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Abstract

In this paper we introduce an approach to exploit
knowledge represented in an ontology in answers
to queries to an information base. We assume that
the ontology is embedded in a knowledge base cov-
ering the domain of the information base. The onto-
logy is first of all to influence ranking of objects in
answers to queries as measured by similarity to the
query. We consider a generative framework where
an ontology in combination with a concept lan-
guage defines a set of well-formed concepts. Well-
formed concepts is assumed to be the basis for an
indexing of the information base in the sense that
these concepts appear as descriptors attached to ob-
jects in the base. Concepts are thus applied to ob-
tain a means for descriptions that generalizes sim-
ple word-based information base indexing. In ef-
fect query evaluation is generalized to be a matter
of comparison at the level of concepts rather than
words.

1 Introduction
The approach presented here concerns ontology-based query-
ing. For the information base targeted for querying we as-
sume an ontology (probably embedded in a knowledge base)
covering the domain of the information base.

The aim is to utilize knowledge from a domain-specific on-
tology to obtain better and closer answers on a semantical
basis comparing concepts rather than words. Better answers
are primarily better ranked information base objects which in
turn is a matter of better means for computing the similarity
between a query and an object from the base.

The ontology plays its role behind the scenes – it defines
and relates the concepts that are the basis for comparing
queries and answers. However, even though it may for other
reasons be relevant, it is not essential that the ontology and
the concepts and relations it encloses are revealed to users.
For this reason issues on editing, browsing and visualization
of the ontology become subordinate and the problem of rep-
resentation of ontology can be dealt with in a different per-
spective.

Our claim is that when the ontology is no longer the pri-
mary base in focus, more restrictive language with less ex-

pressive power is more suited in the present context. The
main argument for this is that we can do with an incremental
volume of knowledge represented in the ontology. Even very
small fragments from a domain, such as a few related con-
cepts, makes sense as an ontology if only there are queries
with answers that can be improved from this. There is no
need at all to insist on completeness on the coverage of a do-
main or a subdomain.

We consider a generative framework where an ontology in
combination with a concept language defines a set of well-
formed concepts. Well-formed concepts is assumed to be the
basis for an indexing of the information base in the sense that
these concepts appear as descriptors attached to objects in the
base. Concepts are thus applied to obtain a means for descrip-
tions that generalizes simple word-based information base in-
dexing. In effect query evaluation is generalized to be a mat-
ter of comparison at the level of concepts capturing fragments
of meaning rather than words.

The goal is thus a semantic basis for querying in text re-
trieval environments. In this context, one of the major prob-
lems is to determine the similarity between the semantic ele-
ments. It is no longer only simple match of keywords in the
text objects, but also the meaning of them, we have to take
into consideration when we calculate the similarity between
queries and objects in the base.

The foundation of this paper is our previous work[Bulskov
et al., 2002] and our affiliation to the interdisciplinary re-
search projectONTOQUERY(Ontology-based Querying)[An-
dreasenet al., 2000; 2002b; OntoQuery, 2002].

An Environment for Ontology-based Querying
As introduced in the following section we consider a genera-
tive ontology that defines a set of well-formed concepts from
a basis ontology. This basis ontology defines a vocabulary
of concepts and situates these in a concept inclusion lattice
(a taxonomy). We assume an environment where queries as
well as objects from the base are attached descriptions formed
from descriptors which basically are well-formed concepts.
Query evaluation is then a matter of comparison of descrip-
tions.

The environment for this type of querying may be a system
that automatically can produce conceptual descriptions (con-
ceptual indexing) of text objects and support textual/word list
queries by initial transformation into descriptions.



2 A generative ontology
The purpose of the ontology is to define and relate concepts
that can be used in descriptions. The ontology framework is
generative in the following sense. A basis ontology defines
a set of atomic concepts and situates these in a concept in-
clusion lattice, which basically is a taxonomy over single or
multi-word concepts that are treated as atomic in the model-
ling of the domain. In combination with a given basis onto-
logy, a concept language (description language) defines a set
of well-formed concepts.

