
Tool-Supported Estimation of Software Evolution Effort
in Service-Oriented Systems

Johannes Stammel and Mircea Trifu
FZI Forschungszentrum Informatik

10-14 Haid-und-Neu Str., Karlsruhe, Germany
{stammel, mtrifu}@fzi.de

Abstract

Existing software systems need to evolve in order to keep
up with changes in requirements, platforms and technolo-
gies. And because software evolution is a costly business,
an early and accurate estimation of evolution efforts is
highly desirable in any software development project. In
this paper we present KAMP, a tool-supported approach,
based on change impact analysis, enabling software archi-
tects to express a potential design for a given change re-
quest at the architecture level and to accurately estimate the
evolution effort associated with its implementation in source
code. The approach is also used to compare alternative de-
signs before carrying out the implementation work. We ap-
ply the KAMP approach on an enterprise SOA showcase
and show how it supports the predictable and cost-effective
evolution of this software system.

Keywords: software evolution, effort estimation, archi-
tecture, change impact analysis.

1 Introduction

In order to keep service-oriented software systems up-to-
date with changes in requirements, platforms and technolo-
gies they need to evolve. Evolution is very common and in-
volves changes to the software system and its architecture.
However, architecture changes may have significant impact
on software quality attributes such as performance, reliabil-
ity and maintainability, which is why it is highly desirable
to be able to predict these quality impacts.

As a result, the topic of quality impact prediction for
evolving service-oriented software systems has been ad-
dressed in various research initiatives, such as the Q-
ImPrESS [3] research project. The project provides tool-
supported methods that predict and analyze quality at-
tributes on architecture level using formalized architecture
models.

The project considers multiple quality attributes, i.e.,
performance, reliability and maintainability, that are con-
flicting to each other and provides support for balancing
them and exploring trade-offs. This paper describes the
maintainability prediction approach within the Q-ImPrESS
project.

Within this paper, we focus on three types of evolu-
tion scenarios. The first type is the requirement of new or
changed functionality, i.e., a new service needs to be imple-
mented. The second type is a changed runtime environment,
e.g., a new middleware platform, that has to be supported.
And the third type is a changed usage profile, e.g., system
has to cope with more users without impaired performance.

The implementation of an evolution scenario generates
costs and for a good project management it is important to
have control over costs and efforts related to evolution. For
this reason within the context of the Q-ImPrESS project,
we developed the KAMP (Karlsruhe Architectural Main-
tainability Prediction) approach, a tool-supported approach,
based on change impact analysis, enabling software archi-
tects to express a potential design for a given change request
at the architecture level. Its goal is to estimate the evolution
effort associated with its implementation in source code.

The approach is based on architecture modeling using
views for static structure, behavior and deployment of ser-
vices. A service is represented as a deployed component
providing service operations to its clients.

Note that evolution effort does not represent only im-
plementation effort. KAMP is able to cover different ef-
forts for different activities, utilizing the information an-
notated in the architecture models. In particular, KAMP
considers management efforts for (re-)deployment and (re-
)configuration.

Section 2 discusses foundations about estimation of soft-
ware evolution efforts, maintainability and change requests.
In Section 3 we present the KAMP approach. Section 4 de-
scribes the results of an initial case-study applying KAMP.
Section 5 summarizes the related work, while section 6 con-
cludes this paper.



2 Foundations

2.1 Effort Estimation

Nowadays, effort estimation is an essential part during
planning and execution of software development projects.
Most projects have a limited budget, therefore a careful
planning is necessary to avoid running out of budget. Ef-
fort estimation helps to detect resource problems early and
allows for timely corrections, where necessary.

Effort estimation approaches derive their estimation val-
ues from planned project scope and from anticipated com-
plexity. In addition most approaches have plenty of input
parameters.

Existing effort estimation approaches support different
project phases. There are approaches, which focus on the
requirements engineering phase, others aim at estimation
during the design phase or the implementation phase.

