
Abstract
We are developing a general end-to-end approach,

called Disciple, for building and using personal problem
solving and learning agents. This approach raises complex
challenges related to ontology specification, import, elici-
tation, learning, and merging, that we have explored to
various degrees, as we are developing successive versions
of Disciple. This paper presents some of these challenges,
our current solutions and the future directions, that are
relevant for building agents in general.

1 Introduction
The long term objective of our research is to develop the
science and technology that will allow typical computer
users to train and use their personal intelligent assistants.
Our approach to this problem is to develop a series of
increasingly more capable agents from the Disciple fam-
ily of learning agent shells [Tecuci, 1998; Tecuci et al.,
2002]. A Disciple agent can be initially trained by a sub-
ject matter expert and a knowledge engineer, in a way
that is similar to how an expert would teach an appren-
tice, through problem solving examples and explanations.
Once trained to a significant level of competence, copies
of the agent are handed over to typical computer users.
These agents then assist their users through mixed-
initiative reasoning, increasing their recall, speed and
accuracy, without impeding their creativity and flexibil-
ity. In the same time, the assistants continue to learn
from this joint problem solving experience, adapting to
their users to become better collaborators that are aware
of users’ preferences, biases and assumptions.

The process of building and using such problem solv-
ing and learning agents raises complex challenges related
to ontology specification, import, elicitation, learning,
and merging, that we have explored to various degrees,
as we are developing successive versions of Disciple.
The goal of this paper is to present some of these chal-
lenges, our current solutions and the future directions,
that are relevant for building agents in general.

In the last three years, the development of the Disciple
approach was driven by the attempt to find an automatic
solution to the complex Center of Gravity (COG) analy-
sis problem, in collaboration with the US Army War Col-

lege. The center of gravity of a force (state, alliance, coa-
lition or group) represents the foundation of capability,
power and movement, upon which everything depends
[Clausewitz, 1976]. In any conflict, a force should con-
centrate its effort on its enemy’s center of gravity, while
adequately protecting its own. As a consequence, the ex-
amples used in this paper will be from the COG domain,
but they will not require an understanding of this domain.

The rest of this paper is organized as follows. The next
section discusses the use of the ontology for representa-
tion, communication, problem solving, and learning, both
in general, and in the context of the Disciple family. Sec-
tion 3 gives an overview of the Disciple agent building
methodology, stressing the ontology-related activities.
Then sections 4 to 7 discuss in more details some of our
main results on ontology specification, exception-based
ontology learning, example-based ontology learning, and
ontology import and merging. These sections will include
experimental results and plans for future research.

2 Knowledge representation for
problem solving and learning

A Disciple learning agent shell includes general problem-
solving and learning engines for building a knowledge
base consisting of an object ontology that specifies the
terms from a particular domain, and a set of problem
solving rules expressed with these terms [Tecuci et al.,
2002]. The problem-solving engine is based on the gen-
eral task reduction paradigm. In this paradigm, a task to
be performed is successively reduced to simpler tasks, by
applying task reduction rules. Then the solutions of the
simplest tasks are successively combined, by applying
solution composition rules, until they produce the solu-
tion of the initial task.

The object ontology is a hierarchical representation of
the objects and types of objects from the application do-
main. It represents the different kinds of objects, the
properties of each object, and the relationships existing
between objects. A fragment of the object ontology for
the COG domain is shown in the bottom part of Figure 1.

The reduction rules are IF-THEN structures that ex-
press how and under what conditions a certain type of
task may be reduced to simpler subtasks. The reduction

Ontologies for Learning Agents: Problems, Solutions and Directions

Bogdan Stanescu, Cristina Boicu, Gabriel Balan, Marcel Barbulescu,
Mihai Boicu, Gheorghe Tecuci

4A5, Learning Agents Laboratory, George Mason University
4400 University Dr., Fairfax, VA-22030, US

{bstanesc, ccascava, gbalan, mbarbule, mboicu, tecuci}@gmu.edu

rule are paired with IF-THEN composition rules that ex-
press how and under what conditions the solutions of the
subtasks may be composed into the solution of the task.
An example of a simple task reduction rule is shown in
the right hand side of Figure 1. In this case the IF task is
reduced to its solution.