The concept language in focus here,ONTOLOG[Nilsson,
2001], defines a set of semantic relations which can be used
for “attribution” (feature-attachment) to form compound con-
cepts. The suitable number of available relations may vary
with different domains, but among the more important re-
lations that probably will be present in most domain mo-
dellings areWRT (With-respect-to),CHR (Characterized-by),
CBY (Caused-by),TMP (Temporal),LOC (Location).

Expressions inONTOLOG are descriptions of concepts sit-
uated in an ontology formed by an algebraic lattice with con-
cept inclusion (ISA) as the ordering relation.

Attribution of concepts – combining atomic concepts into
compound concepts by attaching attributes – can be written as
a feature structures. Simple attribution of a conceptc1 with
relationr and a conceptc2 is denotedc1[r : c2].

We assume a set of atomic conceptsA and
a set of semantic relationsR, as indicated with
R={WRT, CHR, CBY, TMP, LOC, . . .}. Then the set of
well-formed termsL of the ONTOLOG language is recur-
sively defined as follows.

• if x ∈ A thenx ∈ L

• if x ∈ L , ri ∈ R andyi ∈ L , i = 1, . . . , n
thenx[r1 : y1, . . . , rn : yn] ∈ L

It appears that compound terms can be built from nesting,
for instancec1[r1 : c2[r2 : c3]] and from multiple attribution
as inc1[r1 : c2, r2 : c3]. The attributes of a multiple attributed
term T = x[r1 : y1, . . . , rn : yn] is considered as a set, thus
we can rewrite T with any permutation ofr1 : y1, . . . , rn : yn.

The basis for the ontology is a simple taxonomic concept
inclusion relationISAKB , which is atomic in the sense that it
defines a relation over the atomic conceptsA. It is considered
as domain or world knowledge and may for instance express
the view of a domain expert. We distinguish this (knowledge
base) relationISAKB because concepts are assumed to be re-
lated by specific knowledge over the domain. For that reason
we cannot expect the relation to be transitively closed. The
relationISA is the transitive closure ofISAKB , while the rela-
tion ISAREDUC is the transitive reduction ofISAKB .

Based onISA, the transitive closure ofISAKB , we can gen-
eralize into a relation over all well-formed terms of the lan-
guageL by the following.

• if x ISA y thenx ≤ y

• if x[. . .] ≤ y[. . .] then also

x[. . . , r : z] ≤ y[. . .], and
x[. . . , r : z] ≤ y[. . . , r : z],

• if x ≤ y then also

z[. . . , r : x] ≤ z[. . . , r : y]

where repeated. . . in each inequality denotes identical lists
of zero or more attributes of the formri : wi The purpose
of the language introduced above is to describe fragments of
meaning in text at a more thoroughly way than what can by
obtained from simple keywords, while still refraining from
full meaning representations which is obviously not realistic
in general search applications (with a huge database).

Take as an example the sentence: “the black dog is making
noise” which can be translated into this semantic expression
noise[CBY: dog[CHR: black]] .

Descriptions of text expressed in this language goes be-
yond simple keyword descriptions partly due to formation of
compound terms and to the reference to the ontology. A key
question in the framework of querying is of course the defini-
tions of similarity or nearness of terms, now that we no longer
can rely on simple matching of keywords.

3 From Ontology to Similarity
In building a query evaluation principle that draws on an on-
tology, a key issue is of course how the ontology influence the
matching of values, that is, how the different relations of the
ontology may contribute to similarity.

We have to decide for each relation to what extent related
values are similar and we must build similarity functions,
mapping values into similarities, that reflect these decisions.

We discuss below how to introduce similarity upon an on-
tology. We introduce firstly a shortest-path approach to simi-
larity based on the key ordering relation in the ontology,ISA.
Based on a definition for atomic concepts of the basis on-
tology we discuss how to extend the notion of similarity to
cover general compound concepts as expressions in the lan-
guageONTOLOG. Secondly we introduce an alternative ap-
proach for devising a similarity measure based on the notion
of shared nodes corresponding to lattice join in the lattice of
the arguments of the similarity function. This approach can
be considered as taking into account not only the shortest path
but in principle all possible paths connecting two concepts.