The input parameters depend on the supported project
phase and are determined by the project artifacts available
at that point, i.e., during the requirement engineering phase
the inputs come from the requirements document, during
the design phase the inputs are based on design specifica-
tion and during the implementation phase data and progress
values of the running project can be used. The earlier the
estimation is done the more imprecise the available data is
and the less confident the estimations are.

So, in order to get valid results from estimation ap-
proaches the input parameters need to be calibrated to fit the
given project context. This is done with data derived from
similar projects for example by using a project database.
However, such a database is not always available at the be-
ginning. Nevertheless, the input parameters have to be read-
justed while the project is progressing in order to fit the ac-
tual circumstances.

Therefore estimation should be established as a continu-
ous task during the project life cycle. Since the architecture
is one of the central artifacts for managing software devel-
opment projects, effort estimation should be closely aligned
with it, and support for seamless continuous effort estima-
tion during the architecture design phase is highly desirable.

2.2 Maintainability Definition

Maintenance efforts represent a significant part of the to-
tal effort of a software development project. During the life-
time of a system, the system has to evolve in order to be still
usable.

With respect to [12], we define maintainability as ”The
capability of a software product to be modified. Modifi-
cations may include corrections, improvements or adapta-
tion of the software to changes in environment, and in re-
quirements and functional specifications”. We focus our

approach on the last part of the maintainability definition
which is covering the evolution aspect.

Maintainability is strongly associated with the effort re-
quired to implement occurring change requests, which is
why, for now, the KAMP approach is concerned with esti-
mating maintenance efforts.

2.3 Change Requests

A change request is a particular situation when the soft-
ware system needs to be modified. Since an architecture
can not be arbitrarily flexible and implementing flexibility
costs time and money, it is difficult to make a general state-
ment about maintainability. Even patterns and anti-patterns
are not clearly distinguishable on architecture level without
relation to change requests. In order to reduce the effort
for change requests that need to be implemented, one needs
to anticipate which changes occur in the future. Overall our
approach helps with estimating the efforts necessary for im-
plementing anticipated change requests.

Within this paper we distinguish several kinds of change
requests, based on their causes or stimuli. There are require-
ment changes regarding functionality, that request a new or
altered functionality. Another stimulus is the evolution of
the technical environment, which the software system de-
pends on, e.g., changes in the platform (operating system,
middleware). Another stimulus is the evolution of a COTS
product, used by the software system, i.e., API changes of
underlying libraries. Other stimuli arise from changed user
profiles, (e.g., increased number of users, different usage
behaviors), which require changes in order to fulfill non-
functional aspects like performance, reliability, and secu-
rity.

Besides the stimulus, the effect of a change request plays
an important role in KAMP, since a change request needs
to be translated into concrete work tasks. The effect is
represented by all tasks and subtasks that lead to the ful-
filment of the change request, including follow-up tasks
due to change propagation. These tasks can affect various
kinds of effort types. This comprises in the first place ef-
forts for implementation (code changes), but also efforts
for (re-)configuration, (re-)compilation, (re-)testing, (re-
)deployment, data handling (modeling, conversion, migra-
tion), components-off-the-shelf (COTS) handling (survey,
selection, tailoring, configuration, replacement), as well as
efforts for retaining and increasing the internal code quality
(refactoring, anti-pattern detection and removal).



3 The KAMP Approach

3.1 Overall

The Karlsruhe Architectural Maintainability Prediction
(KAMP) approach aims to enable effort estimation for
change requests based on architecture models.

Given a change request the approach derives from the ar-
chitecture model a change description, i.e., work plan. This
work plan contains the tasks, that are necessary for imple-
menting the change request, coupled with tasks related to
other activities like (re-)configuration, (re-)deployment of
components, etc.

In order to get effort estimates, KAMP provides sup-
port to determine the complexity for each task in the work
plan. A bottom-up estimation approach is used to map
the complexity of each task to corresponding time effort.
Overall KAMP combines a top-down derivation phase for
creating the work plan with a bottom-up estimation phase.
Note, in the current state of the approach the bottom-up es-
timates have to be provided manually by the user, whereas
the workplan derivation is automated as is explained in the
following sections.

