
Oscar Corcho(1), Mariano Fernández-López(1), Asunción Gómez-Pérez(1) and Manuel Lama(2)

(1) Departamento de Inteligencia Artificial. Facultad de Informática.
Campus de Montegancedo, s/n. Universidad Politécnica de Madrid.

28660 Boadilla del Monte, Madrid. Spain.
email: {ocorcho, mfernandez, asun}@fi.upm.es

(2) Departamento de Electrónica y Computación. Facultad de Física.
Campus Sur, s/n. Universidad de Santiago de Compostela,

15782 Santiago de Compostela, A Coruña, Spain
email: lama@dec.usc.es

Abstract

Semantic Web Services (SWSs) are specified in
a semantic markup language to enable other ser-
vices (and agents) to reason about their capabili-
ties, in order to decide whether a SWS should be
invoked or not. In this paper an environment for
development and description of SWSs is pre-
sented. This environment, called ODE
SWSDesigner, consists of a graphical interface,
which allows users to carry out the design and
characterization of SWSs at a conceptual level,
and a set of software modules, which verify the
design correctness and perform the translations
from the graphical descriptions to the languages
used to specify SWSs. ODE SWSDesigner pro-
vides support for a layer-based framework that
we have proposed with the aim of enabling a
language-independent development of SWSs.
This framework is based on the use of problem-
solving methods that are considered as high-
level specifications from which SWS descrip-
tions can be generated and verified.

1 Introduction
Web Services (WSs) are software modules that describe a
collection of operations that can be network-accessible
through standardized XML messaging [Kreger, 2001].
WSs are distributed all over Internet, and in order to en-
able this accessibility and interactions between WSs, it
becomes necessary an infrastructure offering mecha-
nisms to support the WS discovery and direct invocation
from other services or agents. Nowadays, there are a
number of proposals (usually ecommerce-oriented) that

claim to enable partial or totally this required infrastruc-
ture, such as ebXML [Webber and Dutton, 2000], E-
Speak [Graupner et al., 2000], or BPEL4WS [Curbera et
al., 2002]. However, the approach that has emerged as a
de facto standard, due to its extended use and relative
simplicity, is the Web Service Conceptual Architecture
[Kreger, 2001]. This framework is composed of a set of
layers that, basically, enable: (1) WS publication, where
the UDDI specification [Bellwood et al., 2002] is used to
define the WS capabilities and characterize its provider;
(2) WS description, which use the WSDL language
[Christensen et al., 2001] to specify how the service can
be invoked (input-output messages), and SOAP [Biron
and Malhotra, 2001] as the communication protocol for
accessing to WS; and (3) WS composition, which speci-
fies how a complex service can be created from the com-
bination of other services. The language used to describe
this composition is WSFL [Leymann, 2001].
 In this context, the Semantic Web [Berners-Lee et al.,
2001] has risen as a Web evolution where the informa-
tion is semantically expressed in a markup language
(such as DAML+OIL [Hendler and McGuinness, 2000])
and, thus, both agents and services could access directly
to it. This approach considers that the Web Services in
the Semantic Web, so-called Semantic Web Services
(SWSs), should specify their capabilities and properties
in a semantic markup language [McIlraith et al., 2001;
Hendler, 2000]. This markup would enable other services
to reason about the SWS, and, as a result, decide whether
it match their requirements. Taking this into account, two
frameworks, SWSA [Sollazzo et al., 2001] and WSFM
[Fensel and Bussler, 2002], have been proposed to de-
scribe a semantic Web infrastructure for enabling the
automatic SWS discovery, invocation and composition.

