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Abstract—The understandability, maintainability, and 

reusability of object-oriented programs could be improved by 

automatically detecting well-known design patterns in 

programs. Many existing detection techniques are based on 

static analysis and use strict conditions composed of class 

structure data. Hence, it is difficult for them to detect design 

patterns in which the class structures are similar. Moreover, it 

is difficult for them to deal with diversity in design pattern 

applications. We propose a design pattern detection technique 

using metrics and machine learning. Our technique judges 

candidates for the roles that compose the design patterns by 

using machine learning and measurements of metrics, and it 

detects design patterns by analyzing the relations between 

candidates. It suppresses false negatives and distinguishes 

patterns in which the class structures are similar. We 

conducted experiments that showed that our technique was 
more accurate than two previous techniques. 

Keywords—component; Object-oriented software, Design 

pattern, Software metrics, Machine learning 

I. INTRODUCTION 

Design patterns (hereafter, patterns) are defined as 
descriptions of communicating classes that form a common 
solution to a common design problem. Gang of Four (GoF) 
patterns [1] are representative patterns for object-oriented 
software. Patterns are composed of classes that describe the 
roles and abilities of objects. For example, Figure 1 shows 

one GoF pattern named the State pattern. This pattern 

is composed of roles named Context, State, and 

ConcreteState. The use of patterns enables software 
development with high maintainability, high reusability, and 
improved understandability, and it facilitates smooth 
communications between developers.  

Programs implemented by a third party and open source 
software may take a lot of time to understand, and patterns 
may be applied without explicit class names, comments, or 
attached documents in existing programs. Thus, pattern 
detection improves the understandability of programs. 
However, manually detecting patterns in existing programs 
is inefficient, and patterns may be overlooked. 

Many studies on using automatic pattern detection to 
solve the above problems have used static analysis. However, 
static analysis has difficulty identifying patterns in which 
class structures are similar and patterns with few features. In 
addition, there is still a possibility that software developers 
might overlook patterns if they use strict conditions like the 
class structure analysis, and if the applied patterns vary from 
the intended conditions even a little. 

We propose a pattern detection technique that uses 
software metrics (hereafter, metrics) and machine learning. 
Although our technique can be classified as a type of static 
analysis, unlike previous detection techniques it detects 
patterns by using identifying elements derived by machine 
learning based on measurement of metrics without using 
strict condition descriptions (class structural data, etc.). A 
metric is a quantitative measure of a software property that 
can be used to evaluate software development. For example, 
one such metric, number of methods (NOM), refers to the 
number of methods in a class [2]. Moreover, by using 
machine learning, we can in some cases obtain previously 
unknown identifying elements from combinations of metrics. 
To cover a diverse range of pattern applications, our method 
uses a variety of learning data because the results of our 
technique may depend on the kind and number of learning 
data used during the machine learning process. Finally, we 
conducted experiments comparing our technique with two 
previous techniques and found that our approach was the 
most accurate of the three. 

II. PREVIOUS DESIGN PATTERN DETECTION TECHNIQUES 

AND THEIR PROBLEMS 

Most of the existing detection techniques use static 
analysis [3][4]. These techniques chiefly analyze information 
such as class structures that satisfy certain conditions. If they 
vary from the intended strict conditions even a little, or two 
or more roles are assigned in a class, there is a possibility 
that developers might overlook patterns. 

There is a technique that detects patterns based on the 
degrees of similarity between graphs of pattern structure and 
graphs of programs to be detected [3]. However,  
 



           

 
Figure 1.  State pattern 

 

Figure 2.  Strategy pattern 

distinguishing the State pattern from the Strategy 
pattern is difficult because their class structures are similar 
(see Figure 1 and 2). Unlike this method, we distinguish the 
patterns to which the structure is similar by the identification 
of the roles from the quantity and the ratio of metrics by the 
machine learning. In addition, this technique [3] is available 
to the public as a web-based tool. 