The level of detail and granularity of the work plan tasks
starts high, covering abstract tasks, and is then stepwise re-
fined, by gathering additional information from the user and
from architecture models, following a guided procedure.
On the one hand the level of detail can be refined by going
from the component level to the level of single service op-
erations, while on the other hand the work plan description
can be extended by following up on change activities that
are detected using a semi-automated change impact analy-
sis.

3.2 Inputs and outputs

KAMP takes as inputs 1) the description of the software
architecture and 2) the description of the change request.

For the description of the software architecture the user
creates an instance of Q-ImPrESS Service Architecture
Meta-Model (SAMM) [2] that provides all elements of a
component-based and service-oriented software architec-
ture.

The architecture model can be created manually or, given
certain conditions, retrieved automatically from source
code by applying the Q-ImPrESS Reverse Engineering tool
chain. A set of heuristics for detection of structural archi-
tecture parts, such as component boundaries and interfaces,
as well as the statical analysable behaviour, is provided. In
the project context of Q-ImPrESS these heuristics are appli-
cable to Java and C/C++ code.

As an intermediate result of the reverse engineering, we
obtain a Generalized Abstract Syntax Tree (GAST) and a

mapping between the architecture model and the GAST.
The GAST model can be used to calculate code and de-
sign metrics, which allows for an automatic determination
of complexity metrics for corresponding architecture ele-
ments.

The description of a change request contains a name and
an informal description of the stimulus, referring to the re-
quirements that are affected by the change request. More-
over it covers the kind of stimulus (functional requirement
change, technical environment change, COTS evolution, us-
age profile change).

The Q-ImPrESS SAMM allows for specifying alterna-
tive and sub-alternative models for various sequences of
change requests, leading to a tree-like hierarchy of architec-
tural models, each path within this hierarchy starting from
the root model representing an evolution alternative of the
software architecture. Each element in the tree represents a
an architecture alternative, that consists of models for each
supported architectural view, i.e., repository, system struc-
ture, behaviour, hardware environment, deployment, and
quality annotations. Each subnode in the tree is basically
a copy of its parent alternative with some modifications.

In order to specify how the change request is mapped to
the architecture model, the user creates a sub-alternative of
the actual system model and adapts the architecture model
according to the change request.

The output of KAMP is a work plan, containing the
change tasks, annotated with complexity values and effort
estimates. Work plans can be compared, by comparing the
structure or by comparing the aggregated complexity and
effort values.

3.3 Work plan model

A work plan contains a list of activities or tasks. The
types of activities are defined in a meta model. An activity
refers to an architectural element and a basic activity.

The Q-ImPrESS Service Architecture Meta-Model
(SAMM) [2] specifies the architecture elements like Com-
ponent, Interface, Interface Port, Operation, Parameter,
Datatype, etc.

Basic activities are add, modify and remove. Add
means that the architecture element has to be newly im-
plemented, modify means that the element has to be modi-
fied, and remove means that the element needs to be deleted
from the code. For example the work plan can contain ac-
tivities like ”Modify Component A”, ”Add Operation B”,
or ”Remove Parameter C”.

Besides these implementation related work plan activi-
ties the work plan metamodel provides activities that cover
other effort types related to configuration, testing and de-
ployment. Provided activities are ”Modify configuration”,
”Run Tests”, ”Deploy components” and ”Update deployed



components”.

3.4 Work plan derivation

The last section presented the ingredients of the work
plan. Let us now have a look at how KAMP derives work
plan instances. The work plan derivation in our approach
is achieved in two ways. First, the work plan can be de-
rived from changes in the architecture model, and second,
the work plan can be derived by following a wizard dialog.
The following paragraphs explain both ways in detail and
compare them.