An Environment for Development of Semantic Web Services

Both frameworks use the DAML-S specification
[Ankolenkar et al., 2001], which is a DAML+OIL ontol-
ogy for SWS specification, and emphasize the SWS inte-
gration with de facto standard WS, in order to take ad-
vantage of its current infrastructure.
 On the other hand, Problem-Solving Methods (PSMs)
describe explicitly how a task can be performed
[Benjamins and Fensel, 1998]. The aim of the PSMs is to
be reusable components applicable to different, but simi-
lar, domains and tasks. A PSM description specifies the
tasks in which the PSM is decomposed (methods-tasks
tree); the input-output interactions between the tasks; the
flow control that describes the task execution; the condi-
tions in which a PSM can be applied to a domain or task;
and, finally, the ontology used by the PSM (method on-
tology), that is specified in a general manner to become
PSM reusable in different domains (characterized by a
domain ontology). The UPML specification [Fensel et
al., 2003] provides containers in which these PSM views
can be described, and, also, it incorporate elements that
enable the PSM reuse. UPML has been developed in the
context of the IBROW project [Benjamins et al., 1999]
with the aim of enabling the semi-automatic reuse of
PSMs. This objective could be interpreted as a composi-
tion of PSMs.
 In this work our aim is to provide a development envi-
ronment of SWSs, which would allow the user to design
SWSs on the basis of PSM modeling (at a conceptual
level). This environment also should perform verification
about the soundness and completeness of the design cre-
ated by the user. Once the design is verified, the user will
select the specific languages in which the SWS will be
specified. Thus, the SWS development process supported
by this environment does not depend on a specific SWS
language. These two features (PSM-based and language-
independent design) are the main differences between our
environment and other tools [Narayanan and McIlraith,
2001; Sirin el al., 2003], which use DAML-S to specify
SWS description and composition, and to verify the SWS
consistency.
 The structure of the paper is as follows. In section 2 a
PSM-based framework to develop SWSs (and WSs) is
presented. In section 3 we describe the software architec-
ture of the environment that supports this framework, and
in section 4 the current capabilities of its graphical inter-
face are explained. Finally, in section 5 the main contri-
butions of the work are summarized.

2 Framework for SWS development
The framework that we propose for SWS development is
based on the assumption that, in essence, SWSs (and
WSs) could be considered as PSM specializations. This
specialization means that SWSs do not need to be ex-
pressed in a general manner, because they are not aimed
to be reusable in different domains or tasks. Therefore,
the PSM method ontology is the same ontology as the
one used in the SWS specification.

Relation between PSMs and SWSs
Both SWSs and PSMs are paradigms in which an opera-
tion (or equivalently a method) is executed to perform a
task in a domain, and, as a result, it may obtain new do-
main information or provoke an effect in the real world.
Taking this common objective into account, it seems to
be reasonable to analyze whether PSMs may be used to
enable the publication, description and composition of
both WSs and SWSs.
• Publication. A PSM definition does not usually show

detailed information about its provider or the industry
segment in which the PSM could be included. Al-
though the UPML specification provides some infor-
mation, in order to publish and discover SWSs it be-
comes necessary to extend it with data typically used
in ecommerce interactions, such as quality or geo-
graphical situation of the provider.

• Description. PSM specification details the input-output
interactions between the PSM components (task inter-
actions and method ontology). Figure 1 shows how the
elements which define the WSDL specification (de-

Figure 1. Obtaining WS descriptions (in WSDL) on the basis of
PSM specifications where . We have assumed that the method
ontology is the same ontology as the one used in the WS speci-
fication. If these ontologies were not the same, it would be
necessary to establish the mappings between them.

noted with white boxes) can be completely extracted
from a description of both task interactions and
method ontology (dashed arrows), and from other
WSDL elements (solid arrows). This knowledge will
be enough to describe the SWS in order to enable its
invocation. However, PSMs do not specify the com-
munication protocol that allows them to be invoked
through a network.

• Composition. PSMs specify in detail how a task must
be executed (flow control) and of which elements the
PSM is composed of (methods-tasks tree). These
specifications include the conditions in which the PSM
elements (or subtask) should be executed and how
those elements are combined to obtain the required re-
sult. On the basis of this information, the SWS compo-
sition could be enabled.