There is a technique that outputs pattern candidates based 
on features derived from metric measurements [5]. However, 
it requires manual confirmation; this technique can roughly 
identify pattern candidates, but the final choice depends on 
the developer's skill. Our technique detects patterns without 
manual filtering by metrics and machine learning but also by 
analyzing class structure information. Moreover, this 
technique uses general metrics concerning an object-oriented 
system without using metrics for each role. Our technique 
uses metrics that specialize in each role. 

Another existing technique improves precision by 
filtering detection results using machine learning. This 
technique inputs measurements of the classes and methods of 
each pattern [6]. However, it uses the existing static 
analytical approach, whereas our technique instead uses 
machine learning throughout the entire process. 

One current technique analyzes programs both before and 
after patterns are applied [7]. This method requires a revision 
history of the programs used. Our technique detects patterns 
by analyzing only the current programs. 

Yet another approach detects patterns from the class 
structure and behavior of a system after classifying its 
patterns [8][9]. It is difficult to use, however, when patterns 
are applied more than once and when pattern application is 
diverse. In contrast, our technique copes well with both of 
these challenges.   

Other detection techniques use dynamic analysis. These 
methods identify patterns by referring to the execution route 
information of programs [10][11]. However, it is difficult to 
analyze the entire execution route and use fragmentary class 
sets in an analysis. Additionally, the results of dynamic 
analysis depend on the representativeness of the execution 
sequences. 

Some detection techniques use a multilayered 
(multiphase) approach [12][13]. Lucia et al. use a two-phase, 
static analysis approach [12]. This method has difficulty, 
however, in detecting creational and behavioral patterns 
because it analyzes pattern structures and source code level 
conditions. Guéhéneuc et al. use “DeMIMA,” an approach 
that consists of three layers: two layers to recover an abstract 
model of the source code, including binary class 
relationships, and a third layer to identify patterns in the 

abstract model. However, distinguishing the State pattern 

from the Strategy pattern is difficult because their 
structures are identical. Our technique can detect patterns in 

all categories and distinguish the State pattern from the 

Strategy pattern using metrics and machine learning. 
Finally, one existing technique detects patterns using 

formal OWL (Web Ontology Language) definitions [14]. 
However, false negatives arise because this technique does 
not accommodate the diversity in pattern applications. The 
technique [14] is available to the public via the web as an 
Eclipse plug-in.  

We suppress false negatives by using metrics and 
machine learning to accommodate diverse pattern 
applications and to distinguish patterns in which the class 
structures are similar. It should be noted that only techniques 
[3], [14] discussed above have been released as publicly 
accessible tools. 

III. OUR TECHNIQUE 

Our technique is composed of a learning phase and a 
detection phase. The learning phase is composed of three 
processes, and the detection phase is composed of two 
processes, as shown in Figure 3. Each process is described 
below, with pattern specialists and developers included as 
the parties concerned. Pattern specialists mean persons that 
have the knowledge about the patterns. Developers mean 
persons that maintain the object-oriented software. Our 
technique currently uses Java as the program language. 
[Learning Phase] 
P1. Define Patterns 

Pattern specialists determine the detectable patterns and 
define the structures and roles composing these patterns. 
P2. Decide Metrics 

Pattern specialists determine useful metrics to judge the 
roles defined in P1 by using the Goal Question Metric 
decision technique. 
P3. Machine Learning 

Pattern specialists input programs applied patterns into 
the metrics measurement system, and obtain measurements 
for each role. And specialists input these measurements into 
the machine learning simulator to learn. After machine 
learning they verify the judgment for each role, and if 



 
Figure 3.  Process of our technique 

the verification results are not good, they return to P2 and 
revise the metrics. 
[Detection Phase] 
P4. Role Candidate Judgment 

Developers input programs to be detected into the 
metrics measurement system, and obtain measurements for 
each class. And developers input these measurements into 
the machine learning simulator.  Machine learning simulator 
identifies role candidates. 
P5. Pattern Detection 

Developers input role candidates judged in P4 to the 
pattern detection system by using the pattern structure 
definitions defined in P1. This system detects patterns 
automatically. The structure definitions correspond to the 
letters P, R, and E of section III-B. 