Derivation from architecture model changes The first
way of work plan derivation is by calculating tasks from
changes in the architecture model. In this way the user cre-
ates a copy of the architecture model and changes it accord-
ing to the selected change request. KAMP calculates the
differences from the changed architecture model to the base
architecture model and translates the differences into work
tasks. The work plan is filled with translated work tasks.

For example lets assume a client-server-database appli-
cation. Now the software architect decides to introduce a
cache between the server and the database. The architect
creates a sub-alternative model and inserts the cache into the
architecture model and fixes the interfaces and connectors
using a model editor. Then, KAMP calculates the differ-
ences and creates a work plan containing an activity ”Add
Component Cache”. Additionally the changes to interfaces
and connectors are retrieved and represented by correspond-
ing work plan activities.

Technically, the SAMM as well as the workplan meta-
model are implemented using the EMF Ecore technology.
Therefore we use EMFDiff to calculate a diff model be-
tween instances of SAMM. We defined a mapping between
the elements of the diff model to corresponding workplan
activities and wrote a transformation, that creates the work-
plan out of it.

Derivation by wizard dialog The second way of deriva-
tion is by following a wizard dialog. As the first step of
this way the user determines the primary changes, i.e., ar-
chitecture elements that need to be changed representing a
starting point for the change. On the first wizard page the
user marks the components that have to be added, modi-
fied or removed. On the second and third wizard pages the
user refines this information to interface port and operation
level, thus telling KAMP what interface ports or operations
of the selected components need to be added, modified and
removed.

For example, if a functionality in a user interface has to
be modified, the user points out the components that build
up the user interface and marks them with ”modify”. On the

second and third wizard page the user marks the interface
ports and operations of the user interface component that
need to be modified.

Outgoing from this starting point the approach helps
with identifying follow-up changes. For example, the com-
ponents that are connected to the user interface components
that implement the business logic of the functionality have
to be changed due to the changes of the user interface com-
ponents. Computing follow-up tasks is necessary because
it ensures that all locations depending on a change, such
as an interface signature or a behavior change, are changed
consistently. If a change can not be kept locally it will prop-
agate to other system parts.

The KAMP tool suite uses a wizard dialog to query the
user to declare the primary changes and mark whether in-
terface changes will propagate. The dialog guides the user
stepwise through connected system parts to gather follow-
up changes.

Let’s briefly compare both derivation approaches. The
benefit of using derivation from architecture model changes
is that the user, i.e., software architect, can use a simple
and familiar architecture model editor. However, there are
changes that do not affect the architecture and that can not
be derived by changing the architecture model. On the other
hand the wizard dialog is something new to the user but can
handle activities that are not visible by changing the archi-
tecture model. Therefore we recommend a hybrid usage of
wizard guidance and architecture modeling.

3.5 Bottom-Up Effort Estimation

The work plan contains the split-up work activities.
KAMP uses a bottom-up effort estimation approach for
gathering the time effort estimates. In other words, the de-
velopers are asked to give time effort estimates for each
work activity. KAMP aggregates all effort estimates to a
single number at the work plan level.

The benefit of using bottom-up estimation is that a cali-
bration of model parameters from historical data is not nec-
essary since people consider their own productivity implic-
itly when giving estimates. Nevertheless, the approach is
open to be connected to parametric estimation approaches
such as Function Point or COCOMO.

4 Initial Case-Study

We implemented the approach as tool in the Eclipse en-
vironment and integrated it with the rest of Q-ImPrESS tool
chain. In order to show the applicability of the approach we
used KAMP on a case study. For this purpose we used the
Enterprise SOA showcase, [10], that is one of the demon-
stration systems of the Q-ImPrESS project.



