
Abstract 
We are developing a general end-to-end approach, 

called Disciple, for building and using personal problem 
solving and learning agents. This approach raises complex 
challenges related to ontology specification, import, elici-
tation, learning, and merging, that we have explored to 
various degrees, as we are developing successive versions 
of Disciple. This paper presents some of these challenges, 
our current solutions and the future directions, that are 
relevant for building agents in general. 

1 Introduction 
The long term objective of our research is to develop the 
science and technology that will allow typical computer 
users to train and use their personal intelligent assistants. 
Our approach to this problem is to develop a series of 
increasingly more capable agents from the Disciple fam-
ily of learning agent shells [Tecuci, 1998; Tecuci et al., 
2002]. A Disciple agent can be initially trained by a sub-
ject matter expert and a knowledge engineer, in a way 
that is similar to how an expert would teach an appren-
tice, through problem solving examples and explanations. 
Once trained to a significant level of competence, copies 
of the agent are handed over to typical computer users. 
These agents then assist their users through mixed-
initiative reasoning, increasing their recall, speed and 
accuracy, without impeding their creativity and flexibil-
ity. In the same time, the assistants continue to learn 
from this joint problem solving experience, adapting to 
their users to become better collaborators that are aware 
of users’ preferences, biases and assumptions. 

The process of building and using such problem solv-
ing and learning agents raises complex challenges related 
to ontology specification, import, elicitation, learning, 
and merging, that we have explored to various degrees, 
as we are developing successive versions of Disciple. 
The goal of this paper is to present some of these chal-
lenges, our current solutions and the future directions, 
that are relevant for building agents in general. 

In the last three years, the development of the Disciple 
approach was driven by the attempt to find an automatic 
solution to the complex Center of Gravity (COG) analy-
sis problem, in collaboration with the US Army War Col-

lege. The center of gravity of a force (state, alliance, coa-
lition or group) represents the foundation of capability, 
power and movement, upon which everything depends 
[Clausewitz, 1976]. In any conflict, a force should con-
centrate its effort on its enemy’s center of gravity, while 
adequately protecting its own. As a consequence, the ex-
amples used in this paper will be from the COG domain, 
but they will not require an understanding of this domain. 

The rest of this paper is organized as follows. The next 
section discusses the use of the ontology for representa-
tion, communication, problem solving, and learning, both 
in general, and in the context of the Disciple family. Sec-
tion 3 gives an overview of the Disciple agent building 
methodology, stressing the ontology-related activities. 
Then sections 4 to 7 discuss in more details some of our 
main results on ontology specification, exception-based 
ontology learning, example-based ontology learning, and 
ontology import and merging. These sections will include 
experimental results and plans for future research. 

2 Knowledge representation for  
problem solving and learning 

A Disciple learning agent shell includes general problem-
solving and learning engines for building a knowledge 
base consisting of an object ontology that specifies the 
terms from a particular domain, and a set of problem 
solving rules expressed with these terms [Tecuci et al., 
2002]. The problem-solving engine is based on the gen-
eral task reduction paradigm. In this paradigm, a task to 
be performed is successively reduced to simpler tasks, by 
applying task reduction rules. Then the solutions of the 
simplest tasks are successively combined, by applying 
solution composition rules, until they produce the solu-
tion of the initial task. 

The object ontology is a hierarchical representation of 
the objects and types of objects from the application do-
main. It represents the different kinds of objects, the 
properties of each object, and the relationships existing 
between objects. A fragment of the object ontology for 
the COG domain is shown in the bottom part of Figure 1. 

The reduction rules are IF-THEN structures that ex-
press how and under what conditions a certain type of 
task may be reduced to simpler subtasks. The reduction 
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rule are paired with IF-THEN composition rules that ex-
press how and under what conditions the solutions of the 
subtasks may be composed into the solution of the task. 
An example of a simple task reduction rule is shown in 
the right hand side of Figure 1. In this case the IF task is 
reduced to its solution. 