Considering this analysis we can conclude that there is a
direct relation between PSMs and SWSs: PSMs can be
used to specify SWSs (and WSs) features that are related
to their internal structure (description and composition).
However, we need to extend the PSM specification with
knowledge related to ecommerce features, to enable SWS
discovery, and communication protocols, to provide net-
work-accessibility.

Framework Requirements
The design of the framework has been guided by a set of
criteria (or requirements) that establish the conditions for
defining an open and extensible framework for SWS de-
velopment. These criteria are the following:

1. SWS conceptual modeling. SWS development must be
carried out at conceptual level: characterization and
description of the SWS capabilities and internal struc-
ture (for composition and description) cannot depend
on specific languages that could limit the expressive-
ness of the SWS model.

2. Integration with Web Service standards. SWS specifi-
cations should be integrated with Web service de facto
standards (both frameworks and languages) to be able
to use its benefits and the current infrastructure that
supports these standards [Sollazzo et al., 2001]. This
criterion complements the SWS conceptual modeling,
because it fixes the specific languages the SWS model
must be translated to.

3. Modular design. The framework must be composed of
a set of independent, but related, modules, which con-
tain knowledge about different views of the SWS de-
velopment process. This criterion guarantees the exten-
sibility of the framework, because we can include new
modules without modifying the others.

2.1 Layer-Based Framework
In order to cover these criteria we propose a framework
with a layered design, whose layers are identified follow-
ing a generality criterion, from the data types (lower
layer) to the specific languages in which SWSs will be
expressed (higher layer). Each layer is described by an
ontology that defines its elements on the basis of well-
known standards. These ontologies (or layers) are the
following (see figure 2):
• Data Types (DT) Ontology. It contains the data types

associated with the concept attributes of the domain
ontology. The data types included in the DT ontology
are the same as the ones defined in the XML Schema
Data Types specification [Biron and Malhotra, 2001].

• Knowledge Representation (KR) Ontology. It describes
the representation primitives used to specify the do-
main ontology managed by SWSs in its operations.
That is, the components of the domain ontology will be
KR instances. KR ontology is needed because tools
that use the framework higher ontologies (PSM and
SWS ontologies) could need to reason about the do-
main ontology itself. For example, preconditions of a
method could impose that the input-output data should
be “attributes”. Usually, the KR ontology will be asso-
ciated with the knowledge model of the tool used to
develop the domain ontology.

• PSM Description Ontology. This ontology describes
the elements that compose a PSM, which, as we have
previously discussed, can be used to generate SWS de-
scriptions. The PSM ontology is constructed following
the UPML specification [Fensel et al., 2003], that has
been extended with (1) a programming structures on-
tology, which describes the primitives used to specify
the PSM flow control (such as conditional and parallel

Figure 2. Framework for SWS development. It is composed of
a set of design layers, each one described by an ontology that is
based on well-known specifications (de facto standards).

loops, conditional statements, etc.); (2) inferences,
which are new PSM elements defined as in the Com-
monKADS knowledge model [Schreiber et al., 1999],
that is, as building blocks for reasoning processes; and
(3) relations among PSM elements to explicitly declare
whether an element may be executed independently of
the others or not and whether they can be invoked by
an external agent (or service). On the other hand, the
PSM ontology contains a number of axioms that con-
strains how PSM element instances are created. That
guarantees the soundness of the PSM model. For ex-
ample, it exists an axiom establishing that the inputs
method must be covered by the inputs associated with
the tasks that compose the method.

• SWS Ontology. This ontology is constructed on the ba-
sis of the PSM description ontology, which is extended
with both knowledge related to ecommerce interac-
tions, which enable the publication and advertisement
of services, and communication protocols. These ex-
tensions are performed using the DAML-S specifica-
tion as reference [Ankolenkar et al., 2001], because it
describes containers to include these types of knowl-
edge.