CRM

Simulator

CRMSimulatorInterface

PDM

Simulator

PDMSimulatorInterface

Pricing

Simulator

PricingSimulatorInterface

Demo

Application

DemoApplicationInterface

Figure 1. UML component diagram of Enter-
prise SOA showcase

4.1 System description

The Enterprise SOA showcase consists of several small
software systems implementing basic processes in the area
of Supply Chain Management and Order Management. Its
focus lies on the interaction between those software systems
without providing full implementation of the various pro-
cesses. Also components for simulating the usage of par-
ticular software systems are provided. Most of the systems
consist of a database, a web front-end and web services for
remote access.

The core systems of the Enterprise SOA showcase are
CRM (Customer Relationship Management System), PDM
(Product Data Management System), Pricing Engine and
Inventory System. The simulation systems are Order Simu-
lator, Shipment Simulator and Simulation Manager. Finally
there is a Demo application for retrieving information from
CRM, PDM and Pricing through Web Services.

A part of the system as UML component diagram is
shown in Figure 1.

4.2 Architecture models

Our project partner, Itemis, that is responsible for the
showcase, created an architecture model of the system. We
refer to this model as the main alternative of the system.
For the Enterprise SOA showcase we collected a set of
change requests, which are anticipated during system evo-
lution. For illustration purposes in this paper we selected
one change request that is described in the following. For
this change request a subalternative model has been cre-
ated in the architecture model evolution hierarchy of the
Q-ImPrESS tool chain.

CRM

Simulator

CRMSimulatorInterface

PDM

Simulator

PDMSimulatorInterface

Pricing

Simulator

PricingSimulatorInterface

Demo

Application

DemoApplicationInterface

Cache

CacheInterface

Figure 2. UML component diagram of Enter-
prise SOA showcase with cache

4.3 Change request: Introduce Cache to Demo
Application

Change request specification Due to performance issues
with respect to the Demo application the following change
request arises. A cache should be inserted. The Demo appli-
cation manager should ask a cache for query results. Only
in case of cache miss it should submit requests to the web
services of the other subsystems CRM, PDM and Pricing.

Scenario modelling KAMP is utilized to determine a
work plan for this change request. Therefore a subalter-
native architecture model is created and adapted according
to the change request.

Here we list the steps done in the model editor: The
cache component (Cache) is inserted into the repository. A
cache interface (CacheInterface) with three operations (get-
QueryResult, putQueryResult, clear) for putting and getting
of values and clearing the cache is specified in the reposi-
tory. The cache component gets a provided interface port
of type CacheInterface. A subcomponent instance of type
Cache is created. A required interface port of type CacheIn-
terface is added to the Demo application manager compo-
nent. A connector is drawn that links provided and required
interface ports of Cache component and Demo application
manager component.

Besides the structural changes the architects adapt the
dynamics. As a result the provided operation queryPrice
of the Demo application manager is modified. The control
flow is adapted by inserting a branch action to differentiate
the cases of cache hit and cache miss.

An UML component diagram of the changed static struc-
ture is presented in Figure 2



Deployment

Node

Demo

Application

30

Figure 3. Deployment diagram for DemoAppli-
cation component. Component is deployed
on 30 nodes.

Work plan derivation After creating the subalternative
model that represents the target model after the change re-
quest is implemented the architect starts the KAMP deriva-
tion process. KAMP calculates a differences model be-
tween the mainalternative model files and the subalternative
model files. The resulting work plan from the derivation
process is shown in Listing 1.

Listing 1. Workplan for Change Request

Add InterfaceDefinition CacheInterface
Add OperationDefinition getQueryResults
Add OperationDefinition putQueryResults
Add OperationDefinition clear

Add Component Cache
Add Provided InterfaceImplementation

CacheInterface
Add OperationImplementation

getQueryResults
Add OperationImplementation

putQueryResults
Add OperationImplementation clear

Modify Component DemoApplication
Modify Provided InterfaceImplementation

DemoApplicationInterface
Modify OperationImplementation queryPrice

Deriving deployment activities As can be seen in the
work plan the component DemoApplication has to be mod-
ified. From the information present in the deployment view
of the architecture model (see Figure 3) KAMP retrieves
that this component is allocated to 30 nodes. Hence, KAMP
adds a new activity to the work plan: Redeploy component
DemoApplication (on 30 Nodes). As a result, the modifica-
tion of a component leads to the follow-up effort for rede-
ployment of the components.