3.1 Shortest-path similarity on atomic concepts
The concept inclusion relation plays a central role as the or-
dering relation that bind the ontology in a lattice. Concept in-
clusion intuitively imply strong similarity in the opposite di-
rection of the inclusion (specialization), but also the direction
of the inclusion (generalization) must contribute with some
degree of similarity. Take as an example the small fraction of
an ontology in figure 1. With reference to this ontology the
atomic conceptdog can be directly expanded to cover also
poodleandalsatian.

This expansion respects the ontology in the sense that ev-
ery instance of the extension of the expanded conceptdog
(that is, every element in the union of the extensions ofdog,
poodleand alsatian) by definition bear the relationISA to
dog. The intuition is that to a query ondog an answer in-
cluding instancespoodleis satisfactory (a specific answer to
a general query). Since the hyponymy relation obviously is
transitive we can by the same argument expand to further spe-
cializations e.g. to includepoodlein the extension ofanimal.
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poodle alsatian

Figure 1: Inclusion relation (ISAKB ) with upwards reading,
e.g.dog ISAKB animal.

However similarity exploiting the lattice should also reflect
’distance’ in the relation. Intuitively greater distance (longer
path in the relation graph) corresponds to smaller similarity.

Further also generalization should contribute to similarity.
Of course it is not strictly correct in an ontological sense to
expand the extension ofdogwith instances ofanimal, but be-
cause alldogsareanimals, animalsare to some degree similar
to dogs. This substantiates that also a property of generaliza-
tion similarity should be exploited and, for similar reasons as
in the case of specializations, that also transitive generaliza-
tions should contribute with decreasing degree of similarity.

A concept inclusion relation can be mapped into a simi-
larity function in accordance with the described intuition as
follows.

Assume an ontology given as a domain knowledge relation
ISAKB . Figure 1 shows an example. The corresponding tran-
sitive closure relationISA includes for instance alsopoodle
ISA animal. To make “distance” influence similarity we need
to consider the transitively reduced relationISAREDUC. Sim-
ilarity reflecting distance can then be measured from path-
length in the graph corresponding to theISAREDUC relation.
A similarity function sim based on distance inISAREDUC
dist(X, Y ) should have the properties:

1. sim: U × U → [0, 1], whereU is the universe of con-
cepts

2. sim(x, y) = 1 only if x = y

3. sim(x, y) < sim(x, z) if dist(x, y) > dist(x, z)

By parameterizing with two factorsδ and γ expressing
similarity of immediate specialization and generalization re-
spectively, we can define a simple similarity function: If there
is a path from nodes (concepts) x and y in the hyponomy re-
lation then it has the form

P = (P1, · · · , Pn)

where

Pi ISAREDUCPi+1 or Pi+1 ISAREDUC Pi

for eachi with X = P1 andY = Pn.
Given a pathP = (P1, · · · , Pn), sets(P ) andg(P ) to the

numbers of specializations and generalizations respectively
along the pathP thus:

s(P ) = |{i|Pi ISAREDUCPi+1}|

animal

cat

0.9

dog

0.90.4 0.4

poodle

0.9

alsatian

0.90.4 0.4

Figure 2: The ontology transformed into a directed weighted
graph, with the immediate specialization and generalization
similarity beingσ = 0.9 andγ = 0.4 respectively as weights.
Similarity is derived as maximal (multiplicative) weighted
path length, thussim(poodle, alsatian) = 0.4 ∗ 0.9 = 0.36.

and
g(P ) = |{i|Pi+1 ISAREDUCPi}|

If P 1, · · · , Pm are all paths connecting X and Y then the
degree to which Y is similar to X can be defined as

sim(X, Y ) = max
j=1,...,m

{
σs(P j)γg(P j)

}
(1)

This similarity can be considered as derived from the onto-
logy by transforming the ontology into a directional weighted
graph, withσ as downwards andγ as upwards weights and
with similarity derived as the product of the weights on the
paths. Figure 2 shows the graph corresponding to the onto-
logy in figure 1. An atomic conceptT can then be expanded
to a fuzzy set, includingT and similar valuesT1, T2, . . . , Tn

as in:

T+ = 1/T + sim(T, T1)/T1 + · · ·+ sim(T, Tn)/Tn (2)