The learning engines use several strategies to learn the 
rules and to refine the object ontology. At the basis of the 
learning methods are the notion of plausible version 
space [Tecuci, 1998; Boicu, 2002] and the use of the ob-
ject ontology as an incomplete and partially incorrect 
generalization hierarchy for learning.  

A plausible version space is an approximate represen-
tation for a partially learned concept, as illustrated in 
Figure 2. The partially learned concept is represented by 
a plausible upper bound concept which, as an approxima-
tion, is more general than the concept Eh to be learned, 
and by a plausible lower bound concept which, again as 
an approximation, is less general than Eh. During learn-
ing, the two bounds (which are first order logical expres-
sions) converge toward one another through successive 
generalizations and specializations, approximating Eh 
better and better.  

The partially learned knowledge pieces from the 
knowledge base of Disciple are represented with plausi-
ble version spaces. Notice, for example, that the IF-
THEN rule from the bottom right part of Figure 1 does 
not have a single applicability condition but two condi-

tions (Plausible Lower Bound Condition and Plausible 
Upper Bound Condition) that define the plausible version 
space of the exact condition of the rule. Similarly, each 
partially learned feature F from the object ontology has 
its domain and range represented as plausible version 
spaces. The domain to be learned of the feature F is a 
concept that represents the set of objects that could have 
the feature F. Similarly, the range to be learned is a con-
cept that represents the set of possible values of F. 

The object ontology plays a crucial role in Disciple, 
being at the basis of user-agent communication, problem 
solving, knowledge acquisition and learning. First of all, 
the object ontology provides the basic representational 
constituents for all the elements of the knowledge base. 
When an expert teaches a Disciple agent, the expert ex-
presses his/her reasoning process in natural language, as 
illustrated by the task reduction example in the upper left 
side of Figure 1.  The top task is the task to be reduced. 
In order to reduce this task the expert asks a relevant 

Figure 2: A representation of a plausible version space
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question. The answer to this question leads to the reduc-
tion of this task to a solution. As the expert types these 
expressions using natural language, the agent interacts 
with him/her to replace certain phrases with the ontology 
terms they designate (e.g. “will of the people of Carib-
bean State Union” or “strategic COG candidate”). The 
recognition of these terms facilitates the understanding of 
the expert’s phrases and the learning of a general rule 
from this specific example. The learned rule has an in-
formal structure (shown in the top right part of Figure 1) 
and a formal structure (shown in the bottom right part of 
Figure 1). The informal structure preserves the natural 
language of the expert and is used in agent-user commu-
nication. The formal structure is used in the actual rea-
soning of the agent. Notice that the two plausible version 
space conditions from the formal structure are expressed 
with the terms from the object ontology. The formal tasks 
and their features are also part of the task ontology, and 
feature ontology, respectively. 

As mentioned above, the object ontology has a 
fundamental role in learning, being used as a 
generalization hierarchy. Indeed, notice that the specific 
instances from the example (“will of the people of 
Caribbean State Union”, “OECS Coalition”, “people of 
Caribbean State Union”) are replaced in the learned rule 
with more general concepts from the object ontology 
(“will of agent”, “multi member force”, “people”), and 
their relationships.  

While the corresponding learning algorithm is pre-
sented in [Boicu et al., 2000; Boicu 2002], it is important 
to stress here that the agent’s generalization hierarchy 
(the object ontology) is itself evolving during learning 
(as discussed in sections 4, 5, and 6). Therefore Disciple 
addresses the complex and more realistic problem of 
learning in the context of an evolving representation lan-
guage. The next section gives an overview of the agent 
building methodology, stressing the ontology-related 
activities. 