Effort Estimation Our project partners annotated the
work plan activities with time effort estimates in Person
Days. The aggregated time efforts are then exported to the

Figure 4. Result overview

Q-ImPrESS result model which can be used as input for
trade-off analysis. A screenshot of the result overview is
shown in Figure 4. The results are given in Person Days.

5 Related work

5.1 Scenario-Based Architecture Quality Analysis

In literature there are several approaches which analyze
quality of software systems based on software architectures.
In the following paragraphs we discuss approaches which
make explicitly use of scenarios. There are already two sur-
vey papers ([1], [9]) which summarize and compare existing
architecture evaluation methods.

Software Architecture Analysis Method (SAAM) [7]
SAAM was developed in 1994 by Rick Kazman, Len Bass,
Mike Webb and Gregory Abowd at the SEI as one of the
first methods to evaluate software architectures regarding
their changeability (as well as to related quality properties,
such as extensibility, portability and reusability). It uses
an informally described architecture (mainly the structural
view) and starts with gathering change scenarios. Then via
different steps, it is tried to find interrelated scenarios, i.e.,
change scenarios where the intersection of the respective
sets of affected components is not empty. The components
affected by several interrelated scenarios are considered to
be critical and deserve attention. For each change scenario,
its costs are estimated. The outcome of SAAM are clas-
sified change scenarios and a possibly revised architecture
with less critical components.

The Architecture Trade-Off Analysis Method
(ATAM) [7] ATAM was developed by a similar group
for people from the SEI taking into account the experi-
ences with SAAM. In particular, one wanted to overcome
SAAM’s limitation of considering only one quality at-
tribute, namely, changeability. Much more, one realised
that most quality attributes are in many architectures
related, i.e., changing one quality attribute impacts other
quality attributes. Therefore, the ATAM tries to identify
trade-offs between different quality attributes. It also
expands the SAAM by giving more guidance in finding
change scenarios. After these are identified, each quality
attribute is firstly analysed in isolation. Then, different to
SAAM, architectural decisions are identified and the effect
(sensitivity) of the design decisions on each quality attribute



is tried to be predicted. By this ”sensitivity analysis” one
systematically tries to find related quality attributes and
trade-offs are made explicit. While the ATAM provides
more guidance as SAAM, still tool support is lacking due
to informal architectural descriptions and the influence
of the personal experience is high. (Therefore, more
modern approaches try to lower the personal influence, e.g.,
POSAAM [8].) Different to our approach, change effort is
not measured as costs on ATAM.

The Architecture-Level Prediction of Software Main-
tenance (ALPSM) [4] ALPSM is a method that solely fo-
cuses on predicting software maintainability of a software
system based on its architecture. The method starts with the
definition of a representative set of change scenarios for the
different maintenance categories (e.g. correct faults or adapt
to changed environment), which afterwards are weighted
according to the likelihood of occurrence during the sys-
tems’s lifetime. Then for each scenario, the impact of im-
plementing it within the architecture is evaluated based on
component size estimations (called scenario scripting). Us-
ing this information, the method finally allows to predict the
overall maintenance effort by calculating a weighted aver-
age of the effort for each change scenario. As a main ad-
vantage compared to SAAM and ATAM the authors point
out that ALPSM neither requires a final architecture nor
involves all stakeholders. Thus, it requires less resources
and time and can be used by software architects only to
repeatedly evaluate maintainability. However, the method
still heavily depends on the expertise of the software archi-
tects and provides little guidance through tool support or au-
tomation. Moreover, ALPSM only proposes a very coarse
approach for quantifying the effort based on simple compo-
nent size measures like LOC.