Thus for instance withσ = 0.9 andγ = 0.4 the expansion
of the conceptsdog, animal andpoodleinto sets of similar
values would be:

dog+ = 1/dog + 0.9/poodle + 0.9/alsatian +
0.4/animal

poodle+ = 1/poodle+0.4/dog+0.36/alsatian+
0.16/animal + 0.144/cat

animal+ = 1/animal + 0.9/cat + 0.9/dog +
0.81/poodle + 0.81/alsatian

3.2 General shortest-path similarity
The semantic relations, used in forming concepts in the onto-
logy, indirectly contribute to similarity through subsumption.
For instancenoise[CBY: dog [CHR: black]] is subsumed by -
and thus extensionally included in - each of the more general
conceptsnoise[CBY: dog] andnoise. Thus with a definition
of similarity covering atomic concepts, and in some sense
reflecting the ordering relation (concept inclusion), we can
extend to similarity on compound concepts by a relaxation,
which takes subsumed concepts into account when compar-
ing descriptions.



The principle can be considered to be a matter of subsump-
tion expansion. Any compound concept is expanded (or re-
laxed) into the set of subsuming concepts, thus

noise[CBY : dog[CHR: black]]

is expanded to the set

{noise, noise[CBY : dog],
noise[CBY : dog[CHR: black]]}

One approach to query-answering in this direction is to ex-
pand the description of the query along the ontology and the
potential answer objects along subsumption.

For instance a query ondog could be expanded to a query
on similar values like:

dog+ = 1/dog + . . . + 0.4/animal + . . .

and a potential answer object like
noise[CBY : dog[WRT : black]] would then be expanded
as exemplified above.

While not the key issue here, we should point out the
importance of applying an appropriate averaging aggre-
gation when comparing descriptions. It is essential that
similarity based on subsumption expansion, exploits that
for instance the degree to whichc[r1 : c1] is matching
c[r1 : c1[r2 : c2]] is higher than the degree forc with no at-
tributes is matchingc[r1 : c1[r2 : c2]]. Approaches to aggre-
gation that can be tailored to obtain these properties, based on
order weighted averaging[Yager, 1988] and capturing nested
structuring[Yager, 2000], are described in[Andreasen, 2002a;
2002b].

An alternative to the above described subsumption expan-
sion is to include edges corresponding to semantic relations
in the computation of shortest path similarity as a generaliza-
tion of the principle of aggregating weights by multiplying
cost factors described in the previous subsection. While the
similarity betweenc andc[r1 : c1] can be claimed to be jus-
tified by the ontology formalism (subsumption) or simply by
the fact thatc[r1 : c1] ISA c, it is not strictly correct in an on-
tological sense to claim similarity likewise betweenc1 and
c[r1 : c1].

For instancenoise[CBY : dog] is conceptually not some
kind of a dog. On the other hand it would be reasonable to
claim thatnoise[CBY : dog] in a broad sense has something
to do with (and thus has similarities to)dog (simply sup-
ported by the fact that conceptnoise[CBY : dog] is present
in the base). Most examples tend to reveal the same char-
acteristics and this phenomenon is one good explanation for
the comparative success of conventional word-based query-
ing approaches. Basically the (incorrect) assumption of no
correlation between words in NL phrases, which is underly-
ing any strictly word-based approach, does not lead to serious
failure because the correlation that appears is not dominating.

This could of course be an argument for not looking at
compound concepts at all, but rather these considerations
points in the direction of redrawing some of the importance
of correlation in NL phrases when developing similarity mea-
sures.

Consider figure 3. The solid edges areISA references and
the broken are references by other semantic relations – in

this exampleCBY andCHR are in use. Each compound con-
cept has broken edges to its attribution concept. Strictly the
spelling out of the compound concept expression as the label
of a node is redundant since the concept expression can be
derived from the connecting edges.

Anything

Animal

ISA

Color

ISA

Noise

ISA

Cat

ISA

Dog

ISA

Black

ISA

Brown

ISA

Noise[CBY:Dog[CHR:Black]]

ISA

Cat[CHR:Black]

ISA

Dog[CHR:Black]

ISA

CBY

CHR CHR

Figure 3: An ontology where attribution with semantic rela-
tions is shown as dotted edges.