The learning engines use several strategies to learn the
rules and to refine the object ontology. At the basis of the
learning methods are the notion of plausible version
space [Tecuci, 1998; Boicu, 2002] and the use of the ob-
ject ontology as an incomplete and partially incorrect
generalization hierarchy for learning.

A plausible version space is an approximate represen-
tation for a partially learned concept, as illustrated in
Figure 2. The partially learned concept is represented by
a plausible upper bound concept which, as an approxima-
tion, is more general than the concept Eh to be learned,
and by a plausible lower bound concept which, again as
an approximation, is less general than Eh. During learn-
ing, the two bounds (which are first order logical expres-
sions) converge toward one another through successive
generalizations and specializations, approximating Eh
better and better.

The partially learned knowledge pieces from the
knowledge base of Disciple are represented with plausi-
ble version spaces. Notice, for example, that the IF-
THEN rule from the bottom right part of Figure 1 does
not have a single applicability condition but two condi-

tions (Plausible Lower Bound Condition and Plausible
Upper Bound Condition) that define the plausible version
space of the exact condition of the rule. Similarly, each
partially learned feature F from the object ontology has
its domain and range represented as plausible version
spaces. The domain to be learned of the feature F is a
concept that represents the set of objects that could have
the feature F. Similarly, the range to be learned is a con-
cept that represents the set of possible values of F.

The object ontology plays a crucial role in Disciple,
being at the basis of user-agent communication, problem
solving, knowledge acquisition and learning. First of all,
the object ontology provides the basic representational
constituents for all the elements of the knowledge base.
When an expert teaches a Disciple agent, the expert ex-
presses his/her reasoning process in natural language, as
illustrated by the task reduction example in the upper left
side of Figure 1. The top task is the task to be reduced.
In order to reduce this task the expert asks a relevant

Figure 2: A representation of a plausible version space

Universe of
Instances Eh

Plausible
Upper Bound

Plausible
Lower Bound

Figure 1: Ontology based rule learning.

I need to

Therefore
The will_of_the_people_of_Caribbean_States_Union is not a
strategic_COG_candidate with respect to the
people_of_Caribbean_States_Union

Analyze the will_of_the_people_of_Caribbean_States_Union as
a potential strategic_COG_candidate of the OECS_Coalition
with respect to the people_of_Caribbean_States_Union

Is the will_of_the_people_of_Caribbean_States_Union
a legitimate candidate?

No
IF
Analyze the will of the people as a potential strategic COG
candidate of a force with respect to the people of a force

The will is ?O2
The force is ?O1
The people are ?O3

THEN:
The will of the people is not a strategic_COG_candidate
with respect to the people of a force

The will is ?O2
The people are ?O3

Explanation
?O1 has_as_member?O4
?O4 has_as_people ?O3
?O3 has_as_will ?O2

Plausible Lower Bound
Condition

?O1 is dominant_partner_
multi_state_alliance
has_as_member ?O4

?O2 is will_of_people
?O3 is people

has_as_will ?O2
?O4 is single_state_force

has_as_people ?O3

IF
Analyze the ?O2 as a potential strategic_COG_candidate
of the ?O1 with respect to the ?O3
Question: Is the ?O2 a legitimate candidate?
Answer: No

Plausible Upper Bound
Condition

?O1 is multi_member_force
has_as_member ?O4

?O2 is will_of_agent
?O3 is people

has_as_will ?O2
?O4 is force

has_as_people ?O3

THEN
The ?O2 is not a strategic_COG_candidate with respect to
the ?O3

will_of_the_
people_of_
Caribbean_

States_Union

Rule

people_of_
Caribbean_

States_Union

has_as_
will

Caribbean_
States_
Union

OECS_
Coalition

has_as_
people

has_as_
member

people will-of-people

will-of-agentagent

object

force

multi_member_
force

dominant_partner_
multi_state_alliance

multi_state_alliance

single_member_
force

single_state_force

Example

question. The answer to this question leads to the reduc-
tion of this task to a solution. As the expert types these
expressions using natural language, the agent interacts
with him/her to replace certain phrases with the ontology
terms they designate (e.g. “will of the people of Carib-
bean State Union” or “strategic COG candidate”). The
recognition of these terms facilitates the understanding of
the expert’s phrases and the learning of a general rule
from this specific example. The learned rule has an in-
formal structure (shown in the top right part of Figure 1)
and a formal structure (shown in the bottom right part of
Figure 1). The informal structure preserves the natural
language of the expert and is used in agent-user commu-
nication. The formal structure is used in the actual rea-
soning of the agent. Notice that the two plausible version
space conditions from the formal structure are expressed
with the terms from the object ontology. The formal tasks
and their features are also part of the task ontology, and
feature ontology, respectively.