3 Agent building methodology 
The Disciple learning agent shell could be used to rapidly 
develop a Disciple agent for a specific application do-
main, by following the steps from Figure 3. There are 
two main phases in this process: the development of an 
initial object ontology and the teaching of the agent. The 
first phase has to be performed jointly by a knowledge 
engineer and a subject matter expert. The second phase 
may be performed primarily by the subject matter expert, 
with limited assistance from a knowledge engineer.  

During domain analysis and ontology specification, the 
knowledge engineer works with the subject matter expert 
to develop an initial model of how the expert solves 
problems, based on the task reduction paradigm. The 
model identifies also the object concepts that need to be 
represented in Disciple’s ontology so that it can perform 
this type of reasoning. These object concepts represent a 
specification of the ontology needed for reasoning.  

During ontology import and development, this specifi-
cation guides the process of importing ontological 
knowledge from existing knowledge repositories, such as 
CYC [Lenat, 1995], as discussed in section 7. However, 
not all the necessary terms will be found in external re-
positories and therefore the knowledge engineer and the 
subject matter expert will also have to extend the im-
ported ontology using the ontology development tools of 
Disciple. For instance, Figure 4 shows the interfaces of 
three different ontology browsers of Disciple, the asso-
ciation browser (which displays and objects and its rela-
tionships with other objects), the tree browser (which 
displays the hierarchical relationships between the ob-
jects in a tree structure), and the graphical browser 
(which displays the hierarchical relationships between 
the objects in a graph structure). 

Once the object ontology is developed, the knowledge 
engineer has to define elicitation scripts using the Script 
Editor of Disciple. The elicitation scripts will be exe-
cuted by the Scenario Elicitation tool, guiding the user of 
Disciple to define a specific scenario or problem solving 
situation (e.g. the current war on terror, including the 
characteristics of the participating forces, such as US and 
Al Qaeda). This process will be described in more detail 
in section 4. The result of this initial KB development 
phase is an object ontology with instances characterizing 
a specific scenario. 

In the next major phase, the subject matter expert will 
use the current scenario to teach Disciple how to solve 
problems (e.g. how to determine the centers of gravity of 
the opposing forces in the current war on terror). 

First, the expert will interact with the Modeling advi-
sor tool of Disciple. This tool will assist the expert to 
express his or her reasoning process in English, using the 
task reduction paradigm. The result of this process will 
be task reduction steps like the one from the upper left 
part of Figure 1. These steps may also include new terms 
that are not yet present in the object ontology of Disciple. 
Each such term is an example for learning a general con-

Figure 3: Main agent development processes.
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cept or a general feature using the Ontology learning 
method discussed in section 6. Also, each specific rea-
soning step formulated with the Modeling advisor is an 
example from which a general rule is learned using the 
Rule Learning tool. An example of such a rule is pre-
sented in the right hand side of Figure 1. 

As Disciple learns more rules, the interaction with the 
subject matter experts evolves from a teacher-student 
type of interaction to an interaction where both collabo-
rate in solving a problem. This interaction is governed by 
the mixed-initiative problem solving tool. In this case, 
Disciple uses the partially learned rules to propose solu-
tions to the current problems, and the expert’s feedback 
will be used by the Rule Refinement tool and the Ontol-
ogy Refinement tool to improve both the rules and the 
ontology elements involved in the rules’ applications. 

There is no fixed sequence of tool invocations. Instead, 
they are used opportunistically, based on the current 
problem solving situation. For example, while the expert 
and Disciple are performing mixed-initiative problem 
solving, the expert may need to define a new reduction 
that requires modeling, rule learning and rule refinement.  

Because the rule learning and refinement processes 
take place in the context of an incomplete and partially 
incorrect object ontology, some of the learned rules may 
accumulate exceptions. In such a case, the exception-
based KB refinement tool may be invoked to extend or 
correct the object ontology and to correspondingly refine 
the rules. This process will be presented in section 5. 

Because one of the goals of this research is the rapid 
development of knowledge bases, the Disciple shell also 
includes tools to merge the ontologies and the rules de-
veloped in parallel by the subject matter experts. Section 
7 discusses this issue in more detail.  