• Standard Language Ontologies for Web Services. They
describe the elements associated with the de facto Web
standard languages for service publication (UDDI), de-
scription (WSDL/SOAP), and composition (WSFL).
These ontologies complete the SWS specification, be-
cause they facilitate its integration in the current infra-
structure of the Web.

This framework satisfies the design requirements. In ef-
fect, conceptual modeling of SWSs is performed in the
PSM layer, which is not constructed following a specific
language, but is modeled at knowledge level [Newell,
1982]; integration with Web service standards is explic-
itly enabled in the framework highest layer, which, if
required, could be easily extended to include new stan-
dards; and, finally, modular design is associated with the
layered approach itself.

3 Environment for SWS development
In order to provide support for the framework, we have
developed an environment with the aim of allowing users
to design the conceptual model of a SWS by means of a
graphical interface. Once this model is created, it could
be exported to a DAML+OIL specification (such as
DAML-S), which will be complemented with Web ser-
vice standard languages. This environment, called ODE
SWSDesigner, has been designed following the frame-
work requirements: to develop an open and easily exten-
sible environment that, if required, could be adapted to
support new SWS (and WS) specification languages or
frameworks.

 In addition, ODE SWSDesigner is integrated into We-
bODE [Arpírez et al., 2001], which is a workbench for
ontology development that provides additional services
for exporting ontologies to different languages (such as
DAML+OIL, RDF, etc.), merging and evaluating ontolo-
gies, and reasoning with ontologies using their axioms.
Integration in WebODE will allow SWSDesigner to in-
voke those services whose capabilities needs in its opera-
tion, such as services for exporting an ontology (SWS
and PSM) to a specific language (DAML+OIL and Java
respectively) or checking constrains in ontologies.

3.1 Software Architecture
In accordance with the proposed framework, the design
and development of SWSs could be viewed as the proc-
ess of instantiating an ontology set that contains the
knowledge needed to generate the SWS specifications.
Software architecture of ODE SWSDesigner is based on
this consideration and, as we can see in figure 3, it is
composed of two different types of modules: a graphical
interface, which allows the users to develop SWSs at a
conceptual level, and a set of instance processors, which
are software modules that process the SWS graphical
descriptions (created by the users) to generate the in-
stances associated with the ontologies of the framework,
and, if required, to check the correctness of the generated
instances. The instance processors, which have been in-
cluded in WebODE as services, are the following:
• KR service. This processor gets as input the ontology

used in SWS operation (usually the domain ontology)
and establishes the instances associated with the KR
and Data Types ontologies. The domain ontology can
be available in WebODE or could be translated from
an ontology language into the WebODE specification.
In both cases, this processor will invoke the ODE ser-
vice to access to the domain ontology elements, which
are saved in a database (figure 3).

• PSM service. It uses the graphical descriptions of the
SWS model created by the user to generate an instance
set that describes completely the PSM internal struc-
ture and flow control (PSM model). Once the instance
set is created, this processor must invoke the inference
WebODE service [Corcho et al., 2002] to verify the
soundness and completeness of the PSM model. In this
verification the axioms that constrain how the PSM
elements can be combined with each other are used.
For example, if we defined a general service that is de-
composed in two sub-services, it is necessary to verify
that the inputs of these sub-services have the same (or
subsumed) type as the general service inputs. In order
to perform this verification, the PSM processor must
operate with an explicit description of the representa-
tion primitives in which the domain ontology will be
instanced.

• SWS service. Instances created by this processor will
enhance the knowledge included in PSM ontology in-
stances by adding the information used in ecommerce
interactions. This information will be directly obtained
from the graphical interface.

These three instance processors represent the SWSDesigner
core, because they support the generation of the SWS model
and their operation does not depend on the languages in
which the SWS will be expressed. Thus, these processors
will be modified only if their associated layers are changed.
• WSLang service. It gets as inputs the SWS ontology in-

stances and generates an instance set from which the
SWS model is specified in UDDI, WSDL/SOAP and
WSFL languages.