As mentioned above, the object ontology has a
fundamental role in learning, being used as a
generalization hierarchy. Indeed, notice that the specific
instances from the example (“will of the people of
Caribbean State Union”, “OECS Coalition”, “people of
Caribbean State Union”) are replaced in the learned rule
with more general concepts from the object ontology
(“will of agent”, “multi member force”, “people”), and
their relationships.

While the corresponding learning algorithm is pre-
sented in [Boicu et al., 2000; Boicu 2002], it is important
to stress here that the agent’s generalization hierarchy
(the object ontology) is itself evolving during learning
(as discussed in sections 4, 5, and 6). Therefore Disciple
addresses the complex and more realistic problem of
learning in the context of an evolving representation lan-
guage. The next section gives an overview of the agent
building methodology, stressing the ontology-related
activities.

3 Agent building methodology
The Disciple learning agent shell could be used to rapidly
develop a Disciple agent for a specific application do-
main, by following the steps from Figure 3. There are
two main phases in this process: the development of an
initial object ontology and the teaching of the agent. The
first phase has to be performed jointly by a knowledge
engineer and a subject matter expert. The second phase
may be performed primarily by the subject matter expert,
with limited assistance from a knowledge engineer.

During domain analysis and ontology specification, the
knowledge engineer works with the subject matter expert
to develop an initial model of how the expert solves
problems, based on the task reduction paradigm. The
model identifies also the object concepts that need to be
represented in Disciple’s ontology so that it can perform
this type of reasoning. These object concepts represent a
specification of the ontology needed for reasoning.

During ontology import and development, this specifi-
cation guides the process of importing ontological
knowledge from existing knowledge repositories, such as
CYC [Lenat, 1995], as discussed in section 7. However,
not all the necessary terms will be found in external re-
positories and therefore the knowledge engineer and the
subject matter expert will also have to extend the im-
ported ontology using the ontology development tools of
Disciple. For instance, Figure 4 shows the interfaces of
three different ontology browsers of Disciple, the asso-
ciation browser (which displays and objects and its rela-
tionships with other objects), the tree browser (which
displays the hierarchical relationships between the ob-
jects in a tree structure), and the graphical browser
(which displays the hierarchical relationships between
the objects in a graph structure).

Once the object ontology is developed, the knowledge
engineer has to define elicitation scripts using the Script
Editor of Disciple. The elicitation scripts will be exe-
cuted by the Scenario Elicitation tool, guiding the user of
Disciple to define a specific scenario or problem solving
situation (e.g. the current war on terror, including the
characteristics of the participating forces, such as US and
Al Qaeda). This process will be described in more detail
in section 4. The result of this initial KB development
phase is an object ontology with instances characterizing
a specific scenario.

In the next major phase, the subject matter expert will
use the current scenario to teach Disciple how to solve
problems (e.g. how to determine the centers of gravity of
the opposing forces in the current war on terror).

First, the expert will interact with the Modeling advi-
sor tool of Disciple. This tool will assist the expert to
express his or her reasoning process in English, using the
task reduction paradigm. The result of this process will
be task reduction steps like the one from the upper left
part of Figure 1. These steps may also include new terms
that are not yet present in the object ontology of Disciple.
Each such term is an example for learning a general con-

Figure 3: Main agent development processes.

Domain analysis and
ontology specification

Ontology import
and development

Scenario specification

Ontology
learning

Modeling the problem
solving process

Exception based
KB refinement

Mixed
initiative
problem
solving

Ontology
refinement

Rules
learning

Rules
refinement

cept or a general feature using the Ontology learning
method discussed in section 6. Also, each specific rea-
soning step formulated with the Modeling advisor is an
example from which a general rule is learned using the
Rule Learning tool. An example of such a rule is pre-
sented in the right hand side of Figure 1.