In the last three years we have performed extensive 
experiments with Disciple at the US Army War College, 
where it is used in two courses, Case Studies in Center of 
Gravity Analysis (the COG course), and Military Appli-
cations of Artificial Intelligence (the MAAI course). In 
the COG course, Disciple is used as an assistant that was 
trained by the instructor, helping the students to perform 

a COG analysis of a scenario and to generate an analysis 
report. Over 95% of the students from the 2002 Terms II 
and III sessions of this course agreed with the following 
statement: Disciple helped me to learn how to perform a 
strategic center of gravity analysis of a scenario. In the 
follow-on MAAI course, the students taught personal 
Disciple agents their own expertise in COG analysis. Af-
ter the experiments conducted in Spring 2001 and Spring 
2002, 19 of the 25 students agreed (and 6 were neutral) 
with the statement: I think that a subject matter expert 
can use Disciple to build an agent, with limited assis-
tance from a knowledge engineer. 

The following sections will provide more details on 
some of the most important ontology-related processes of 
the Disciple agent development methodology, as well as 
results from the above experiments. 

4 Scenario specification 
As part of the initial ontology development, the knowl-
edge engineer uses the Script Editor to define elicitation 
scripts that specify how to elicit the description of a sce-
nario from the user. These scripts are associated with the 
concepts and features from the ontology. Each script has 
a name, a list of arguments, and it specifies how to dis-
play the dialog with the user, the questions to ask the 
user, how to store the answers in the ontology, and what 
other scripts to call. Table 1 shows the script “elicit gov-
ernment type” associated with the concept “state gov-
ernment”. 

The elicitation scripts are executed by the Scenario 
Elicitation tool. As illustrated in Figure 5, the left hand 
side of the Scenario Elicitation interface displays a table 
of contents. When the expert clicks on one of these titles, 
questions that elicit the corresponding description are 
displayed in the right hand side of the screen. The use of 
the elicitation scripts allows a knowledge engineer to 
rapidly build a customized interface for a Disciple agent, 
thus effectively transforming this software development 
task into a knowledge engineering one.  

The Protégé system [Noy et al., 2000] has a similar 
capability of using elicitation scripts to acquire instances 
of concepts. However, Disciple extends Protégé in sev-
eral directions. In Disciple the expert does not need to 
see or understand the object ontology in order to answer 
the questions and describe a scenario. Instead, the expert-
agent interaction is directed by the execution of the 
scripts. Once the expert answers some questions or up-

Figure 4: Association, tree, and hierarchical browsers. 

Table 1: Sample elicitation script. 
Script: state_government.elicit government type
Arguments: <force-name>, <government-name>
Control: single-selection-list

Question: What type of government does <force-name> have?
Answer variable: <government-type>
Possible values: the elementary subconcepts of state_government
Allow adding new subconcepts: Yes

Ontology actions:
<government-name> instance-of <government-type>

Script call: <government-type>.elicit properties 
Arguments: <government-name>



dates his answers, new titles may be inserted into the 
table of contents, as directed by the script calls. For in-
stance, after the expert specifies the opposing forces in a 
scenario, their names appear as titles in the table of con-
tents, together with the characteristics that need to be 
elicited for them. Experimental results show that the ex-
perts can easily use the Scenario Elicitation module [Te-
cuci et al., 2002].In Protégé, each concept has exactly 
one script that specifies how to elicit the properties of its 
instances. In Disciple, a concept can have any number of 
scripts that can be used for any purpose. In particular, the 
knowledge engineer can define more scripts that specify 
how to elicit instances for the same concept. For in-
stance, to elicit the military factors for a single-state 
force, different questions have to be asked if the force is 
part of an alliance, or is a standalone opposing force.  