A. Learning Phase 

P1. Define Patterns 
Currently, our technique considers five GoF patterns 

(Singleton, TemplateMethod, Adapter, State, 

and Strategy) and 12 roles. The GoF patterns are grouped 
into creational patterns, structural patterns, and behavioral 
patterns. Our technique uses these patterns to cover all these 
groups. 
P2. Decide Metrics 

Pattern specialists decide on useful metrics to judge roles 
by using the Goal Question Metric decision technique [14] 
(hereafter, GQM). GQM is a top-down approach used to 
clarify relations between goals and metrics. 

We experimented with judging roles by using general 
metrics without GQM. However, the machine learning 
results were unsatisfactory because the measurements of 
some metrics were irregular. Consequently, we chose GQM 
so that the machine learning could function appropriately by 
stable metrics in each role. With our technique, the pattern 
specialists set as a goal the accurate judgment of each role. 
To achieve this goal they defined a set of questions to be 
evaluated. Next, they decided on useful metrics to help 
answer the questions they had established. The pattern 

specialists decide metrics to identify roles by the quantity 
and the ratio of measurements. Therefore, they decide 
questions by paying attention to the attributes and operations 
of the roles by reading the description of the pattern 
definition. They decide simple metrics concerning the static 
aspect like structure first to improve the recall. However, the 
lack of questions might occur because GQM is qualitative. 
Therefore, if the machine learning results were unsatisfactory 
by irregular measurements of metrics, the procedure loops 
back to P2 to reconsider metrics also concerning behavior. 
Moreover, it will be possible to apply GQM to roles with 
new patterns in the future.  

For example, Figure 4 illustrates the goal of making a 

judgment about the AbstractClass role in the 

TemplateMethod pattern. AbstractClass roles have 
abstract methods or methods using written logic that use 
abstract methods as shown in Figure 5. The 

AbstractClass role can be distinguished by the ratio of 
 

 

Figure 4.  Example of GQM（AbstractClass role） 

 
Figure 5.  Example of source code (AbstractClass role) 



  

TABLE I.  RESULTS OF APRLING GQM 

Pattern Role Goal Question Metric 

Singleton Singleton 
Identification of  
Singleton role 

Is the static field defined? NSF 

Is the constructor called from other class?  NOPC 

Is the method that return singleton instance? NSM 

Template
Method 

AbstractClass 
Identification of  
AbstractClass role 

Are abstract methods defined? NOAM 

Is the template method defined? NOM 

ConcreteClass 
Identification of  
ConcreteClass role 

Is the override method defined? NORM 

Adaper 

Target 
Identification of  
Target role 

Are abstract methods defined? NOAM 

Is the class defined as an interface? NOI 

Adapter 
Identification of  
Adapter role 

Are override methods defined? NORM 

Is Adaptee field defined? 
NOF 

NOOF 

Adaptee 
Identification of  
Adaptee role 

Are methods used by Adapter role defined? NOM 

Is the class referred by other classes? NCOF 

State 

Context 
Identification of  
Context role 

Are methods to set states defined? NOM 

Is State field defined? 
NOF 

NOOF 

State 
Identification of  
State role 

Are abstract methods defined? NOAM 

Is the class defined as an interface? NOI 

Is the class referred by other classes? NCOF 

Concrete 
State 

Identification of  
ConcreteState role 

Is the override method defined? NORM 

Is the method that describes change state 
defined? 

NOM 

NMGI 

Strategy 

Context 
Identification of  
Context role 

Are methods to set states defined? NOM 

Is Strategy field defined? 
NOF 

NOOF 

Strategy 
Identification of  
Strategy role 

Are abstract methods defined? NOAM 

Is the class defined as an interface? NOI 

Is the class referred by other classes? NCOF 

Concrete 
Strategy 

Identification of  
ConcreteStrategy 
role 

Is the override method defined? NORM 

 
the number of methods to the number of abstract methods 
because with this role the former exceeds the latter. 
Therefore, the number of abstract methods (NOAM) and 
number of methods (NOM) are useful metrics for judging 
this role. Table I shows the results of applying GQM to all 
roles. The details of metrics are described in Table II of 
paragraph IV-A. 