• DAML-S service. It obtains the DAML-S specification
of the SWS getting as inputs the instances of the SWS
ontology. This operation, nevertheless, is not straight-
forward because in the DAML-S ontology a service is
modeled as a process, while in our framework a ser-
vice is considered to be a specialization of a PSM (or

method). Once this operation is performed, this proces-
sor must invoke the WebODE service that exports an
ontology to the DAML+OIL language.

• Java service. Using the PSM ontology instances, this
processor generates the skeleton of the programming
code (Java beans) needed to execute the SWS and per-
form its operation. Once this code has been created, the
user must fill in the methods responsible of carrying
out the operation modeled in the PSM.

These three processors represent SWSDesigner additional
processors, because they have been specifically included
into the framework to obtain SWS (or WS) specifications
in various languages. This means that these processors
would be changed (or substituted) if it was required to
use other languages or if the core processors were also
modified.

On the other hand, instance processors are directly in-
voked from the graphical interface when the users, after
creating the SWS conceptual model, require to export
that model to well-known WS languages or when the
graphical interface itself needs to verify whether an op-
eration carried out by the user has generated an inconsis-
tent model of the SWS.

4 Graphical Interface
ODE SWSDesigner graphical interface is based on the
assumption that the design and development of a service
should be performed from different, but complementary,
points of view (such as in PSM modeling). These differ-
ent views help the user to understand the internal struc-
ture of a service and the interactions between its compo-
nents (sub-services). Taking this into account, the
graphical interface contains the following views, which
reflect how PSMs are designed (see example of figure 4):
• Definition view. In this view the user defines a service

by specifying its name (mandatory) and, optionally, by
introducing the information needed for enabling ser-
vice discovery and advertisement, such as a description
of the provider that offers the service, the types of
business for which the service is oriented (industry
classifications), etc.

• Decomposition view. This view allows the user to spec-
ify (and also create) the services (sub-services) that
could be executed when a service (composite) is acti-
vated. That is, a service hierarchy is specified. This
hierarchy could be used for service composition and
for checking inconsistencies in the other graphical in-
terface views.

• Interaction view. In this view the input-output interac-
tions between the sub-services of a composite service
are specified. This operation requires that the domain
ontology be previously loaded from WebODE data-
base to the graphical interface. Figure 4 shows the
main window of the ODE SWSDesigner, where we

Figure 3. ODE SWSDesigner software architecture. The in-
stance processors are integrated into WebODE as services,
which perform translations between the adjacent ontologies (or
layers) of the framework proposed for developing SWSs.

can see the specification of the interactions between
the sub-services of buyMovieTicket composite service.
All these services have been created in the decomposi-
tion view, which generates the service tree shown in
the right side of figure 4.

• Flow control view. In this view the user specifies the
flow control of a service, where its sub-services are
combined with programming structures to obtain a de-
scription of the service execution. This view, which is
not implemented yet, will be used to model the service
composition by means of several diagrams that the
user will create to describe the different compositions
of services. On the other hand, this view and the de-
composition view could be used to export to languages
(as WSFL) that specify the service composition.

The graphical interface guarantees the soundness and
completeness of the models that have been created in
each one of its views. For example, if the user specifies
that a service is composed of three sub-services (decom-
position view), the graphical interface will invoke the

PSM processor to assure that the interaction view con-
tains exactly those three services (as shown in figure 4).

5 Conclusions
ODE SWSDesigner enables the users to develop SWSs
following a PSM-oriented design, which is based on a
language-independent framework for SWS development.
Furthermore, ODE SWSDesigner will assure the sound-
ness and completeness of the SWS designs created by the
users. Once the SWS design correctness is verified, the
user can select the languages in which the SWS will be
described. Thus, in ODE SWSDesigner the user does not
need to know specific details about the languages used to
specify the SWSs.