The Architecture-Level Modifiability Analysis
(ALMA) [5]
The ALMA method represents a scenario-based software
architecture analysis technique specialized on modifiability
and was created as a combination of the ALPSM approach
[4] with [13]. Regarding the required steps, ALMA to
a large extend corresponds to the ALPSM approach, but
features two major advantages. First, ALMA supports
multiple analysis goals for architecture-level modifiability
prediction, namely maintenance effort prediction, risk
estimation and comparison of architecture alternatives.
Second, the effort or risk estimation for single change
scenarios is more elaborated as it explicitly considers
ripple effects by taking into account the responsible
architects’ or developers’ expert knowledge (bottom up
estimation technique). Regarding effort metrics, ALMA
principally allows for the definition of arbitrary quantitative
or qualitative metrics, but the paper itself mainly focuses
on lines of code (LOC) for expressing component size and
complexity of modification (LOC/month). Moreover, the

approach as presented in the paper so far only focuses on
modifications relating to software development activities
(like component (re-)implementation), but does not take
into account software management activities, such as
re-deployment, upgrade installation, etc.

5.2 Change Effort Estimation

Top-Down Effort Estimation Approaches in this sec-
tion estimate efforts in top-down manor. Although they
are intended for forward engineering development projects,
one could also assume their potential applicability in evolu-
tion projects. Starting from the requirement level, estimates
about code size are made. Code size is then related some-
how to time effort. There are two prominent representatives
of top-down estimation techniques: Function Point Analy-
sis (FPA) [11] and Comprehensive Cost Model (COCOMO)
II [6]. COCOMO-II contains three approaches for cost es-
timation, one to be used during the requirement stage, one
during early architectural design stage and one during late
design stage of a project. Only the first one and partially
the second one are top-down techniques. Although FPA
and COCOMO-II-stage-I differ in detail, their overall ap-
proach is sufficiently similar to be treated commonly in this
paper. In both approaches, the extent of the functional-
ity of a planned software system is quantified by the ab-
stract unit of function points (called ”applications points”
in COCOMO). Both approaches provide guidance in count-
ing function points given an informal requirements descrip-
tion. Eventually, the effort is estimated by dividing the to-
tal number of function points by the productivity of the de-
velopment team. (COCOMO-II-stage-I also takes the ex-
pected degree of software reuse into account.) In particu-
lar COCOMO-II in the later two stages takes additional in-
formation about the software development project into ac-
count, such as the degree of generated code, stability of re-
quirements, platform complexity, etc. Interestingly, archi-
tectural information is used only in a very coarse grained
manner (such as number of components). Both approaches
require a sufficient amount of historical data for calibration.
Nevertheless, it is considered hard to make accurate pre-
dictions with top-down estimations techniques. Even Barry
Boehm (the author of COCOMO) notes that hitting the right
order of magnitude is possible, but no higher accuracy1.

Bottom-Up Effort Estimation – Architecture-Centric
Project Management [14]
(ACPM) is a comprehensive approach for software project
management which uses the software architecture descrip-
tion as the central document for various planning and man-
agement activities. For our context, the architecture based
cost estimation is of particular interest. Here, the architec-
ture is used to decompose planned software changes into

1http://cost.jsc.nasa.gov/COCOMO.html



several tasks to realise this change. This decomposition
into tasks is architecture specific. For each task the as-
signed developer is asked to estimate the effort of doing
the change. This estimation is guided by pre-defined forms.
Also, there is no scientific empirical validation. But one can
argue that this estimation technique is likely to yield more
accurate prediction as the aforementioned top-down tech-
niques, as (a) architectural information is used and (b) by
asking the developer being concerned with the execution of
the task, personal productivity factors are implicitly taken
into account. This approach is similar to KAMP by using
a bottom-up estimation technique and by using the archi-
tecture to decompose change scenarios into smaller tasks.
However, KAMP goes beyond ACPM by using a formal-
ized input (architectural models must be an instance of a
predefined meta-model). This enables tool-support. In ad-
dition, ACPM uses only the structural view of an archi-
tecture and thus does not take software management costs,
such as re-deployment into account.