The previous technique [5] uses GQM, too. In this 
technique, the goal is set as “Recover design patterns”. And 
this technique uses general metrics concerning an object-
oriented system without deciding metrics at each role. On the 
other hand, our technique uses metrics that specialize in each 
role. 
P3. Machine Learning 

Machine learning is a technique that analyzes sample 
data by computer and acquires useful rules with which to 
make forecasts about unknown data. We used the machine 
learning so as to be able to evaluate patterns with a variety of 
application forms. Machine learning suppresses false 
negatives and achieves extensive detection. 

Our technique uses a neural network [16] algorithm. A 
support vector machine [16] could also be used to distinguish  

a pattern of two groups by using linear input elements.  
However, we chose a neural network because it outputs the 
values to all roles, taking into consideration the dependency 
among the different metrics. Therefore, it can deal with cases 
in which one class plays two or more roles. 

A neural network is composed of an input layer, hidden 
layers, and an output layer, as shown in Figure 6, and each 
layer is composed of elements called units. Values are given 
a weight when they move from unit to unit, and a judgment 
rule is acquired by changing the weights. A typical algorithm 
for adjusting weights is back propagation. Back propagation 
calculates an error margin between output result y and the 
correct answer T, and it sequentially adjusts weights from the 
layer nearest the output to the input layer, as shown in Figure 
7. These weights are adjusted until the output error margin of 
the network reaches a certain value. 

Our technique uses a hierarchical neural network 
simulator [17]. This simulator uses back propagation. The 
hierarchy number in the neural network is set to three, the 
number of units in the input layer and the hidden layer are set 
to the number of decided metrics, and the number of units of 
the output layer is set to the number of roles being judged. 



 

 
Figure 6.  Neural network 

 
Figure 7.  Back propagation  

The input consists of the metric measurements of each role in 
a program to which patterns have already been applied, and 
the output is an expected role. Pattern specialists obtain 
measurements for each role by using metrics measurement 
system. And, specialists input these measurements into the 
machine learning simulator to learn. The learning repetitions 
cease when the error margin curve of the simulator 
converges. The specialists verify the convergence of the 
error margin curve manually at present. After machine 
learning they verify the judgment for each role, and if the 
verification results are not good, they return to P2 and revise 
the metrics. 

 

B. Detection  Phase 

P4. Role Candidate Judgment 
Developers input programs to be detected into the 

metrics measurement system, and obtain measurements for 
each class. And developers input these measurements to the 
machine learning simulator.  This simulator outputs values 
between 0–1 to all roles to be judged. The output values are 
normalized such that the sum of all values becomes 1. These 
output values are called role agreement values. A larger role 
agreement value means that the role candidate is more likely 
correct. The reciprocal of the number of roles to be detected  

is set as a threshold, and the role agreement values that are 
higher than the threshold are taken to be role candidates. The 
threshold is 1/12 (i.e., 0.0834) because we treat 12 roles at 
present. The sum of the output values is different at each 
input in the neural net work. Therefore, to use a common 
threshold for all the output, our technique normalizes the 
output value. 

For example, Figure 8 shows the role candidate judgment 
results with NOM of 3 and NOAM of 2 and other metrics of 

0; the output value of AbstractClass is the highest value. 
By regularizing the values of Figure 8, the roles are judged to 

be AbstractClass and Target. 
P5. Pattern Detection 

Developers input role candidates judged in P4 into the 
pattern detection system by using the pattern structure 
definitions defined in P1. And, this system detects patterns 
by matching the direction of the relations between role 
candidates and the roles of pattern in programs.  The 
matching moves sequentially from the role candidate with 
the highest agreement value to that with the lowest value. 
The pattern detection system searches all combinations of 
role candidates that accord with the pattern structures. The 
pattern detection system detects patterns when the directions 
of relations between role candidates accord with the pattern 
structure and when the role candidates accord with roles at 
both ends of the relations. Moreover, the relation agreement 
values reflect the kind of relation. 

Currently, our method deals with inheritance, interface 
implementation, and aggregation relations. The kind of 
relations will increase as more patterns get added in the 
future. The relation agreement value is 1.0 when the kind 
agrees with the relation of the pattern, and it is 0.5 when the 
kind does not agree. If the relation agreement value is 0 then 
the kind of relation does not agree, the pattern agreement 
value might become 0, and these classes will not be detected 
as patterns. In such cases, a problem similar to those of the 
previous detection techniques will occur because the 
difference in the kind of relation is not recognized.   