The most recent development of the Scenario Elicita-
tion tool is to allow the user to extend the ontology with 
new concepts in a controlled manner. For instance when 
the script from Table 1 is executed, the user can specify a 
new type of state government (e.g. “feudal god-king gov-
ernment”), as illustrated in Figure 5. As a result a new 
concept is created under “state government”. As future 
developments, we plan to extend the capability of the 
Script Editor to facilitate the script definition task for the 
knowledge engineer, by taking into account the structure 
of the ontology and by using customization of generic 
scripts. We also plan to add natural language processing 
capabilities to the Scenario Elicitation module. 

5 Exception-based ontology learning  
As we have mentioned in section 2, the object ontology 
plays a crucial role in the learning process of the agent, 
as it is used as the generalization hierarchy for learning. 
However, this ontology is itself incomplete and partially 
incorrect and will have to be improved during the teach-
ing of the agent. In this section we will briefly present an 
exception-based approach to ontology learning. 

Because the ontology is incomplete, it may not contain 
the knowledge to distinguish between all the positive 
examples and the negative examples of a learned rule, 

such as the one presented in Figure 1. As a result, a rule 
may accumulate negative and positive exceptions.  

A negative exception is a negative example that is cov-
ered by the rule because the current object ontology does 
not contain any knowledge that distinguishes the negative 
example from the positive examples of the rule [Tecuci, 
1998; Boicu et al., 2003]. Therefore, the rule cannot be 
further specialized to uncover the negative example, 
while still covering all the positive examples of the rules. 
A positive exception is defined in a similar way. 

A comparative analysis of the examples and the excep-
tions will facilitate identifying what distinguishes them 
and how the object ontology needs to be extended to in-
corporate the identified distinction. This is precisely the 
main idea behind our exception-based learning method in 
which a subject matter expert collaborates closely with 
the agent to discover possible ontology extensions (such 
as new concepts, new features or new feature values) that 
will eliminate the exceptions.  

The exception-based learning method consists of four 
main phases: 1) a candidate discovery phase in which the 
agent analyzes a rule, its examples and exceptions, and 
the ontology and finds the most plausible types of exten-
sions of the ontology that may reduce or eliminate the 
rule’s exceptions; 2) a candidate selection phase in which 
the expert interacts with the agent to select one of the 
proposed candidates; 3) an ontology refinement phase in 
which the agent elicits the ontology extension knowledge 
from the expert and 4) a rule refinement phase in which 
the agent updates the rule and eliminates the rule’s ex-
ceptions based on the performed ontology extension.  

As an illustration, consider the example and the corre-
sponding partially learned rule from Figure 1. This rule is 
used in problem solving and generates the reasoning step 
from Figure 6, which is rejected by the expert because 
both the answer to the question and the resulting solution 
are wrong. However, there is no knowledge in the current 
ontology that can distinguish between the objects from 
the positive example in Figure 1 and the corresponding 
objects from the negative example in Figure 6. Therefore, 
the negative example from Figure 6 will be kept as a 
negative exception of the rule in Figure 1.  

Figure 7 shows the interface of the exception-based 
learning tool in the ontology refinement phase. The upper 
left panel of this tool shows the negative exception which 
needs to be eliminated. Below are the objects that are 
currently differentiated: “Caribbean States Union” (from 
the positive example) and “USA” (from the negative ex-
ception). The right panel shows the elicitation dialog, in 
which the expert is guided by the agent to indicate the 
name and value of a new feature that expresses the dif-
ference between “Caribbean States Union” and “USA.” 
The expert defines the new feature “is minor member of” 
and specifies that “Caribbean States Union” is a minor 
member of “OECS Coalition,” while “USA” is not. Based 
on this elicitation, Disciple learns a general definition of 
the feature “is minor member of” and refines the ontology 
to incorporate this knowledge. A fragment of the refined 

Figure 5: Execution of the elicitation script from Table 1. 



ontology is shown in the right part of Figure 7. Notice 
that both the domain and the range of the new feature are 
represented as plausible version spaces. The plausible 
upper bound domain of this feature is "single member 
force" and the plausible lower bound domain is "single 
state force." 