As Disciple learns more rules, the interaction with the
subject matter experts evolves from a teacher-student
type of interaction to an interaction where both collabo-
rate in solving a problem. This interaction is governed by
the mixed-initiative problem solving tool. In this case,
Disciple uses the partially learned rules to propose solu-
tions to the current problems, and the expert’s feedback
will be used by the Rule Refinement tool and the Ontol-
ogy Refinement tool to improve both the rules and the
ontology elements involved in the rules’ applications.

There is no fixed sequence of tool invocations. Instead,
they are used opportunistically, based on the current
problem solving situation. For example, while the expert
and Disciple are performing mixed-initiative problem
solving, the expert may need to define a new reduction
that requires modeling, rule learning and rule refinement.

Because the rule learning and refinement processes
take place in the context of an incomplete and partially
incorrect object ontology, some of the learned rules may
accumulate exceptions. In such a case, the exception-
based KB refinement tool may be invoked to extend or
correct the object ontology and to correspondingly refine
the rules. This process will be presented in section 5.

Because one of the goals of this research is the rapid
development of knowledge bases, the Disciple shell also
includes tools to merge the ontologies and the rules de-
veloped in parallel by the subject matter experts. Section
7 discusses this issue in more detail.

In the last three years we have performed extensive
experiments with Disciple at the US Army War College,
where it is used in two courses, Case Studies in Center of
Gravity Analysis (the COG course), and Military Appli-
cations of Artificial Intelligence (the MAAI course). In
the COG course, Disciple is used as an assistant that was
trained by the instructor, helping the students to perform

a COG analysis of a scenario and to generate an analysis
report. Over 95% of the students from the 2002 Terms II
and III sessions of this course agreed with the following
statement: Disciple helped me to learn how to perform a
strategic center of gravity analysis of a scenario. In the
follow-on MAAI course, the students taught personal
Disciple agents their own expertise in COG analysis. Af-
ter the experiments conducted in Spring 2001 and Spring
2002, 19 of the 25 students agreed (and 6 were neutral)
with the statement: I think that a subject matter expert
can use Disciple to build an agent, with limited assis-
tance from a knowledge engineer.

The following sections will provide more details on
some of the most important ontology-related processes of
the Disciple agent development methodology, as well as
results from the above experiments.

4 Scenario specification
As part of the initial ontology development, the knowl-
edge engineer uses the Script Editor to define elicitation
scripts that specify how to elicit the description of a sce-
nario from the user. These scripts are associated with the
concepts and features from the ontology. Each script has
a name, a list of arguments, and it specifies how to dis-
play the dialog with the user, the questions to ask the
user, how to store the answers in the ontology, and what
other scripts to call. Table 1 shows the script “elicit gov-
ernment type” associated with the concept “state gov-
ernment”.

The elicitation scripts are executed by the Scenario
Elicitation tool. As illustrated in Figure 5, the left hand
side of the Scenario Elicitation interface displays a table
of contents. When the expert clicks on one of these titles,
questions that elicit the corresponding description are
displayed in the right hand side of the screen. The use of
the elicitation scripts allows a knowledge engineer to
rapidly build a customized interface for a Disciple agent,
thus effectively transforming this software development
task into a knowledge engineering one.

The Protégé system [Noy et al., 2000] has a similar
capability of using elicitation scripts to acquire instances
of concepts. However, Disciple extends Protégé in sev-
eral directions. In Disciple the expert does not need to
see or understand the object ontology in order to answer
the questions and describe a scenario. Instead, the expert-
agent interaction is directed by the execution of the
scripts. Once the expert answers some questions or up-

Figure 4: Association, tree, and hierarchical browsers.

Table 1: Sample elicitation script.
Script: state_government.elicit government type
Arguments: <force-name>, <government-name>
Control: single-selection-list

Question: What type of government does <force-name> have?
Answer variable: <government-type>
Possible values: the elementary subconcepts of state_government
Allow adding new subconcepts: Yes

Ontology actions:
<government-name> instance-of <government-type>

Script call: <government-type>.elicit properties
Arguments: <government-name>

dates his answers, new titles may be inserted into the
table of contents, as directed by the script calls. For in-
stance, after the expert specifies the opposing forces in a
scenario, their names appear as titles in the table of con-
tents, together with the characteristics that need to be
elicited for them. Experimental results show that the ex-
perts can easily use the Scenario Elicitation module [Te-
cuci et al., 2002].In Protégé, each concept has exactly
one script that specifies how to elicit the properties of its
instances. In Disciple, a concept can have any number of
scripts that can be used for any purpose. In particular, the
knowledge engineer can define more scripts that specify
how to elicit instances for the same concept. For in-
stance, to elicit the military factors for a single-state
force, different questions have to be asked if the force is
part of an alliance, or is a standalone opposing force.