The pattern agreement value is calculated from the role 
agreement values and the relation agreement values. The 
pattern to be detected is denoted as P, the role set that 
composes the pattern is denoted as R, and the relation set is 
denoted as E. Moreover, the program that is the target of 
detection is defined as P’, the set of classes comprising the 
role candidates is R’, and the set of relations between 
elements of R' is denoted as E’. The role agreement value is 
denoted as Role, and the relation agreement is denoted as Rel. 
Role means the function which is input the element of R and 
the one of R' , and . Rel means the function which is input the 
element of E and the one of E'. The product of the average of 
two roles at both ends of the relation and Rel is denoted as 
Com, and the average of Com is denoted as Pat. Moreover, 
the average of two Roles is calculated when Com is 
calculated, and the average value of Com is calculated to 
adjust Pat and Role to values from 0 to 1 when Pat is 
calculated. If the directions of the relations do not agree, Rel 
is assumed to be 0. 

 



 
Figure 8.  Example of machine learning output 

 
Figure 9.  Example of pattern detection (TemplateMethod pattern)
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Figure 9 shows an example of detecting the 

TemplateMethod pattern. In this example, it is assumed 

that class SampleA has the highest role agreement value for 

an AbstractClass. The pattern agreement value between 

the program Samples and the TemplateMethod pattern is 
calculated with the following algorithm. 
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In the program shown in Figure 9, the pattern agreement 

value of the TemplateMethod pattern was calculated to 
be 0.492. Pattern agreement values are normalized from 0 to 
1, just like role agreement values. Our technique uses the 
same threshold among of pattern agreement value as role 
agreement value because a lot of classes are detected as the 
pattern that composed of the only class like the singleton 
pattern. Classes with a pattern agreement value that exceeds 
the threshold are output as the detection result. The 
reciprocal of the number of roles for detection is taken to be 



the threshold, similar to the case of role candidate judgment, 
and pattern agreement values that are higher than the 
threshold are output as the detection result. 

In Figure 9, SampleA, SampleB, and SampleC were 

detected as TemplateMethod patterns. Moreover, 

SampleA and SampleB, SampleA and SampleC can 

also be considered to match the TemplateMethod 
pattern. In this case, the relation of 

“SampleA  SampleB” is more similar to a 

TemplateMethod pattern than the relation of 

“SampleA ◇ SampleC” because its agreement value of 

the former pair is 0.635 while that of the latter pair is only 
0.348. 

IV. EVALUATION AND DISCUSSION 

We determined whether the machine learning simulator 
derived identifying elements of the roles after learning. 
Moreover, we compared our technique with two previous 
techniques to verify the precision and recall of our approach 
and to confirm whether it could match its detected patterns 
with similar structures and diverse patterns. 

A. Verification of Role Candidate Judgement 

We used cross-validation to verify the role candidate 
judgment. In cross-validation, data are divided into n groups, 
and a test to verify a role candidate judgment is executed 
such that the testing data are one data group and the learning 
data are n-1 data groups. We executed the test five times by 
dividing the data into five groups. In this paper, programs 
such as programs in the reference [18], etc., are called small 
scale, whereas programs in practical use are called large 
scale. We used the set of programs where patterns are 
applied in small-scale programs (60 in total) 1 [18][19] and 
large-scale programs (158 in total from the Java library 
1.6.0_13 [20], JUnit 4.5 [21], and Spring Framework 2.5 
RC2 [22]) as experimental data. We judged manually and 
qualitatively whether the patterns were appropriately applied 
in this set of programs. 