The exception-based learning tool was evaluated dur-
ing the Spring 2002 agent teaching experiment performed 
with Disciple at the US Army War College, as part of the 
“Military Applications of Artificial Intelligence” course. 
The tool was used by seven subject matter experts with 
the assistance of a knowledge engineer, to eliminate the 
negative exceptions of the rules. We did not expect a sig-
nificant number of exceptions, because before the ex-
periment we attempted to develop a complete ontology, 
which contained 191 concepts and 206 features. How-
ever, during the experiment, 8 of the learned problem 
solving rules have collected 11 negative exceptions, indi-
cating that the ontology was not complete. In order to 

eliminate these exceptions, the experts extended the on-
tology with 4 new features and 6 new facts. Some of the 
newly created features eliminated the exceptions from 
several rules. As a result of these ontology extensions, 
the rules were correspondingly refined.  

This experiment proved that the exception-based learn-
ing tool can be used to extend the object ontology with 
new elements that represent better the subtle distinctions 
that the experts make in their domains of expertise. This 
tool allows the elimination of the rules' exceptions and it 
improves the accuracy of the learned rules by refining 
their plausible version space conditions. It also enhances 
the agent's problem solving efficiency by eliminating the 
need to explicitly check the exceptions. We plan several 
extensions to the presented method: propose suggestions 
and help the user during the exception-based learning 
process; use analogical reasoning and hints from the user 
in the discovery of plausible ontology extensions; extend 
the method to discover new object concepts in order to 
eliminate the rules' exceptions; and extend the method to 
also remove the positive exceptions of the rules. 

6 Example-based ontology learning 
There are many situations during the agent teaching 
process where the subject matter expert has to specify a 
fact involving a new instance or a new feature. In such a 
case, the example-based ontology learning tool is in-
voked to learn a new concept or a new feature definition, 
from the provided fact. One such situation was encoun-
tered in the previous section where the expert indicated 
that “Caribbean States Union is minor member of OECS 

Figure 6: Incorrect reasoning step generated by the agent 
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Figure 7: The interface of the Exception-Based Learning Module and a fragment of the refined ontology 
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Coalition." From this specific fact Disciple attempts to 
learn a general definition of the feature “is minor member 
of.” The most important characteristics of the feature that 
need to be learned are its position in the feature hierar-
chy, its domain of applicability, and its range of possible 
values. First Disciple identifies the features that are most 
likely to be more general than “is minor member of.” 
This set initially includes all the features whose domain 
and range cover “Caribbean States Union” and “OECS 
Coalition,” respectively, as shown in Figure 8. This set if 
further pruned by applying various heuristics (for in-
stance by eliminating the other features of “Caribbean 
States Union”) and by directly asking the expert: 

Consider the statement “Caribbean States Union is 
minor member of  OECS Coalition." Is this a more 
specific way of saying: “Caribbean States Union  is 
member of  OECS Coalition"? 
As a result of this process “is minor member of” is de-

fined as a subfeature of “is member of.” The domain and 
the range of the “is member of” feature become the upper 
bounds of the domain and range of “is minor member of.” 
The corresponding lower bounds are the minimal gener-
alizations of “Caribbean States Union” and “OECS Coa-
lition,” respectively (see the bottom part of Figure 7).  

The next step is to further refine the plausible version 
spaces of the domain and range. The lower bounds are 
generalized based on new positive examples of this fea-
ture, encountered during further teaching. However, the 
agent will not encounter negative examples. Therefore 
the specialization of the upper bounds is based on a dia-
log with the expert who will be asked to identify objects 
that cannot have this feature, or cannot be a value of this 
feature. There are other difficult problems related to 
learning and refining features: how to elicit its special 
characteristics (e.g. whether the feature is transitive or 
not), how to elicit its cardinality, or how to differentiate 
between required and optional features for an object. 