Nowadays, we have implemented the definition,
composition and interaction views of the graphical
interface, and DAML-S is the current SWS language into
which the designed SWS are translated. In addition, we
are extending the PSM and SWS ontology with new
axioms. These extensions will allow us to cover
additional conditions to check SWS consistency and
completeness.

Figure 4: Main window of the ODE SWSDesigner graphical interface. The example shows the input-output inter-
actions among the sub-services that compose the buyMovieTicket, where ellipses and rectangles represent sub-
services and concepts/attributes respectively.

 On the other hand, the ODE SWSDesigner integration
in WebODE has simplified its software architecture and
implementation, because (1) it uses directly the WebODE
services, which offer support for ODE SWSDesigner op-
erations; and (2) it uses the infrastructure itself that We-
bODE provides for including software modules as ser-
vices, which could be easily accessed form the graphical
interface. Thus, the integration in WebODE favors the
ODE SWSDesigner modularity, which is a key require-
ment to adapt the environment to new standard languages
or frameworks.

References
[Ankolenkar et al., 2001] A Ankolenkar, M Burstein, JR
Hobbs, O Lassila, DL Martin, SA McIlraith, S
Narayanan, M Paolucci, T Payne, K Sycara, and H Zeng.
DAML-S: Semantic Markup for Web Services.
Proceedings ot the First Semantic Web Working
Symposium, pages 411−430, July−August 2001.

[Arpírez et al., 2001] J.C. Arpírez, O. Corcho, M. Fer-
nández-López, and A. Gómez-Perez. WebODE: a scal-
able ontological engineering workbench. Proceedings of
the First International Conference on Knowledge Cap-
ture, Victoria, Canada, October 2001.

[Bellwood et al., 2002] T. Bellwood, L. Clément, D. Eh-
nebuske, A. Hately, M. Hondo, Y.L. Husband, K.
Januszewski, S. Lee, B. McKee, J. Munter, and C. von
Riegen. UDDI Version 3.0. Published Specification.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm,
July 2002.

[Benjamins et al., 1999] V.R. Benjamins, B. Wielinga, J.
Wielemaker, and D. Fensel. Brokering Problem-Solving
Knowledge at the Internet. Proceedings of the European
Knowledge Acquisition Workshop (EKAW-99), Lecture
Notes in Artificial Intelligence, LNAI 1621, May 1999.

[Benjamins and Fensel, 1998] V.R. Benjamins and D.
Fensel. Special Issue on Problem-Solving Methods. In-
ternational Journal of Human-Computer Studies
(IJHCS), 49(4):305−313, 1998.

[Berners-Lee et al., 2001] T Berners-Lee, J Hendler, and
O Lassila. The Semantic Web. Scientific American,
284(5):34−43, 2001.

[Biron and Malhotra, 2001] PV Biron and A Malhotra.
XML Schema Part 2: Datatypes. http://www.w3c.org/TR/
2001/REC-schema-2-20010502, May 2001.

[Box et al., 2000] D. Box, D. Ehnebuske, G. Kakivaya,
A. Layman, N. Mendelsohn, H.F. Nielsen, S. Thatte, and
D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508,
May 2000.

[Christensen et al., 2001] E Christensen, F Curbera, G
Meredith, and S Weerawarana. Web Services Description
Language (WSDL) 1.1. http://www.w3c.org/TR/2001/
NOTE-wsdl-20010315, March 2001.

[Corcho et al., 2002] O Corcho, M Fernández-López, A
Gómez-Pérez, and O Vicente. WebODE: An Integrated
Workbench for Ontology Representation, Reasoning and
Exchange. Proceedings of the Thirteenth International
Conference on Knowledge Engineering and Knowledge
Management (EKAW’02), LNAI 2473, pages 138−153,
Sigüenza, Spain, October 2002.