Table II shows the metrics that were chosen for the 
small-scale and large-scale programs. We used different 
metrics depending on the magnitude of the programs. For 
instance, we chose the metric called number of methods 
generating instance (NMGI) for small-scale programs 
because the method for transit states in the 

ConcreteState role in the State pattern generates 

other ConcreteState roles in small-scale programs. We 
guessed that the difference appeared in ratios of metrics 
about State and Strategy, so we used the same metrics for the 
large-scale programs without NMGI. Because State pattern 
treats the states in State role and treats the actions of the 
states in the Context role. On the other hand Strategy pattern 
encapsulates the processing of each algorithm into a Strategy 
role, and Context processing becomes simpler compared 
with that of State pattern. 

                                                        
1 All small-scale code: 

http://www.washi.cs.waseda.ac.jp/ja/paper/uchiyama/dp.html 

We focused our attention on recall because the purpose 
of our technique was detection covering diverse pattern 
applications. Recall indicates the degree to which detection 
results are free of leakage, whereas precision shows how free 
of disagreement these result are. The data in Table III was 
used to calculate recall. wr, xr, yr, and zr are numbers of roles, 
and wp, xp, yp, and zp are numbers of patterns. Recall was 
calculated from the data in Table III by the following 
expressions. 
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Table IV shows the average recall for each role. Role 

candidates must be judged accurately because the State 

pattern and Strategy pattern have the same class structure. 
Therefore, our technique regards the roles of the patterns 

other than State and Strategy patterns as role 
candidates when the role agreement value was above the 

threshold, whereas our technique regards the roles of State 

and Strategy patterns as role candidates when the role 
agreement value was above the threshold and the roles of 
both patterns were distinguished State pattern from Strategy 
pattern.  

As shown in Table IV, the recalls for the large-scale 
programs were lower than those for the small-scale programs. 
Accurate judgment of large-scale programs was more 
difficult because these programs possessed attributes and 
operations that were unnecessary for pattern composition. 
Therefore, it will be necessary to collect a significant amount 
of learning data to adequately cover a variety of large-scale 
programs. 

The results in Table IV pertain to instances where the 

State and Strategy patterns could be distinguished. The 

Context role had high recall, but State and 

ConcreteState roles had especially low recalls for large-

scale programs. However, the candidates for the State role 
were output with high recall when the threshold was 

exceeded. Therefore, the State pattern can be distinguished 

by initiating searching from the Context role in P5, and 
this improves recall. 

 

TABLE II.  CHOSEN METRICS 

Abbreviation Content 

NOF Number of fields 

NSF Number of static fields 

NOM Number of methods 

NSM Number of static methods 

NOI Number of interfaces 

NOAM Number of abstract methods 

NORM Number of overridden methods 

NOPC Number of private constructors 

NOTC 
Number of constructors with argument 
of object type 

NOOF Number of object fields 

NCOF 
Number of other classes with field of 
own type 

NMGI 
Number of methods to generate 
instances 

Recall of role candidate judgment: 



TABLE III.  INTERSECTION PROCESSION 

 detected not detected 

correct 
wr, wp 

(true positive) 
xr, xp 

(false negative) 

incorrect 
yr, yp 

(false positive) 
zr, zp 

(true negative) 

TABLE IV.  RECALL OF CANDIDATE ROLE JUDGMENT (AVERAGE) 

 Average recall (%) 

Pattern Role 
Small-scale 

programs 

Large-scale 

programs 

Singleton Singleton 100.0 84.7 

Template 
Method 

AbstractClass 100.0 88.6 

ConcreteClass 100.0 58.5 

Adapter 

Target 90.0 75.2 

Adapter 100.0 66.7 

Adaptee 90.0 60.9 

State 

Context 60.0 70.0 

State 60.0 46.7 

ConcreteState 82.0 46.6 

Strategy 

Context 80.0 55.3 

Strategy 100.0 76.7 

ConcreteStrategy 100.0 72.4 

 

B. Pattern Detection Results 

Our technique detects patterns using test data in both the 
small-scale and large-scale programs, and this result is 
evaluated. We used 40 sets of programs where patterns are 
applied in small-scale programs and 126 sets of programs 
where patterns are applied in large-scale programs as 
learning data. We judged manually and qualitatively whether 
the patterns were appropriately applied in the detection 
results. Table V shows precision and recall of the detected 
patterns. Precision and recall were calculated from the data 
in Table III by the following expressions: 
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Small-scale and large-scale programs shared a common 
point in that they both had recalls that were higher than 
precisions. However, there were many non-agreements about 

the State patterns and Strategy patterns in the large-
scale programs. Recall was 90% or more with the small-
scale programs, but it dropped as low as 60% with the large-
scale programs. 