6 Conclusions

In this paper we presented the KAMP approach for esti-
mating the evolution effort of a given change request based
on the architectural model of a service-oriented software
system. The main contributions of our method are:

• a way to map change requests to architecture models
and derive a work plan by calculating differences be-
tween models, enhanced with user inputs from a wiz-
ard dialog and

• an integrated bottom-up estimation approach provid-
ing evolution effort estimations, which are not limited
to implementation efforts only.

We showed the applicability of our approach by using it
on the Enterprise SOA Showcase, an open-source industrial
demonstration systems developed within the Q-ImPrESS
project.

7 Acknowledgements

The work presented in this paper was funded within
the Q-ImPrESS research project (FP7-215013) by the Eu-
ropean Union under the Information and Communication
Technologies priority of FP7.

References

[1] M. Babar, L. Zhu, and R. Jeffery. A framework for classi-
fying and comparing software architecture evaluation meth-
ods. Software Engineering Conference, 2004. Proceedings.
2004 Australian, pages 309–318, 2004.

[2] S. Becker, L. Bulej, T. Bures, P. Hnetynka, L. Kapova,
J. Kofron, H. Koziolek, J. Kraft, R. Mirandola, J. Stam-
mel, G. Tamburelli, and M. Trifu. Q-ImPrESS Project
Deliverable D2.1: Service Architecture Meta Model
(SAMM). Technical Report 1.0, Q-ImPrESS consortium,
September 2008. http://www.q-impress.eu/wordpress/wp-
content/uploads/2009/05/d21-service architecture meta-
model.pdf.

[3] S. Becker, M. Trifu, and R. Reussner. Towards Supporting
Evolution of Service Oriented Architectures through Qual-
ity Impact Prediction. In 1st International Workshop on Au-
tomated engineeRing of Autonomous and run-time evolving
Systems (ARAMIS 2008), September 2008.

[4] P. Bengtsson and J. Bosch. Architecture level prediction of
software maintenance. Software Maintenance and Reengi-
neering, 1999. Proc. of the Third European Conference on,
pages 139–147, 1999.

[5] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet.
Architecture-level modifiability analysis (alma). Journ. of
Systems and Software, 69(1-2):129 – 147, 2004.

[6] B. W. Boehm, editor. Software cost estimation with Cocomo
II. Prentice Hall, Upper Saddle River, NJ, 2000.

[7] P. Clements, R. Kazman, and M. Klein. Evaluating software
architectures. Addison-Wesley, 4. print. edition, 2005.

[8] D. B. da Cruz and B. Penzenstadler. Designing, Document-
ing, and Evaluating Software Architecture. Technical Re-
port TUM-INFO-06-I0818-0/1.-FI, Technische Universität
München, Institut für Informatik, jun 2008.

[9] E. Dobrica, L.; Niemela. A survey on software architecture
analysis methods. Transactions on Software Engineering,
28(7):638–653, Jul 2002.

[10] C. Häcker, A. Baier, W. Safonov, J. Tysiak, and W. Frank. Q-
ImPrESS Project Deliverable D8.6 Enterprise SOA Show-
case initial version. Technical Report 1.0, Q-ImPrESS con-
sortium, January 2009.

[11] IFPUG. Function Point Counting Practices Manual. Inter-
national Function Points Users Group: Mequon WI, 1999.

[12] ISO/IEC. Software Engineering - Product Quality - Part 1:
Quality. ISO/IEC 9126-1:2001(E), Dec 1990.

[13] N. Lassing, D. Rijsenbrij, and H. van Vliet. Towards a
broader view on software architecture analysis of flexibil-
ity. Software Engineering Conference, 1999. (APSEC ’99)
Proceedings. Sixth Asia Pacific, pages 238–245, 1999.

[14] D. J. Paulish and L. Bass. Architecture-Centric Software
Project Management: A Practical Guide. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2001.


