSE-Evol ’09: Proceedings of
the joint international and annual ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol) workshops.
New York, NY, USA: ACM, 2009, pp. 153–158.

[20] D. M. German, “Mining cvs repositories, the softchange experience,”
in Proceedings of the First International Workshop on Mining Software
Repositories, Edinburg, Scotland, UK, 2004, pp. 17–21.

[21] W. Poncin, A. Serebrenik, and M. van den Brand, “Process mining
software repositories,” in CSMR ’11: Proceedings of the European
Conference on Software Maintenance and Reengineering., 2011.

[22] I. Herraiz, G. Robles, and J. M. Gonzalez-Barahona, “Research friendly
software repositories,” in IWPSE-Evol ’09: Proceedings of the joint
international and annual ERCIM workshops on Principles of software
evolution (IWPSE) and software evolution (Evol) workshops. New
York, NY, USA: ACM, 2009, pp. 19–24.

[23] I. Herraiz, D. Izquierdo-Cortazar, and F. Rivas-Hernández, “Flossmet-
rics: Free/libre/open source software metrics,” in CSMR ’09: Proceed-
ings of the 2009 European Conference on Software Maintenance and
Reengineering. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 281–284.

[24] M. E. J. Newman, “The Structure and Function of Complex Networks,”
SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[25] S. Redner, “How popular is your paper? An empirical study of the
citation distribution,” The European Physical Journal B, vol. 4, p. 131,
1998.

[26] F. Lilijeros, C. Edling, L. Amaral, E. Stanley, and Y. åberg, “The web
of human sexual contacts,” Nature, vol. 411, pp. 907–908, 2001.

[27] M. Mitzenmacher, “Dynamic models for file sizes and double Pareto
distributions,” Internet Mathematics, vol. 1, pp. 305–333, 2002.

[28] F. Hunt and P. Johnson, “On the Pareto distribution of Open Source
projects,” in Proceedings of Open Source Software Development Work-
shop, Newcastle, UK, 2002.

Joint Proceedings of MDSM 2011 and SQM 2011

82

Joint Proceedings of MDSM 2011 and SQM 2011

Index of Authors

Assmann, Uwe, 8

Barbier, Franck, 14
Bartolomei, Thiago, 21
Berre, Arne J., 14
Bode, Stephan, 17
Bodsberg, Nils Rune, 4
Boldyreff, Cornelia, 48
Bouwers, Eric, 64
Brönner, Ute, 4

Capiluppi, Andrea, 48
Couto, Luís, 64

Dautovic, Andreas, 29
Derakhshanmanesh, Mahdi, 21

Erdmenger, Uwe, 15

Ferreira, Miguel, 64
Frey, Sören, 12
Fuhr, Andreas, 15, 21
Fukazawa, Yoshiaki, 38

Goeminne, Mathieu, 74
Goerigk, Wolfgang, 12

Hasselbring, Wilhelm, 12
Heidenreich, Florian, 8
Henry, Alexis, 14
Herget, Axel, 15
Horn, Tassilo, 15

Johannes, Jendrik, 8

Kaiser, Uwe, 15
Knoche, Holger, 12
Koch, Peter, 21
Konrath, Mathias, 21
Krause, Harald, 12
Kubo, Atsuto, 38
Köster, Sönke, 12

Lehnert, Steffen, 17

Lämmel, Ralf, 21

Mens, Tom, 74
Mohagheghi, Parastoo, 14

Oldevik, Jon, 4
Oliveira, José Nuno, 64
Olsen, Gøran K., 4

Plösch, Reinhold, 29
Porembski, Marcus, 12

Reimann, Jan, 8
Riebisch, Matthias, 17
Riediger, Volker, 15

Sadovykh, Andrey, 14
Saft, Matthias, 29
Seifert, Mirko, 8
Stahl, Thomas, 12
Stammel, Johannes, 56
Steinkamp, Marcus, 12

Teppe, Werner, 15
Theurer, Marianne, 15
Trifu, Mircea, 56

Uchiyama, Satoru, 38
Uhlig, Denis, 15

van Hoorn, André, 12

Washizaki, Hironori, 38
Wende, Christian, 8
Werner, Christian, 8
Wilke, Claas, 8
Winnebeck, Heiko, 21
Winter, Andreas, 15
Wittmüss, Norman, 12
Worms, Carl, 28

Zillmann, Christian, 15
Zimmermann, Yvonne, 15

	Preamble
	Cover
	Editors' addresses

	Contents
	Proceedings of MDSM 2011
	Preface
	Paper Session 1
	Model-Driven Migration of Scientific Legacy Systems to Service-Oriented Architectures
	Model-driven Modernisation of Java Programs with JaMoPP

	Project Presentations
	DynaMod Project: Dynamic Analysis for Model-Driven Software Modernization
	REMICS Project: Reuse and Migration of Legacy Applications to Interoperable Cloud Services
	SOAMIG Project: Model-Driven Migration towards Service-Oriented Architectures

	Paper Session 2
	Comprehensive Model Integration for Dependency Identification with EMFTrace
	Combining Multiple Dimensions of Knowledge in API Migration

	Proceedings of SQM 2011
	Preface
	Invited Keynote: Software Quality Management – quo vadis?
	Paper Session 1: Quality in Design
	Automated Quality Defect Detection in Software Development Documents
	Design Pattern Detection using Software Metrics and Machine Learning
	Using the Tropos Approach to Inform the UML Design: An Experiment Report

	Paper Session 2: Process
	Tool-Supported Estimation of Software Evolution Effort in Service-Oriented Systems
	Preparing for a Literature Survey of Software Architecture using Formal Concept Analysis
	Evidence for the Pareto principle in Open Source Software Activity

	Index of Authors