The large-scale programs resulted in especially low recall 

for the Adapter pattern. Table IV shows the cause: The 

recall of the role candidate judgment for the Adapter 
pattern was not high enough. It is necessary to show that all 
roles that compose patterns have agreement values that are 
above the threshold so that patterns will be detected. There 
were many cases in which neither of the roles that composed 

patterns was judged as a role candidate for the Adapter 
pattern. It will be necessary to return to P2 and choose new 
 

TABLE V.  PRECISION AND RECALL RATIO OF PATTERN DETECTION 

 
Number of  

test data 
Precision (%) Recall (%) 

Pattern 
Small-

scale 
programs 

Large-

scale 
programs 

Small-

scale 
programs 

Large-

scale 
programs 

Small-

scale 
programs 

Large-

scale 
programs 

Singleton 6 6 60.0 63.6 100.0 100.0 

Template 

Method 
6 7 85.7 71.4 100.0 83.3 

Adapter 4 7 100.0 100.0 90.0 60.0 

State 2 6 50.0 40.0 100.0 66.6 

Strategy 2 6 66.7 30.8 100.0 80.0 

 

metrics. The State pattern was identified by searching 

from the Context role, for instance, in the State pattern 
detection in the large-scale programs, and the recall of the 
pattern detection was higher than the recall of role candidate 
judgment. Table V shows holistically that our technique 
suppresses false negatives because the recall is high. 

C. Experiment Comparing Previous Detection Techniques 

We experimentally compared our technique with 
previous detection techniques [3][14]. These previous 
techniques have been publicly released, and they consider 
three or more patterns addressed by our own technique. Both 
target Java programs, as does our own. The technique 
proposed by Tsantails’s technique [3](hereafter, TSAN) has 

four patterns in common with ours (Singleton, 

TemplateMethod, Adapter and State/Strategy). 

Because this technique cannot distinguish the State pattern 

from the Strategy pattern, these are detected as one 
pattern. Dietrich’s technique [14] (hereafter, DIET) has three 

patterns in common (Singleton, TemplateMethod, 

Adapter) with our own. TSAN detects patterns based on 
the degree of similarity between the graphs of the pattern 
structure and graphs of the programs to be detected, whereas 
DIET detects patterns by using formal OWL (Web Ontology 
Language) definitions. Patterns were detected and evaluated 
with the small-scale and large-scale test data. Moreover, the 
test data and learning data were different. 

Figure 10 shows the recall and precision graphs for our 
technique and TSAN, and Figure 11 shows the 
corresponding graphs for our technique and DIET. We 
ranked the detection results of our technique with the pattern 
agreement values. Next, we calculated recall and precision 
according to the ranking and plotted them. Recall and 
precision were calculated from the data in Table III by using 
the expressions of paragraph IV -B. In the results of TSAN 
and DIET, we alternately plotted results because these 
previous detection techniques output no value to rank. In the 
recall and precision graphs higher values are better. 

Figure 10 and 11 show particularly good results for all 
techniques when small-scale programs was examined. This 
is because small-scale programs do not include unnecessary 
attributes and operations in the composition of patterns. 

Table VI and VII show the average F measure for each 
plot of Figure 10 and 11. The F measure is calculated with  
 

Recall of pattern detection : 

Precision of pattern detection : 



 
Figure 10.  Recall-precision graph of detection results (vs. TSAN) 

 

Figure 11.  Recallprecision graph of detection results (vs. DIET) 

TABLE VI.  THE AVERAGE OF F MEASURE (VS. TSAN) 

 Small-scale programs Large-scale programs 

Our technique 0.67 0.56 

Previous technique 
 (TSAN) 

0.39 0.36 

TABLE VII.  THE AVERAGE OF F MEASURE (VS. DIET) 

 Small-scale programs Large-scale programs 

Our technique 0.69 0.55 

Previous technique 
 (DIET) 

0.50 0.35 

 
recall and precision calculated by the above-mentioned 
expression as follows. 

pp

pp
measureF

RePr

RePr2






 

A large F measure means higher accuracy, and these 
tables show that our technique had a larger F measure than 
the previous techniques had. 