The most recent development of the Scenario Elicita-
tion tool is to allow the user to extend the ontology with
new concepts in a controlled manner. For instance when
the script from Table 1 is executed, the user can specify a
new type of state government (e.g. “feudal god-king gov-
ernment”), as illustrated in Figure 5. As a result a new
concept is created under “state government”. As future
developments, we plan to extend the capability of the
Script Editor to facilitate the script definition task for the
knowledge engineer, by taking into account the structure
of the ontology and by using customization of generic
scripts. We also plan to add natural language processing
capabilities to the Scenario Elicitation module.

5 Exception-based ontology learning
As we have mentioned in section 2, the object ontology
plays a crucial role in the learning process of the agent,
as it is used as the generalization hierarchy for learning.
However, this ontology is itself incomplete and partially
incorrect and will have to be improved during the teach-
ing of the agent. In this section we will briefly present an
exception-based approach to ontology learning.

Because the ontology is incomplete, it may not contain
the knowledge to distinguish between all the positive
examples and the negative examples of a learned rule,

such as the one presented in Figure 1. As a result, a rule
may accumulate negative and positive exceptions.

A negative exception is a negative example that is cov-
ered by the rule because the current object ontology does
not contain any knowledge that distinguishes the negative
example from the positive examples of the rule [Tecuci,
1998; Boicu et al., 2003]. Therefore, the rule cannot be
further specialized to uncover the negative example,
while still covering all the positive examples of the rules.
A positive exception is defined in a similar way.

A comparative analysis of the examples and the excep-
tions will facilitate identifying what distinguishes them
and how the object ontology needs to be extended to in-
corporate the identified distinction. This is precisely the
main idea behind our exception-based learning method in
which a subject matter expert collaborates closely with
the agent to discover possible ontology extensions (such
as new concepts, new features or new feature values) that
will eliminate the exceptions.

The exception-based learning method consists of four
main phases: 1) a candidate discovery phase in which the
agent analyzes a rule, its examples and exceptions, and
the ontology and finds the most plausible types of exten-
sions of the ontology that may reduce or eliminate the
rule’s exceptions; 2) a candidate selection phase in which
the expert interacts with the agent to select one of the
proposed candidates; 3) an ontology refinement phase in
which the agent elicits the ontology extension knowledge
from the expert and 4) a rule refinement phase in which
the agent updates the rule and eliminates the rule’s ex-
ceptions based on the performed ontology extension.

As an illustration, consider the example and the corre-
sponding partially learned rule from Figure 1. This rule is
used in problem solving and generates the reasoning step
from Figure 6, which is rejected by the expert because
both the answer to the question and the resulting solution
are wrong. However, there is no knowledge in the current
ontology that can distinguish between the objects from
the positive example in Figure 1 and the corresponding
objects from the negative example in Figure 6. Therefore,
the negative example from Figure 6 will be kept as a
negative exception of the rule in Figure 1.

Figure 7 shows the interface of the exception-based
learning tool in the ontology refinement phase. The upper
left panel of this tool shows the negative exception which
needs to be eliminated. Below are the objects that are
currently differentiated: “Caribbean States Union” (from
the positive example) and “USA” (from the negative ex-
ception). The right panel shows the elicitation dialog, in
which the expert is guided by the agent to indicate the
name and value of a new feature that expresses the dif-
ference between “Caribbean States Union” and “USA.”
The expert defines the new feature “is minor member of”
and specifies that “Caribbean States Union” is a minor
member of “OECS Coalition,” while “USA” is not. Based
on this elicitation, Disciple learns a general definition of
the feature “is minor member of” and refines the ontology
to incorporate this knowledge. A fragment of the refined

Figure 5: Execution of the elicitation script from Table 1.

ontology is shown in the right part of Figure 7. Notice
that both the domain and the range of the new feature are
represented as plausible version spaces. The plausible
upper bound domain of this feature is "single member
force" and the plausible lower bound domain is "single
state force."