7 Ontology import and merging 
Figure 9 shows another view of the Disciple agent build-
ing methodology that emphasizes ontology reuse and 
parallel knowledge base development. The ontology 
specification that results from the domain analysis phase 
(see Figure 3) guides the process of importing ontologi-
cal knowledge, currently from CYC [Lenat, 1995] and, in 
the future, also from other knowledge repositories. 

Our import method consists of identifying key terms in 
the CYC KB that correspond to the terms from the ontol-
ogy specification, extracting the knowledge related to 
those terms and importing it into the Disciple knowledge 
base. The extraction of knowledge is an automated proc-
ess in which all the terms related to the start-up terms are 
elicited, then all the terms related to those terms, and so 
on until a transitive closure or a user-specified stopping 
criteria is met. This method extends the one of Chaudhri 
et al. [2000] by adding stopping criteria, by allowing 
taxonomy relations to be followed down the hierarchy, 
and by considering the feature hierarchy. The translation 
of the extracted knowledge into the Disciple formalism 
consists of a syntactic phase and a semantic one, being 
similar with the method used in OntoMorph [Chalupsky, 
2000]. During the automatic transformation of extracted 
knowledge into Disciple’s knowledge representation, the 
system records logs with a number of decisions that re-
quire the user’s approval or refinement. 

The imported ontology is further extended using the 
ontology development tools of Disciple, as discussed in 
section 3, leading to an initial knowledge denoted with 
KB0 in Figure 9.  

Another result of the Domain analysis phase is a parti-
tioning of the application domain into several subdo-
mains. A team of experts can now develop separate 
knowledge bases for each independent subdomain. Each 
expert teaches a personal Disciple agent, starting from 
the common knowledge base KB0 and building a refined 
one, as indicated in Figure 9. Then, the developed knowl-
edge bases are merged into the Final KB. This KB will 
contain a merged ontology, but separate partitions of 
rules, one for each subdomain. The ontology merging 
algorithm exploits the fact that the KBs to be merged 
share KB0 as a common ontology. It starts with one of 
the KBs and successively merges it with the other KBs, 

Figure 8: Fragment of the feature hierarchy. 
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one at a time. Similarly to Prompt [Noy and Musen, 
2000] and Chimaera [McGuiness et al., 2000], our ap-
proach to merging is based on providing an interactive 
way of copying one frame from an ontology into the 
other. While it is acknowledged that the role of the hu-
man cannot be eliminated from this process [Klein, 2001; 
Noy and Musen, 2000], the goal is to provide the most 
assistance to the knowledge engineer. Therefore, our tool 
handles the low level operations, allowing the user to 
issue only the most general commands, and assuring that 
the ontology is kept consistent at all times. In addition to 
that, the agent makes suggestions and keeps the user fo-
cused on the part of the ontology being merged. 

The parallel KB development and merging capabilities 
of Disciple were first evaluated in Spring 2002, as part of 
“IT 803 Intelligent Agents” course at George Mason 
University. The students had to develop an agent for 
helping someone to choose a PhD advisor. The domain 
was split into six parts that were developed separately by 
the students in the class. They started the knowledge base 
development with a general 23-fact knowledge base pro-
vided by the instructor and each of them had to extend it 
with the knowledge needed to express their own part of 
the domain. Each student extended its knowledge base 
with an average of 97 facts. Using the merging tools pro-
vided by Disciple, the students succeeded to merge all 
their work into a single agent with an ontology contain-
ing 473 facts. We plan to validate the entire methodology 
in a new experiment at the US Army War College, as part 
of the Spring 2003 MAAI course. 

Future work includes the capability to import from 
OKBC knowledge servers [Chaudhri et al., 1998] and 
from DAML+OIL expressed ontologies [Connolly et al., 
2001], and an improvement of the proactivity of the 
mixed-initiative ontology merging tool.  
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