Distinction between State pattern and Strategy pattern 

Our technique distinguished State pattern Strategy 
pattern. Table VIII is an excerpt of the metrics measurements 

for the Context role in State pattern and Strategy 
pattern that were distinguished by the experiment on the 

large-scale programs.  State pattern treats the states in 

State role and treats the actions of the states in the 

Context role. Strategy pattern encapsulates the 

processing of each algorithm into a Strategy role, and 

Context processing becomes simpler compared with that 

of State pattern. Table VIII shows 45 fields and 204 

methods as the largest in Context role in State pattern 

(18 and 31 respectively in Context role of Strategy 

pattern). Therefore, the complexity of Context role of both 
patterns appears in the number of fields and the number of 
methods, and these are distinguishing elements. Figure 10 

shows that our technique is especially good because State 

pattern and Strategy pattern could not be distinguished 
with TSAN. 

Detection of Subspecies of Patterns 

Figure 11 shows that the recall of DIET is low in the case 
of large-scale programs because this technique doesn't 
accommodate the diversity in pattern applications. 
Additionally, large-scale programs not only contain many 
attributes and operations in the composition of patterns but 
also subspecies of patterns. 

Our technique detected subspecies of patterns. For 
example, our technique detected the source code of the 

Singleton pattern that used the boolean variable as shown 

in Figure 12. This Singleton pattern was not detected in 
TSAN or DIET. However, unlike the previous techniques, 
our technique is affected by false positives because it is a 
gradual detection using metrics and machine learning instead 

of strict conditions. False positives of the Singleton 

pattern especially stood out because Singleton pattern is 
composed of only one role. It will be necessary to use 
metrics that are specialized to one or a few roles to make 
judgments about patterns composed of one role like the 

Singleton pattern (P4). 
Therefore, our technique is superior to previous one 

because the curve of our technique is above the previous in 
Figures 10 and 11. 

TABLE VIII.  MEASUREMENTS OF THE CONTEXT ROLE’S METRICS 

Pattern - Role Number of fields Number of methods 

State - Context 

12 58 

45 204 

11 72 

Strategy - Context 

18 31 

3 16 

3 5 

 

 
Figure 12.  Example of diversity in pattern application (Singleton pattern) 



V. CONCLUSION AND FUTURE WORK 

We devised a pattern detection technique using metrics 
and machine learning. Role candidates are judged using 
machine learning that relies on measured metrics, and 
patterns are detected from the relations between classes. We 
worked on the problems associated with overlooking patterns 
and distinguishing patterns in which the class structures are 
similar.  

We demonstrated that our technique was superior to two 
previous detection techniques by experimentally 
distinguishing patterns in which the class structures are 
similar. Moreover, subspecies of patterns were detected, so 
we could deal with a very diverse set of pattern applications. 
However, our technique was more susceptible to false 
positives because it does not use strict conditions such as 
those used by the previous techniques. 

We have several goals for our future work. First, we plan 
to add more patterns to be detected. Our technique can 
currently cope with five patterns. However, we predict it will 
be possible to detect other patterns if we can decide upon 
metrics to identify them. It is also necessary to collect more 
learning data to cover the diversity in pattern applications. 
Moreover, we plan to more narrowly adapt the metrics to 
each role by returning to step P2 because results might 
depend on the data. This process would lead to the 
enhancement of recall and precision. 

Second, we currently qualitatively and manually judge 
whether to return to step P2 and to apply GQM again; hence, 
in the future, we should find an appropriate automatic 
judgment method. 

Third, we plan to prove the validity of the expressions 
and the parameters of agreement values and thresholds. We 
consider that it is possible to reduce the false positive rate by 
deciding on the optimum thresholds for role agreement 
values and pattern agreement values. 

Finally, we plan to determine the learning number of 
times automatically and examine the correlation of the 
learning number of times and precision. 
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