The exception-based learning tool was evaluated dur-
ing the Spring 2002 agent teaching experiment performed
with Disciple at the US Army War College, as part of the
“Military Applications of Artificial Intelligence” course.
The tool was used by seven subject matter experts with
the assistance of a knowledge engineer, to eliminate the
negative exceptions of the rules. We did not expect a sig-
nificant number of exceptions, because before the ex-
periment we attempted to develop a complete ontology,
which contained 191 concepts and 206 features. How-
ever, during the experiment, 8 of the learned problem
solving rules have collected 11 negative exceptions, indi-
cating that the ontology was not complete. In order to

eliminate these exceptions, the experts extended the on-
tology with 4 new features and 6 new facts. Some of the
newly created features eliminated the exceptions from
several rules. As a result of these ontology extensions,
the rules were correspondingly refined.

This experiment proved that the exception-based learn-
ing tool can be used to extend the object ontology with
new elements that represent better the subtle distinctions
that the experts make in their domains of expertise. This
tool allows the elimination of the rules' exceptions and it
improves the accuracy of the learned rules by refining
their plausible version space conditions. It also enhances
the agent's problem solving efficiency by eliminating the
need to explicitly check the exceptions. We plan several
extensions to the presented method: propose suggestions
and help the user during the exception-based learning
process; use analogical reasoning and hints from the user
in the discovery of plausible ontology extensions; extend
the method to discover new object concepts in order to
eliminate the rules' exceptions; and extend the method to
also remove the positive exceptions of the rules.

6 Example-based ontology learning
There are many situations during the agent teaching
process where the subject matter expert has to specify a
fact involving a new instance or a new feature. In such a
case, the example-based ontology learning tool is in-
voked to learn a new concept or a new feature definition,
from the provided fact. One such situation was encoun-
tered in the previous section where the expert indicated
that “Caribbean States Union is minor member of OECS

Figure 6: Incorrect reasoning step generated by the agent

I need to

Therefore

The will_of_the_people_of_USA is not a
strategic_COG_candidate with respect to the people_of_USA

Analyze the will_of_the_people_of_USA as a potential
strategic_COG_candidate of the OECS_Coalition with respect
to the people_of_USA

Is the will_of_the_people_of_USA a legitimate candidate?

No

Figure 7: The interface of the Exception-Based Learning Module and a fragment of the refined ontology

Domain

dominant_partner_multi_
state_alliance

PUB:
multi_member_force

Range

is_minor_member_ofsingle_state_force

PUB:
single_member_force

single_state_force

opposing_force

dominant_partner_multi_state_alliance

USA Caribbean_States_Union

instance_of instance_of
instance_of

is_minor_member_of

ad_hoc_governing_body

OECS_Coalition

A fragment of the refined ontology

PLB:PLB:

Coalition." From this specific fact Disciple attempts to
learn a general definition of the feature “is minor member
of.” The most important characteristics of the feature that
need to be learned are its position in the feature hierar-
chy, its domain of applicability, and its range of possible
values. First Disciple identifies the features that are most
likely to be more general than “is minor member of.”
This set initially includes all the features whose domain
and range cover “Caribbean States Union” and “OECS
Coalition,” respectively, as shown in Figure 8. This set if
further pruned by applying various heuristics (for in-
stance by eliminating the other features of “Caribbean
States Union”) and by directly asking the expert:

Consider the statement “Caribbean States Union is
minor member of OECS Coalition." Is this a more
specific way of saying: “Caribbean States Union is
member of OECS Coalition"?
As a result of this process “is minor member of” is de-

fined as a subfeature of “is member of.” The domain and
the range of the “is member of” feature become the upper
bounds of the domain and range of “is minor member of.”
The corresponding lower bounds are the minimal gener-
alizations of “Caribbean States Union” and “OECS Coa-
lition,” respectively (see the bottom part of Figure 7).

The next step is to further refine the plausible version
spaces of the domain and range. The lower bounds are
generalized based on new positive examples of this fea-
ture, encountered during further teaching. However, the
agent will not encounter negative examples. Therefore
the specialization of the upper bounds is based on a dia-
log with the expert who will be asked to identify objects
that cannot have this feature, or cannot be a value of this
feature. There are other difficult problems related to
learning and refining features: how to elicit its special
characteristics (e.g. whether the feature is transitive or
not), how to elicit its cardinality, or how to differentiate
between required and optional features for an object.