The principle of weighted path similarity can be general-
ized by introducing similarity factors for the semantic rela-
tions. The extensional arguments used to argue for differen-
tiated weights depending on direction does not apply to se-
mantic relations and seemingly there is no obvious way to
differentiate based on direction at all. Thus one approach in
the generalization is simply to introduce a single similarity
factor and to transform to bidirectional edges.

Assume that we havek different semantic relations
R1, . . . , Rk and letρ1, · · · , ρk be the attached similarity fac-
tors. Given a pathP = (P1, · · · , Pn), setrj(P ) to the num-
ber ofRj edges along the pathP thus:

rj(P ) =
∣∣{ i| Pi Rj Pi+1

}∣∣ (3)

If P 1, · · · , Pm are all paths connectingc1 and c2 then the
degree to which Y is similar to X can be defined as

sim(X, Y ) = max
j=1,...,m

{
σs(P j)γg(P j)ρ1

r1(P j) · · · ρk
rk(P j)

}

(4)
The result of transforming the ontology in figure 3 is shown

in 4 . Here two semantic relationsCHR andCBY are in use.
The corresponding edge count functions arerWRT and rCBY

and the attached similarity factors are denotedρWRT andρCBY.
The figure shows the graph with the attached similarity fac-
tors as weights. Again the degree to which a conceptc1 is
similar to a conceptc2 is based on shortest path (and derived
as the maximum of the products of edge weights over the set
of paths connectingc1 andc2).

For instance we can derive from figure 4
that sim(cat, dog) = 0.9 ∗ 0.4 = 0.36 and
sim(cat[CHR: black], color) = 0.3 ∗ 0.4 = 0.12.
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Figure 4: The ontology of figure 3transformed into a direc-
tional weighted graph with the similarity factors for special-
ization:σ = 0.9, for generalization:γ = 0.4, forCBY : ρCBY =
0.3 and forCHR: ρWRT = 0.2.

The weights in the example are assigned in a rather ad hoc
manner. Such assignment in practice needs a careful effort
by domain experts. Furthermore the similarity principle in
general needs to be verified empirically.

3.3 Shared Nodes Similarity
The shortest path approach described above is straightfor-
ward and does not entail computational problems. However
one aspect that must be assumed to contribute to similarity
is ignored. When two concepts are connected by multiple
paths only the shortest contribute to similarity. Considering
the ontology in figure 4 the similarities betweencat[CHR :
black, CHR : brown] anddog[CHR : black, CHR : brown]
will not be greater than the similarity betweencat anddog.
This example shows that other connections than the short-
est path in some cases should contribute and it also indicates
that similarity should be proportional to the number of pos-
sible paths connecting two concepts. Obviously a similarity
measure that takes into account all possible paths will impose
increased computational complexity and calls for considera-
tions on possible optimization approaches.

In this direction we suggest a similarity measure that uti-
lizes a well-defined subset of all possible paths. The goal then
is to encircle a basis in the form of a subontology for measur-
ing similarity.

In broad terms our simplified “all-possible-paths” ap-
proach is a “shared nodes” approach, where shared nodes be-
tween two concepts are nodes that are “upwards reachable”
from both concepts and where the similarity is proportional
to the number of shared nodes.

To this end we define first the term-decompositionτ(c) and
the upwards expansionω(c) of a concept termc. The term-
decomposition is defined as the set of all subterms ofc, which
thus includes all concepts subsumingc and all attributes of
subsuming concepts forc. The term-decomposition is defined

as follows:

τ(c) = {x|c ≤ x ∨ c ≤ y[r : x], x ∈ L , y ∈ L , r ∈ R}
As an example the termnoise[CBY : dog[CHR: black]] de-
composes to resulting in the set containing the following con-
cepts:

τ(noise[CBY : dog[CHR: black]]) =
{noise[CBY : dog[CHR: black]], noise[CBY : dog]],
noise, dog[CHR: black], dog, black}

The upwards expansionω(C) of a set of termsC is the tran-
sitive closure ofC with respect toISAKB .

ω(C) = {x|x ∈ C ∨ y ∈ C, y ISA x}
This expansion thus only adds atoms to C.