[Curbera et al., 2002] F. Curbera, Y. Golan, J. Klein, F.
Leymann, D. Roller, S. Thatte, and S. Weerawarana.
Business Process Execution Language for Web Services.
Version 1. http://www.ibm.com/developerworks/library/
ws-bpel, July 2002.

[Fensel and Bussler, 2002] D. Fensel and C. Bussler. The
Web Service Modeling Framework WSMF. Proceeding
of the NSF-EU Workshop on Database and Information
Systems Research for Semantic Web and Enterprises,
pages 15−20, Georgia, USA, April 2002.

[Fensel et al., 2003] D. Fensel, E. Motta, F. van Har-
melen, V.R. Benjamins, M. Crubezy, S. Decker, M. Gas-
pari, R. Groenboom, W. Grosso, M. Musen, E. Plaza, G.
Schreiber, R. Studer, a B. Wielinga. The Unified Prob-
lem-solving Method Development Language UPML.
Knowledge and Information Systems (KAIS): An Interna-
tional Journal, 2003. To appear.

[Gómez-Pérez and Corcho, 2002] O Corcho and A Gó-
mez-Pérez. Ontology languages for the Semantic Web.
IEEE Intelligent Systems, 17(1):54−60, 2002.

[Graupner et al., 2000] S. Graupner, W. Kim, D. Lenkov,
and A. Sahai. E-Speak an enabling infrastructure for
Web-based e-services. Proceedings of the International
Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet,
L’Aquila, Italy, July−August 2000.

[Hendler, 2000] J. Hendler. Agents and the Semantic
Web. IEEE Intelligent Systems, 16(2):30−37, 2001.

[Hendler and McGuinness, 2000] J. Hendler and D.
McGuinness. The DARPA Agent Markup Language.
IEEE Intelligent Systems, 15(6):72−73, 2000.

[Kreger, 2001] H Kreger. Web Services Conceptual Ar-
chitecture (WSCA 1.0). http://www.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf, May 2001.

[Leymann, 2001] F Leymann. Web Service Flow Lan-
guage (WSFL 1.0).

http://www.ibm.com/software/solutions/webservices/pdf/
WSDL.pdf, May 2001.

[McIlraith et al., 2001] SA. McIlraith, TC Son and H
Zeng. Semantic Web Services. IEEE Intelligent Systems,
16(2):46−53, 2001.

[Narayanan and McIlraith, 2001] S Narayanan and SA
McIlraith. Simulation, Verification and Automated Com-
position of Web Services. Proceedings of the Eleventh
International World Wide Web Conference (WWW-2002),
pages 77−88, Hawaii, USA, May 2002.

[Newell, 1982] A Newell. The Knowledge Level. Artifi-
cial Intelligence, 18(1):87–127, 1982.

[Schreiber et al., 1999] G Schreiber, H Akkermans, A
Anjevierden, R de Hoog, H Shadbolt, W van de Welde
and B Wielinga. Knowledge engineering and manage-
ment. The CommonKADS Methodology. MIT Press,
Cambridge, Massachusets, 1999.

[Sirin el al., 2003] E. Sirin, J. Hendler, and B. Parsia.
Semi-automatic composition of Web Services using Se-
mantic Descriptions. Proceeedings of the Workshop on
Web Services: Modeling, Architecture and Infrastructure
in conjunction with ICEIS’2003. Accepted.

[Sollazzo et al., 2001] T Sollazzo, S Handshuch, S Staab,
and M Frank. Semantic Web Service Architecture −
Evolving Web Service Standards toward the Semantic
Web. Proceedings of the Fifteenth International FLAIRS
Conference, Pensacola, Florida, May 2002.

[Webber and Dutton, 2000] D Webber and A. Dutton.
Understanding ebXML, UDDI and XML/edi.
http://www.xmlglobal.com/downloads/ebXML_understan
ding.pdf, October 2000.