7 Ontology import and merging
Figure 9 shows another view of the Disciple agent build-
ing methodology that emphasizes ontology reuse and
parallel knowledge base development. The ontology
specification that results from the domain analysis phase
(see Figure 3) guides the process of importing ontologi-
cal knowledge, currently from CYC [Lenat, 1995] and, in
the future, also from other knowledge repositories.

Our import method consists of identifying key terms in
the CYC KB that correspond to the terms from the ontol-
ogy specification, extracting the knowledge related to
those terms and importing it into the Disciple knowledge
base. The extraction of knowledge is an automated proc-
ess in which all the terms related to the start-up terms are
elicited, then all the terms related to those terms, and so
on until a transitive closure or a user-specified stopping
criteria is met. This method extends the one of Chaudhri
et al. [2000] by adding stopping criteria, by allowing
taxonomy relations to be followed down the hierarchy,
and by considering the feature hierarchy. The translation
of the extracted knowledge into the Disciple formalism
consists of a syntactic phase and a semantic one, being
similar with the method used in OntoMorph [Chalupsky,
2000]. During the automatic transformation of extracted
knowledge into Disciple’s knowledge representation, the
system records logs with a number of decisions that re-
quire the user’s approval or refinement.

The imported ontology is further extended using the
ontology development tools of Disciple, as discussed in
section 3, leading to an initial knowledge denoted with
KB0 in Figure 9.

Another result of the Domain analysis phase is a parti-
tioning of the application domain into several subdo-
mains. A team of experts can now develop separate
knowledge bases for each independent subdomain. Each
expert teaches a personal Disciple agent, starting from
the common knowledge base KB0 and building a refined
one, as indicated in Figure 9. Then, the developed knowl-
edge bases are merged into the Final KB. This KB will
contain a merged ontology, but separate partitions of
rules, one for each subdomain. The ontology merging
algorithm exploits the fact that the KBs to be merged
share KB0 as a common ontology. It starts with one of
the KBs and successively merges it with the other KBs,

Figure 8: Fragment of the feature hierarchy.

object object
feature

DOMAIN RANGE

object object
is_part_of

DOMAIN RANGE

force force
is_opposed_to

DOMAIN RANGE

is_member_of

DOMAIN RANGE

multi_
member_

force

single_
member_

force

Figure 9: Rapid knowledge base development.

1. Domain analysis

2. Ontology
development

3. Parallel
development

4. Knowledge
bases merging

KB0

KB1 KB2 KBn

Domain expert

Final KB

External
Repository

Initial KB

Ontology
specification

Generic
problems

Expertise
subdomains

one at a time. Similarly to Prompt [Noy and Musen,
2000] and Chimaera [McGuiness et al., 2000], our ap-
proach to merging is based on providing an interactive
way of copying one frame from an ontology into the
other. While it is acknowledged that the role of the hu-
man cannot be eliminated from this process [Klein, 2001;
Noy and Musen, 2000], the goal is to provide the most
assistance to the knowledge engineer. Therefore, our tool
handles the low level operations, allowing the user to
issue only the most general commands, and assuring that
the ontology is kept consistent at all times. In addition to
that, the agent makes suggestions and keeps the user fo-
cused on the part of the ontology being merged.

The parallel KB development and merging capabilities
of Disciple were first evaluated in Spring 2002, as part of
“IT 803 Intelligent Agents” course at George Mason
University. The students had to develop an agent for
helping someone to choose a PhD advisor. The domain
was split into six parts that were developed separately by
the students in the class. They started the knowledge base
development with a general 23-fact knowledge base pro-
vided by the instructor and each of them had to extend it
with the knowledge needed to express their own part of
the domain. Each student extended its knowledge base
with an average of 97 facts. Using the merging tools pro-
vided by Disciple, the students succeeded to merge all
their work into a single agent with an ontology contain-
ing 473 facts. We plan to validate the entire methodology
in a new experiment at the US Army War College, as part
of the Spring 2003 MAAI course.

Future work includes the capability to import from
OKBC knowledge servers [Chaudhri et al., 1998] and
from DAML+OIL expressed ontologies [Connolly et al.,
2001], and an improvement of the proactivity of the
mixed-initiative ontology merging tool.

Acknowledgements. This research was sponsored by
DARPA, AFRL, AFMC, USAF, under agreement number
F30602-00-2-0546, by the AFOSR under grant no. F49620-
00-1-0072, and by the US Army War College.