We define further the upwards spanning subgraph (sub-
ontology)γ(C) for a set of conceptsC = {c1, . . . , cn} as
the graph that appears when decomposingC and connect-
ing the resulting set of terms with edges corresponding to the
ISAKB relation and to the semantic relations used in attribution
of elements in C. We define the triple(x, y, r) as the edge of
typer from conceptx to concepty.

γ(C) =
{(x, y, ISA)|x, y ∈ ω(τ(C)), xISAREDUC y}
∪
{(x, y, r)|x, y ∈ ω(τ(C)), r ∈ R, x[r : y] ∈ τ(C)}

Figure 5 shows an example of such an subontology
spanned by the two terms.

Now a shared node between conceptsc1 andc2 is a node
that is reachable from bothc1 and c2. With the example
in figure 5 bothAnimal and Black are shared nodes for
Cat[CHR : Black] andDog[CHR : Black].

Anything

Animal

ISA

Color

ISA

Cat

ISA

Dog

ISA

Black

ISA

Cat[CHR:Black]

ISA

Dog[CHR:Black]

ISA CHR CHR

Figure 5: An example of an upwards spanning subgraph for
the conceptsCat[CHR : Black] and Dog[CHR : Black]
whereAnimal andBlack (andAnything andColor) are
shared nodes.

If we for a conceptc defines α(c) to be the set of
nodes reachable fromc, that is, α(c) = ω(τ(c)), then
α(c1)

⋂
α(c2)) is the set of shared nodes for two concepts

c1 andc2.
A very simple similarity measure based on shared nodes

can be defined as

sim(x, y) =
|α(x) ∩ α(y)|

|α(y)|



It appears that this measure has good properties in sus-
taining to the intuition behind the ontology. First of all
we can see that the similaritysim(cat[CHR : black, CHR :
brown], dog[CHR : black, CHR : brown]) is increased as
compared to the similaritysim(cat, dog). We have that when
c1 ≤ c2 thensim(c1, c2) is smaller thansim(c2, c1) (a gen-
eral concept is not as good as replacement for a specific as
vise-versa). Furthermore it follows that steps along edges be-
come more expensive when the edges are closer to the top of
the ontology.

However it appears thatsim(x, y) is independent of nest-
ings of x. For instance consider the following example
where the similarity betweendog[CHR : white, LOC :
tarmac[CHR : black]] andcat[CHR : black] is equal to the
similarity betweendog[CHR : white, LOC : tarmac[CHR :
black]]. Obviously there is a need for refinement of the sim-
ilarity measure, that takes into consideration the nesting ofx
in sim(x, y). This is subject for further investigation.

The inclusion of non-minimal paths in the computation of
the similarity measure has as a consequence, that the loca-
tions of the concepts in the ontology, influences the measure.
This is due to the fact that concepts in the upper part of the on-
tology have fewer potential paths than concepts in the lower
part. One could argue, from a pragmatic point of view, that
concepts with longer common paths to the top of the onto-
logy are stronger connected, which substantiate the intuition
of increased similarity.

4 Conclusion

We have described different principles for measuring similar-
ity between both atomic and compound concepts, all of which
incorporate meta knowledge.

• Similarity between atomic concepts based on distance in
the ordering relation of the ontology, concept inclusion
(ISAREDUC).

• Similarity between general compound concepts based
on subsumption expansion.

• Similarity between both atomic and general compound
concepts based on shared nodes.

The notion of measuring similarity as distance, either in
the ordering relation or in combination with the semantic re-
lations, seems to indicate a usable theoretical foundation for
design of similarity measures.

The purpose of similarity measures in connection with
querying is of course to look for similar rather than for ex-
actly matching values, that is, to introduce soft rather than
crisp evaluation. As indicated through examples above one
approach to introduce similar values is to expand crisp val-
ues into fuzzy sets including also similar values. Expansion
of this kind, applying similarity based on knowledge in the
knowledge base, is a simplification replacing direct reason-
ing over the knowledge base during query evaluation. The
graded similarity is the obvious means to make expansion a
useful - by using simple threshold values for similarity the
size of the answer can be fully controlled.
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