References
[Boicu et al., 2003] Cristina Boicu, Gheorghe Tecuci, Mihai
Boicu, and Dorin Marcu. Improving the Representation Space
through Exception-Based Learning. To appear in Proceedings
of the Sixteenth International Flairs Conference. 2003.
[Boicu et al., 2000] Mihai Boicu, Gheorghe Tecuci, Dorin
Marcu, Michael Bowman, Ping Shyr, Florin Ciucu, and Cristian
Levcovici. Disciple-COA: From Agent Programming to Agent
Teaching. In Proceedings of the Seventeenth International Con-
ference on Machine Learning, Stanford, California, 2000. Mor-
gan Kaufmann.
[Boicu, 2002] Mihai Boicu. Modeling and Learning with In-
complete Knowledge. Doctoral Dissertation. George Mason
University, Fairfax, Virginia, 2002.
[Chalupsky, 2000] Hans Chalupsky. OntoMorph: a translation
system for symbolic knowledge. In Proceedings of Seventh
International Conference on Knowledge Representation and

Reasoning, pages 471--482, San Francisco, California, April
2000. Morgan Kaufmann.
[Chaudhri et al., 1998] Vinay K. Chaudhri, Adam Farquhar,
Richard Fikes, Peter D. Karp, and James P. Rice. OKBC: A
Programmatic Foundation for Knowledge Base Interoperability.
In Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence, pages 600--607, Madison, Wisconsin, July
1998. AAAI Press/The MIT Press.
[Chaudhri et al., 2000] Vinay K. Chaudhri, Mark E. Stickel,
Jerome F. Thomere, and Richard J. Waldinger. Using Prior
Knowledge: Problems and Solutions. In Proceedings of the
Seventeenth National Conference on Artificial Intelligence and
Twelfth Conference on Innovative Applications of Artificial
Intelligence, pages 436--442. Austin, Texas, July-August 2000.
AAAI Press/The MIT Press.
[Clausewitz, 1976] Clausewitz, C.V.. On War. Translated and
edited by Howard, M. and Paret, P. Princeton University Press,
Princeton, NJ.
[Connolly et al., 2001] Dan Connolly, Frank van Harmelen, Ian
Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider,
and Lynn Andrea Stein. DAML+OIL (March 2001) Reference
Description. W3C Note 18 December, 2001.
[Noy et al., 2000] Natalya Fridman Noy, Ray W. Fergerson,
and Mark A. Musen. The Knowledge Model of Protégé-2000:
Combining Interoperability and Flexibility. In Proceedings of
the European Knowledge Acquisition Workshop, pages 17-32,
2000.
[Klein, 2001] Michel Klein. Combining and relating ontolo-
gies: an analysis of problems and solutions. In Proceedings of
the IJCAI-20001 Workshop on Ontologies and Information
Sharing, Seattle, Washington, August 2001. International Joint
Conference on Artificial Intelligence, Inc.
[Lenat, 1995] Douglas B. Lenat. CYC: A Large-Scale Invest-
ment in Knowledge Infrastructure. Communications of the
ACM, 38(11): 33-38, 1995.
[McGuinness et al., 2000] Deborah L. McGuinness, Richard E.
Fikes, James Rice, and Steve Wilder. An Environment for
Merging and Testing Large Ontologies. In Proceedings of Sev-
enth International Conference on Knowledge Representation
and Reasoning, San Francisco, California, April 2000. Morgan
Kaufmann.
[Noy and Musen, 2000] Natalya F. Noy and Mark A. Musen.
PROMPT: Algorithm and Tool for Automated Ontology Merg-
ing and Alignment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence, pages 450–455, Austin,
Texas, July–August 2000. AAAI Press/The MIT Press.
[Tecuci, 1998] Gheorghe Tecuci. Building Intelligent Agents:
An Apprenticeship Multistrategy Learning Theory, Methodol-
ogy, Tool and Case Studies. Academic Press, London, 1998.
[Tecuci et al., 2002] Gheorghe Tecuci, Mihai Boicu, Dorin
Marcu, Bogdan Stanescu, Cristina Boicu, and Jerome Comello.
Training and Using Disciple Agents: A Case Study in the Mili-
tary Center of Gravity Analysis Domain. AI Magazine, 23(4):
51—68, 2002.

